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Introduction 

In this paper we solve the Riemann problem for a pair of conservation laws of 
the form 

u, + u)x = 0, 

v,+(r (1) 

where r = q~(u, v). This system models the propagation of forward longitudinal and 
transverse waves in a stretched elastic string which moves in a plane. The wave 
propagation problem on an idealized nonlinear string, admitting both forward and 
backward waves, leads to a closely related system of four conservation laws which 
we also solve. 

The feature of interest in system (1) is that the equations are non-strictly 
hyperbolic in the following sense. Introduce vector notation U = (u, v), F = (~b u, r v); 
then the system (1) can be differentiated to produce 

U~+AU~=0, (2) 

0F 
where A = A(U) = OU" 

In classical theory, (2) is called strictly hyperbolic if A has real, distinct 
eigenvalues. In the example considered here, the eigenvalues 21(U ) and 22(U ) of A 
may coalesce on some subset 2 : = ~  2 of phase space. On 2:, A may or may not be 
diagonalizable. In the elastic string equations, the matrix is everywhere diagonaliz- 
able, and we may say that the system is hyperbolic but not strictly hyperbolic. IrA is 
not diagonalizable on 2:, we may speak of a parabolic degeneracy. In neither case 
does the usual theory (see [8] and [11] for references) for nonlinear hyperbolic 
conservation laws apply, since this theory demands and uses, among other things, 
the distinctness of the characteristic speeds 21 and 22. The major contribution of 
this paper is to extend the theory to these non-strictly hyperbolic cases and prove 
the existence of a weak solution to the Riemann problem for (1). Specifically, we 
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solve (1) with initial da ta  

U(x,O)={~',  x < 0 ,  
x > 0, (3) 

in the class of functions containing appropr ia te ly  generalized shock and rarefaction 
waves. 

Sys tem (1) is of a part icular ly simple form a m o n g  non-strict ly hyperbol ic  2 • 2 
systems in that  one of the characterist ic families corresponds  to a contact  
discontinui ty and hence is essentially linear. Because this is a p roper ty  also of  the 
elastic string equations,  we were mot iva ted  to consider this system first. In Section 1 
we analyse the general propert ies  of  (1) and discuss its admissible discontinuities 
and  simple wave solutions. Section 2 solves the diagonal izable  case and Section 
3, the nondiagonal izable  case; Section 4 covers the appl icat ion to an elastic string 
problem.  

1. Model Equations 

In system (1), ~b is in general a function of u and v; for example,  in the elastic 
string p rob lem we model  a nonl inear  stress-strain relation by 

r  (r-1)~2 , where r2 =uZ +v 2. (4) 
r 

(Cf  Sect ion4 for a brief  discussion of  the model  as well as for relevant 
references.) 

Fo r  general  r if we let tan 0 =  v/u and write r = qS(r, 0) in polar  coordinates,  
we find f rom the differentiated form of (2), with 

\ r 

that  the eigenvalues of  A (characterist ic speeds of  the system) are 

)~i = r  

0r r 1 6 2  ~ r  ' 

Then  X = {(u, v)121 = 2z} = {(u, v)lr r  = 0}. 
In the elastic string problem,  solutions with r = 0 are physically inadmissible,  

and we shall in general look at solutions of  (1) in the punctured plane F, 2 -  {0}. 
Thus  S is the set of  points  for which ~c~/Or=O. To simplify the situation, assume 
that  2: is a s imple closed curve given by r =f(O); that  is, er  = 0  for just  one point  on 
each radial  line, L o. This is the case, for example,  if r 0) is a convex function of r 
for each fixed 0 and ]r 0)[ ~ ~ as r ~ 0 and as r ~ o% for each fixed 0. Each point  
U ~L o has a reciprocal point U* eL o on the opposi te  side of  Z" with qS(U) = r  U* 
is defined to be 0 or  Go if no finite reciprocal  point  exists. 

The  eigenvector  w 1 corresponding to 21 is parallel to (-q~v,~b,), so that  
wl .  1721 -=0 and hence every shock of this family is a contact discontinuity. 
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The  eigenvector  w z corresponding  t o  •2 is parallel  to (u,v), and w 2 �9 1722 
= r ( r~b) , ,  and so this family is genuinely nonlinear if ( rq~)rr=24~,+r~b,r+0.  Fo r  
definiteness, we m a y  assume (r qS), r > 0; then, since ~b, = 0 on Z, we see that  ~br, > 0 in 
a ne ighborhood  of I;. The  case (r ~b), < 0 similarly implies qSrr < 0 near  2;, and m a n y  
other  inequalities are reversed; when necessary s ta tements  cor responding  to this 
case will be displayed in parentheses  [ ]. See Figure  l. The  convent ional  
normal iza t ion  w 2 �9 V~ 2 > 0 suggests defining w e = (cos 0, sin 0) [w 2 = - (cos0, sin 0)]. 

The  R a n k i n e - H u g o n i o t  equat ions  for (1), 

s( U - Uo) = F(U) - F(Uo) , (5) 

can be solved to find the Hugonio t  locus H ( U o ) c  IR 2 of  states U with the p roper ty  
that  the function 

~Uo, x < s t ,  
U(x,  t) = ~ U, x > s t (6) 

is a weak solut ion of (1). Fo r  a given U o = (r o cos 0 o, r o sin 0o), it can be verified that  
the Hugon io t  locus is the union of  four sets (see Figure 2): 

4) (U)r -c~ (Uo)ro  
I. U = ( r c o s O o , r s i n O o ) , r > O  , and s =  

r - -  1" o 

II. U lies on the curve 4) (U)=~(Uo)  th rough  U o and s=~b(Uo). 

III .  U lies on a curve q~(U) = q~(Uo) which does not  contain  Uo. (III  is empty  if 
U*~II .  Otherwise I I I  is the J - cu rve  th rough  U*.) 

~(v)  r + 4)(Vo) ro 
IV. U=-(rcosOo,rsinOo), r>O,  and s -  

r + r  o 

It is well known tha t  for hyperbol ic  conserva t ion  laws some restrict ion is 
necessary on the discontinuit ies al lowed in solving the R iemann  p rob lem;  
otherwise there will be in general  more  than  one solution. One cri terion for 
admissibil i ty is the en t ropy  condi t ion in t roduced  by LAX [11] for genuinely 
nonl inear  systems: a discont inui ty  must  be of  the k th family for some k, which 
means,  for (6), 
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;tk( V)  < s < ;~k( Oo), 

2i(U) < s, )~j(Uo)<S, j<k,  (7) 

s<21(U ), s<2j(U0), j > k  

where the eigenvalues are ordered: 21 < 2  2 ... <)~n" If the k th family is linearly 
degenerate everywhere the first relation reads: 2k(U)= S = 2k(Uo) and the others are 
unchanged. LIU [13] extended this condition to systems with local linear 
degeneracies. The difficulty for non-strictly hyperbolic conservation laws is that 
there is no well-defined ordering of the eigenvalues in the domain of the problem. 
However, a statement that is equivalent to (7) in the strictly hyperbolic case and 
applies to non-strictly hyperbolic systems is that either (n + 1) characteristics enter 
the shock and ( n - 1 )  leave it or ( n - 1 )  characteristics enter and leave while the 
remaining two, which in this case must belong to linearly degenerate families, are 
tangent to the discontinuity. We shall refer to this rule as the Lax Entropy 
Condition. For non-strictly hyperbolic conservation laws we shall extend this 
criterion to include points of the Hugoniot locus H(Uo) which are limits of points 
satisfying the above condition. Such points will be said to satisfy the Generalized 
Lax Entropy Condition; they constitute the shock set, S(Uo). 

Theorem 1. The shock set S(Uo) consists of the part of I with r<r o [r>__ro, if 
(r qS)rr<0], the part of II on the same side of Z as Uo; and possibly a part of IV. 

Proof. We state the arguments for the convex case, (r qS)r r > 0. If Ue I, then s = [-~ r l_ [r] 
lies between the values of  (r q~)r = f t  2 a t  U o and U, hence if r <ro,  2e(U)<s<22(Uo), 
while if r > ro, the inequalities are reversed. In the notation of [8] we call the first 
segment S2(Uo), the second S~(Uo). For the characteristic speeds of the opposite 
family, 

S__~I(U)=s__~D(U)=_ ro ( ~ b ( U )  _ ( ~ ( U o ) )  
r - -  r 0 

and 
s-  ~,(Uo) = - ~ o  (~(u)- ~(Uo)), 

and these quantities clearly have the same sign. Thus if r < r  o, we have three 
characteristics entering the shock and one leaving, but the shock speed may be 
faster or slower than the opposite family, according as q~(U)<~b(Uo) or 
~b(U) > q~(Uo). The point U*, with q~(Uo)= ~b(U~), satisfies the generalized entropy 
condition. If U belongs to II or III, the discontinuity is contact, with 21(U)=s 
=2i(Uo). As long as U and U o are on the same side of X, s -22(U)  and s--~.2(Uo) 
have the same sign. The arc of II so obtained is part of the shock set, and its 
endpoints, if any, on X satisfy the generalized entropy condition. We call this 
arcR(Uo). On the other hand, for points U on the opposite side of X from U o (i.e., 
points ofI I  - R(Uo) or of III), s - ~.2(U) and s - 2z(Uo) have opposite signs, violating 
the Lax entropy condition. 

There also may be points in IV which satisfy the entropy conditon. Since s lies 
between q~(U) and ~b(U0), we have 21(Uo)>S>21(U ) if ~b(Uo) > ~b(U), that is for all 
Ue lV  between the points IVnII  = Uo and IVc~III = U*, if such points exist. Thus a 
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shock of the first family will occur  if in addi t ion s - 2 2 has the same sign at U and U o. 
This will happen  for U in a subinterval  (do, W), as can be seen by letting U move  
f rom d o to U*. N o w  s - 22(Uo) and  s - J,z(Uo) do have  the same sign, so we have  a 
shock for points  near  Uo, while s - ) ~ 2 ( U * )  and s -  2z(U0) have opposi te  signs. But  

( s - 2 2 ( U ) ) = - ( r  ~ b ) , r - r - ~ r  ( s - ) ~ 2 ( U ) ) < 0  if s = 2 2 ,  so s - 2 2 ( U  ) changes sign 

only once, while --~ (s - 22(U0) ) = ( s -  22(U)) ' so s -  22(U0) does not  change sign at 
o r  r+r  o 

all. Thus  we get a single interval (fro, W), which we call S2(Uo), in which an 
anoma lous  en t ropy  shock of the first family occurs. 

The  p roo f  of  T h e o r e m  1 enables us to classify the en t ropy  shocks in I as fast if 
s > ~b(Uo) , and slow if s < qS(Uo). If  U 0 is inside Z [outside if (r qS)r ~ < 0 ] ,  this shock is 
always slow [fast], but  when U o is outside [inside] I; the shock is fast [s low] for U 
between Uo and U~' and slow [fast] for U between U~ and the origin [infinity]. 

The  set Rz(U0) of  states which can be jo ined on the right to Uo by a rarefaction 
wave is also a radial  line proceeding f rom Uo, but  in the direction opposi te  to S2(Uo). 
In fact, R2(Uo)=S*(Uo) , and system (1) is therefore non-interacting in the sense of 
SMOLLER & JOHNSON [143: if UlsS2(Uo) and U2~Sz(U1) for sufficiently weak 
shocks, then Uz~S2(Uo). 

To establish the nature  of  the degeneracy at 22, it is necessary to know whether  A 
is d iagonal izable  there. At  12, A - 2 1  = A  - 2 2  = 0  if and only if 

u4),=v4),=u4)~=v4)v=O on 22; 

that  is, qb, = q~v = 0 there, or  in polar  coordinates  q5 r = 00 = 0. But 2; is defined by the 
relat ion ~b r = 0, so that  we have  proved  

Theorem 2. For the system (1) with (o = dp(r, O) in polar coordinates, 1; is defined 
OF . O~ 

by {(u, v)] r q5 r = 0}. The matrix A = - ~  is diagonalizable on 1; if and only if frO = 0 
on 22. 

Corollary.  The characteristic speed 2 = (a is constant on 22 if and only if A is 
diagonalizable there. 

Remarks .  1. The  origin is always a singular point  in the sense that  all S 2 [R2] 
curves meet  there. 

2. The  eigenvectors  are w 2 = (cos  0, sin 0) and w 1 = ( -  qS~, qS,) away  f rom 22. On 
1;, w I is parallel  to w 2 in the nondiagonal izab le  case, and in the d iagonal izable  case 
Wl, when defined on 22 by continuity,  is tangent  to 22. 

3. Away  f rom 22, w ~. w 2 = 0 if and only if v ~b, - u q~ = 0 or  4~0 = 0. However ,  at 22, 
where 4~0 is always zero in the d iagonal izable  case, wt need not  be o r thogona l  to w 2. 
An example  is the function (o(u,v)=(u2W2v2-1)  2, for which 1; is an ellipse 
centered at the origin, whereas  wl .wz=O would force 2; to be a circle. 

4. Since ~b is a 2re-periodic function of  0, there must  be at least two points  on 1; at 
which ~b 0 = 0 and A therefore diagonalizable.  One  of these points  m a y  coincide with 
the origin. 

5. I rA  is d iagonal izable  at 22, then every contac t  curve of type II  is on the same 
side of  Z as U o. Hence  R(Uo) is all of  II. 
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2. The Diagonalizable Case 

If  we assume that  X is given by r =f (0) ,  then since q~r 4:0 away from 22, we see 
that  all contact  discontinui ty curves ~b = constant  are given by functions r =f(O, c) 
for different values ofc.  To  get a global existence theorem we assume that  q~(r, 0) is a 
convex function o f r  for each fixed 0 and that  [~b(r, 0)[ --, oc as r --* 0 and r -~ o0. Then 
S is bounded  away from the origin. We also assume genuine nonlinearity,  that  is, 
( r ~ b ) r r > 0 [ < 0  ] and hence q~ r>0  [ < 0 ] .  Note  that 21=~b has a m i n i m u m  
[ m a x i m u m ]  at 2;, where ~b~ = 0, and that  22 is strictly increasing [decreasing] with r 
f rom 0 to o0, as in Figure 1. 

To  construct  solutions to the R iemann  p rob lem we note that, by our  convexity 
assumpt ions  on 4), every point  (r, 0) has a unique reciprocal  point  (r*, 0) on L o such 
that  q~(r, 0) = ~b(r*, 0). 

Theorem 3. Under the assumptions on system (1) that S is given by r = f ( 0 )  and ff)o 
= 0  on Z, and that (r(O)r~+O, that 0 is a convex function of r for f ixed O, and that 
kb(r, 0)l -* oo as r ~ 0 and co, there is a centered solution to the Riemann problem (3) 
consisting of at most four states separated by entropy shocks, rarefaction waves or 
contact discontinuities. This solution is unique provided U z and Ur do not lie on 
diametrically opposite rays through the origin. 

Proof.  Assume ~b~ > 0 for definiteness. Let  D - be the region of U-space in which 
2 1 > 2 2 ,  D + the region where 21<22 .  Our  assumpt ions  guarantee  that  every 
contac t  discont inui ty  curve R(Uo) intersects every L o at a unique point. 

Case I. UI~D . If  also UreD-, then R(U~)cD-  and Um=R2(UI)nR(U~) or 
S2(UI)nR(U~) is uniquely defined. The  solution contains the in termediate  state U m 
joined to U t by a slow shock or rarefact ion wave and joined to U~ by a contact  
discontinuity.  

If  U ~ D  +, then let Um=27NR2(Ul) , Un=27NS2(Ur). Then U I joins U,, by a 
rarefact ion wave, U,, joins U, by a contact  discontinuity and U. joins Ur by another  
rarefact ion wave. (Note  that  here we are using the non-interact ing nature  of the 
shock curves to facilitate finding U,. We should really draw a " b a c k w a r d  
rarefact ion curve"  f rom U~ to intersect S.) 

Case II. U~eD +. For  each point  U~R(U~) the reciprocal point  is U* 
=S2(U)nR(UI*), and R(UI* ) is a closed curve. If  U r and U z are on the same side 
of  R(UI*), then U m =R(Ut)nR2(Ur) and /_/1 joins  U,, by a contact  discontinuity, U m 
joins U r by a fast shock. 

I f  Ur and U l are on opposi te  sides of  R(Ul*), then U m =S2(Ut)nR(U~) and Ul joins 
U,, by a slow shock, U,, joins  U r by a contact  discontinuity. Note  that  when U r is 
near  R(U~*), U m is not a cont inuous  function of U r. 

If  U r lies on R(UI*), Um may  have either of  the above forms, but  the solution 
U(x, t) is nevertheless unique because the shock and contact  discontinuity then 
have  the same speed of p ropaga t ion  and so the sector of  the x, t-plane in which U 
= U m has zero width. 

Uniqueness. With one exception the solutions obtained above are the only 
centered solutions which satisfy the Lax en t ropy  condit ions at discontinuities, for it 
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m a y  be verified that  in each case there is no o ther  sequence of states U z, U1, 
U 2 . . . . .  Uj, U~ that  can be jo ined by a sequence of waves with increasing speeds. F o r  
example,  if U t joins  U 1 by a contac t  discont inui ty  whose speed is q~ = ~b t = ~b 1, then 
U 1 can join U 2 only by a fast shock or rarefact ion wave, and then only i f2  2 > 21, etc. 

The exception is that  if Ul~Lo, U,~L~+ o and is such that  U~Sz(U~), there may  be 
a second type of solution, in which U z is jo ined to a point  UmeSz(U~) by an 
a n o m a l o u s  en t ropy  shock, while Um either equals Ur or  is jo ined to U, by a 
rarefact ion wave. Since a state U,,~S2(U~) is cont inuable  only to ano ther  point  in 
Lo+~, a n o m a l o u s  shocks can appea r  only for pairs of  points  Ut, U r tha t  are 
diametr ical ly  opposite.  F o r  the elastic string, this corresponds  to a string 
comple te ly  bent  back  on itself. Such a R i emann  p rob l em is thus ill-posed. 

3. Local Solution in the Nondiagonalizable Case 

If the matr ix  A is not  d iagonal izable  at Z, var ious possibilities present  
themselves.  An example  which we have  considered in detail  is q~(u, v )=  [(u + 1) 2 

+ v 2] P, where p is a posit ive or negative exponent .  Here  Z is the circle (u + �89 + v 2 = �88 
The  matr ix  is d iagonal izable  at  the points  (0, 0) and ( -  1, 0), bo th  of  which are 
singular for the system. Fo r  the general  equat ion of this type, a global  solut ion 
cannot  be described wi thout  a detailed knowledge  of the behav ior  of  q~ away  f rom 
2;, and also of  the charac ter  of  the (at least two) diagonal izable  points  of  Z. 

In this section, we construct  a solut ion to the R iemann  p rob l em in the 
ne ighborhood  of Z. Specifically, we take an open domain  F of IR 2 which is divided 
into two connected subsets D -  and D + by a segment  of  27 on which ~b 0 :# 0. For  
definiteness we bound  F by two radial  line segments,  so that  in F 0mi n < 0 < 0m, x. We 
assume, as in the previous  sections, that  2; is given by r = f ( 0 )  in F. The  a s sumpt ion  
of  genuine nonl inear i ty  on the 2 2 family, as we saw, implies thrr 4=0 at Z. We  also 
have  4~0 :~ 0 at 2;. Thus  the curves ~b -- constant  have  second-order  contact  with lines 
L o at  27, and the curve ~b = constant  going th rough  (f(0max) , 0max ) o r  (f(0min) , 0rain) 
bounds  a convex region within the sector  (0rain, 0m,x) and  intersects the other  radial  
line in two points. Deno te  the interior  of  this region by F. See Figure  4. 

Wi thou t  loss of  generality, we can take the bounding  curve to pass th rough  0 . . . .  
and assume ~b 0 > 0, ~br~ > 0. The cases ~b 0 < 0, ~br~ < 0 and the two cases involving 0ml n 
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are similar. Thus 4) attains its max imum in F on the curved arc, its min imum a t  0mi n. 

On each Lo, 4) attains a min imum at 2;, and 22 increases with r as in Figure 1. As 
before, D -  = { U[21 >22} is inside 2; (i.e., smaller values of r) and D + is outside 2;. 

The part  of  the Hugonio t  locus H(Uo) in F is the union of  the two curves 4)(U) 
=4)(Uo) and O(U)=O(Uo). 

Define the wave set W(Uo) to be the set of  states U which can be connected on 
the right to the state U 0 on the left, either by a rarefaction wave or by a shock or 
contact  discontinuity satisfying an ent ropy condit ion on both  families. In the 
present problem this set is a subset of  H(Uo), since the system is non-interactive. 

The continuable set C(Uo) is the subset of points U of  W(Uo) which can also be 
joined to a third state on the right by a rarefaction wave, shock or contact  
discontinuity whose min imum speed is at least as great as the max imum speed of 
the wave joining Uo to U. 

The two-related set W2(Uo) is the set of  states which can be joined to U 0 via two 
waves of  the listed types: i.e., the union of  the appropr ia te  port ions of  the sets W(U) 
for all U in C(Uo), or  the set of  cont inuat ions of  continuable points. 

Higher-order  continuable sets Cj(Uo) and j-related sets W~(Uo) can be similarly 
defined. 

Now, as in the diagonalizable case, U o = (ro, 0o) can be joined to any point U 
= (r, 00) on Loo by a shock of  speed s = [r 4)]/[r] if r < to, and this is a fast shock if 
4)(r) < 4)(ro) and a slow shock if 4)(r) > 4)(to). The same point  U o can be joined to U 
by a rarefaction if r > r o. The head of  the rarefaction has speed 22(r) and the tail has 
speed 22(ro). 

Also, U 0 can be joined to a point U by a contact  discontinuity if 4)(Uo)= 4)(U) 
and U lies on the same side of  X as U o. 

Thus in Figure 5 where U o e D +, W(Uo) consists of  the segment of  the line 0 = 0o 
inside F and the segment of  the curve 4)(U)= 4)(U o) inside D + w I;. The continuable 
set C(Uo) is the "s low shock"  por t ion of  the shock curve and the contact-  
discontinuity curve. Denote  the point  of  intersection of  4)= 4)(Uo) with 2; as U1. It 
can be seen that the set W2(Uo) consists of  the entire D -  region and the part  of  D + 
between 0m~ . and 0(U0;  this is obtained by continuing the slow shock by a contact  
discontinuity and the contact  discontinuity by a fast shock or  rarefaction wave. 

No te  that  if U* is on 2; with 4)(U*) > 4)(U~), then U o can be joined to U* through 
an intermediate state ~TeD- by a slow shock of  speed s<4)([7) and a contact  
discontinuity of  speed 4)([7)= 4)(U*). But now U* can join any point  on Lo(v, ) with 
r > r(U*) by a rarefaction wave of  tail speed 22(U* ) = 4)(U*), and hence U* e C2(Uo). 
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Thus the remainder of s consists of points in W3(U0). Since none of the regions 
covered by different solutions overlap, the solution is unique. 

If UoeD-,  as in Figure 6, the analogous construction is as follows. W(Uo) 
consists of the line 0 = 0o and the segement of ~b = 0(U0) in D- .  Define U1 as before, 
and let U 2 be the intersection of Z with Loo. Only the (slow) shock and the portion of 
the rarefaction curve inside D-  u Z are continuable, together with the isolated point 
U t. The rarefactions with UeD § have the odd feature that the so-called cross-flow 
characteristic family (in x, t-space) does not cross the wave but instead flows into it 
from both front and back (see Figure 7 where cross-flow is in dotted lines). Such 
waves are neither continuable nor continuations of other waves, and hence may be 
expected to appear only for very special initial conditions Ut and U,. 

The set W2(Uo) consists of the part of D-  with q5 > ~(U2) and the line 0 = 0(Ut) in 
D § of points joined to U 1 by a rarefaction wave, together with the curve R(U2) in D +, 
points of which can be joined to U 2 by a contact discontinuity of speed q~(U2) equal 
to the head speed of the rarefaction wave joining U 0 and U 2. The set C2(Uo) consists 
of points of Z with 0 > qS(U2) and the curve R(Uz)nD +. From the latter fast shocks 
and rarefaction waves, from the former rarefaction waves alone may be drawn, so 
that Wa(Uo)just fills the remainder of F. 

Thus we have proved 

Theorem 4. For the system (1), assume that Z is given by r=f(O) in the sector 
Omi n ~ 0 ~_ Omax and that in this sector (r c~),, ~ 0 everywhere and C~o ~: 0 on Z. Let F 
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denote the subset of this sector bounded by one of its radial bounding lines and by the 4) 
= const, curve tangent to the other bounding line at I,. Then the Riemann problem (3) 
has for all Ul, U~ in F a unique centered entropy solution U(x, t ) c  F. The solution 
consists of at most four constant states separated by discontinuities or simple waves. 

It is noteworthy that in this problem a solution cannot be found by restricting 
attention to one or the other side of-r  where the equations are strictly hyperbolic. 
Intermediate states on the opposite side of_r may be necessary to join two points on 
the same side. 

It is also clear that the above construction can be carried out in any region 
containing only non-diagonalizable points of 2;, and such regions may be pieced 
together. However, singular behavior will occur at the diagonalizable points on 2;. 

4. Application to a Problem of  Shocks on an Elastic String 

We consider an elastic string of infinite length which is constrained to move in 
the (w, v) plane. See [2], [7]. Let x be arc-length along the string measured from 
some origin when it is in a reference configuration of uniform tension T o and density 
Po, and let w(x, t) and v(x, t) be the horizontal and vertical components at time t of 
the point which was at distance x from the origin in the reference state. This 
normalization is convenient for studying the Riemann problem. 

- -  2 2 The strain is defined as e - ~ - 1 ,  and we let 

2 2 r = l + z = ~ ,  0= an 

Assuming a stress-strain relation T=  T(e), we can write the equations of motion 
of the string (see CRISTESCU [5]) in the form 

~?2w c3 ( T c~w) 
P o  a t  2 - - ~ X  ~ - X  ' 

(9) 

a2v a ( r  &) 
PoZ~=~ ~ ~ �9 

v String Configuration 

x "1 Reference Configuration 

o F `  "~ w 

Figure 8 Figure 9 
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T 
T o  avoid prol i ferat ion of symbols ,  we let Po = 1 and  T o = 1, and let ~b = qS(r) = 

1+~"  
Define vector  functions U=(wx,w,v~,,vt) and F(U)=(-wt , -dpwx, -v t , - (ovx) .  
Then  we have  a system of four conservat ion  laws of the form of equat ion  (2). The  

eigenvalues of  A are _ + l / ~ =  ~ 2 1  and _ l/ de -+ (r~b) = "t-2 2. Thus  the 

equat ions  are hyperbol ic  if Tis  posit ive and monotone ,  but  non-str ict ly hyperbol ic  
d 

if, for some value of r, q~=~rr(r~b), or r~br=0.  Positive tension is a necessary 

hypothesis,  and it is also physically reasonable  that  stress increase with strain. Fo r  a 
stress-strain relat ion that  is l inear near  the reference position, T =  1 + a e, so 4~(r) = a 

1 - a  1 - a  . 
+ and q5 - r2 is zero if and only if a = 1. Thus  in the linear app rox ima-  

r 
t ion we have  a characteris t ic  equat ion  with roots  of  constant  multiplici ty if a = 1 
and distinct roots  i f a  4= 1. If, however ,  Tis  nonlinear,  then near  the defining state we 

m a y  write T(~) = 1 + a  e +  6 e 2 + O(e3), and  (1 + ~ ) ~ - -  T = a -  1 + 2 6  e+O(e 2) will 

1 - - o  
t * G  

be equal  to zero for some e ~ ~ -  which is near  zero for a near  1. Since the choice of  

the reference state was arbi t rary ,  we choose it to cor respond  to this critical value:  

is, a = ~ - ( 0 ) =  1. Thus  A will have an eigenvalue of mult ipl ici ty two if e = 0  that  

(r = 1). u ~  6 ( r -  1) 2 
Fo r  example,  if T(e) is exactly 1 + e + 6 e 2, then q5 = 1 -~ 

r 
It  is s tated in CRISTESCU [5] that  the speeds + ] / ~  are characteris t ic  of  the 

p ropaga t ion  of t ransverse  waves, or of  changes in the shape of the string wi thout  
changes in tension. This  family is l inearly degenerate ;  that  is, a discont inui ty  in U, 
which is, physically, a corner  in the string, p ropaga tes  as a contac t  discontinui ty 

with the same speed as the c o m m o n  value of + 1 / ~  ahead of or  behind the corner.  

1 /dT  1 The speeds - 1/d--~-. character ize  longi tudina or tension waves, in which there is no 

change of shape in the string. A discontinui ty in this family is a tension jump,  
ana logous  to the pressure j u m p  in the equat ions  of  gas dynamics  [3], and  such 
discontinuities are shocks in the sense of this work. The  condit ion for genuine 

d 2 dZT 
nonl inear i ty  is reduced to ~Srz (r ~b) 4= 0, or -d~5-e2 4 = 0, a condit ion we shall assume in 

the region of interest. We  shall also assume tha t  the only physically relevant  or  
admissible  discontinuities are those which satisfy the Lax  en t ropy  condi t ion (or a 
weakened  condi t ion with non-str ic t  inequalities). In Append ix  B we present  an 
a rgumen t  based on the total  energy in the string to suppor t  this ma themat ica l ly  
reasonable  assumpt ion.  However ,  it mus t  be stated that  the equat ions  (9) for the 
string are an idealized system which describes an infinitely thin string. We shall 
demons t ra t e  in the t heo rem of this section tha t  the general ized Lax en t ropy  
condi t ion makes  the R iemann  P rob lem for (9) mathemat ica l ly  well-posed, but  the 
solutions we find are physically meaningful  only if it can be shown that  they are 
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indeed the limits of  solutions of  the more  complicated mathematical  system 
containing all the physically relevant quantities. This limiting procedure  would 
serve to define a length scale on which shock thickness could be measured. As far as 
we know, this f ramework does not exist at present; however, shocks in elastic 
strings are observed experimentally and are important  in some engineering 
applications (see I o s u E  [7], CR1STESCU [5]). It would be interesting to know the 
circumstances under which the solutions found here describe the observed 
phenomena.  

In the problem we have just outlined, we shall assume genuine non-linearity, 
d 2 

that is )~r2(r q5)#0. N o w  if r is convex downward,  then rqS, and hence ~b, might 

become negative as r--*0 or as r--*0% and the equations would no longer be 
hyperbol ic  there. Also, if (r ~b)r becomes negative for some values of r the equations 
are not  hyperbolic  there. Thus we will consider only states U corresponding to 
values o f r  in an interval rmi n ~ r = rma x in which ~b and (r q~)r are positive. Note  that a 

state U=(ul,Uz,U3,U4) is completely specified if r = ] / u l  2 +u~ ,  0 = t a n  -1 (U3], u2 
and u 4 are known. \ u l l  

The solution to the Riemann problem with initial states Ut, U r will consist of five 
states U t = U 0, U 1 . . . .  , U 4 = U r, joined by two backward  and two forward waves. 
As in Sect ion2 we define X={U[(a=(rO)r}={U[r=l}; T, is a 3-dimensional 
manifold in lR 4 which separates D-={U[q~>(r~b)~} from D+={Ul(a<(rO)r}. 
For  definiteness we shall take (r ~b)rr>0; then D + ={U[r<>l}.  

To find the wave curves we must  solve the Rankine-Hugonio t  equations 
s[U] = [F] ,  or 

S2[Ul]=[(/)N1], $2 [U3] = [~ U3]. 

Following the discussion in Section 1, with s 2 replacing s, we find that there are 
two types of  waves: contact  discontinuities with r+ = r _  and s2=  qS(r+)= q~(r ), 

and shocks with 0+ = 0  and s2 =--.[r~b] There are also, as in the model  problem, 
- [r] 

anomalous  shocks, with 0+ = ~ + 0 ,  which correspond to cusps, or  180 ~ bends 
in the string. We do not  include these in the construction. See the discussion at 
the end of  Section 2. The backward shocks, with s = - ([r ~b]/[r]) �89 < 0, satisfy an 
ent ropy condit ion on the characteristic speed of  the same family if - 2 ~ - > s >  
- 2  + or r < r + ;  all such shocks satisfy the entropy condit ion on the other 

family, and as in Section 2, the shock is slow if [s] < 2 ~ ,  i.e. s>-]/dp +-, and fast 
otherwise. For  each point  r define the reciprocal point r* such that q~(r)= ~b(r*); 
since r = 1 is a min imum of ~b, such a point  always exists for r near 1, and we let 
r* be 0 or oe if no finite reciprocal point  exists for r > 1 or r < 1, respectively. 

There are the following possibilities: 

I f l < r  < r + < o %  s is a fast shock. 
I f r  < r + < r * _ ,  s is a slow shock. 
If  r < r *  < r + ,  s is a fast shock. 

Similarly the forward shocks, with s = ([r q~]/[r]) ~, satisfy an entropy condit ion if 
22 > s > 2 ~  or  r_ > r +  and if 
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1 > r_ > r + > 0, s is a slow shock;  

r_ >r*_ > r + ,  s is a slow shock;  

r_ > r__ > r*_, s is a fast shock. 

The equat ions for the shock curves, S, and contact  discontinuity curves, C 
(subscripts b and f denot ing backward  and forward waves) are 

U~Cb(Uo) if r = r  o and 

u2 = u~ ~ + ro ~ (cos 0 -  cos 0o), 

u 4 = u(f ) + r o ~ (sin 0 -  sin 0o); 

UeCs(Uo) if r = r  o and 

u2 -- u~ ~ - ro ~ l / ~ o )  (cos O -  cos 0o), 

and a similar equat ion holds for u4; 

UeSb(Uo) if 0 = 0 o ,  r > r  o and 

u 2 = u(2 ~ + I]/(r, to) (r -- ro) cos 00 

where 

qJ(~, ro) = ~'(ro, ~) = ~ o  4'~ 

UsSI(Uo) if 0 = 0 o ,  r < r  o and 

u 2 = ut2 ~  ~9(r, ro) ( r -  ro) cos 0 0 

with analogous  equations for u 4 in each case. 
The rarefaction curves R b and R I are the integral curves of  the vector fields 

given by right eigenvectors of  A corresponding to - 2 2  and + 22 respectively. It 
may  be verified that  

UsRb(Uo) if 0 = 0  o, r < r  o and 

P 

UeRI(Uo) if 0 = 0  o, r > r  o and 

[! - ] . ~ = ~ i  ~  V~4,(t))'at cosOo=~~ 

with similar expressions for u 4. 
If  r < l < r  0 in the backward  case or r > l > r  0 in the forward case, the 

rarefactions can be combined  with contact  discontinuities that  are in the middle, 
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lb .  

o r  

as in the model  problem in Section 2. In this superposition, the two waves can 
be treated independently. 

In the following theorem and corollary we give our  main result on global 
existence of  solutions to the problem of the elastic string. 

Theorem. The Riemann Problem (9), (3), with qV(1)=0, (r~b)"~0, has a unique 
solution consisting of five states connected by two backward waves and two 
forward waves, for Ul, U r in a region F e N  4 x lR 4. 

Proof. We consider the case (r q~)" >0,  for which the curves described above 
have been constructed. Since Uo, U 1 and U 2 must  be connected by backward 
waves and U2, U 3 and U 4 by forward ones, we have the following possibilities in 
each case: 

1. U I eSb(Uo) with a fast (backward) shock 01 = 00, r~ = re; or U 1 ~Rb(Uo) with 
a rarefaction 0a =00 ,  r~ = r2 ;  

2. UI~Cb(Uo) with a contact  discontinuity and U2eSb(U 0 (slow shock) or 
U2sRb(U1) (rarefaction), 01 =02,  rl = ro .  

3. The contact  discontinuity is in the middle of  the rarefaction wave and 
there is no clearly defined U1, but instead two states U~ and [71 with 

r(U~)=r(U~)= I, O(UO=Oo, 0(U1) = 02, 

and 

U 1 ~Rb(Uo), U, ~ Cb(U1), U2 ~Rb(~J1). 

In all cases, the situation is determined once we know r 2 and 02, and we obtain 
in each case: 

U ( 2 )  __ , , ( 0 )  -4- 2 - " 2  - 0(r2, ro) (r2 - ro) cos00 + r 2 ~ ( c o s  02 - cos00) 

2b. 

where 

uh 2)= u~ ~ z(r2, ro) cOS0o + r2 V ~  (cos 02 -- cOS0o); 

u~ 2' = u~ ~ + ro 6 1 / ~ o )  (cos 02 -- cos 0o) + p(r2, ro) cos 02 

3b. 

=~k(rz ,ro)(rz-ro)  if r2 >ro ,  
P(r2' r~ (z(r2,  ro) if r 2 < r  0; 

u~ z) = u~ ~ + Z(1, ro) cos 0o + I .  (cos 02 - cos 0o) + z(r2, l) cos 02 . 

In general, letting S i = r i ~ gives 

where 
uh 2~ = u~ ~ + To cos 0o + T2 cos 02 

[p(r2, r o ) -  S 2 

ro=~-So 
[z(1, r o ) -  1 

if r 0 > 1,r 2 > 1 or r 0 < 1,r 2 >r~  (region @), 

if r 0 < 1  and 0 < r  2 < r ~  (region@), 

if r 0 > 1  > r  2 ( region@) 



Conservation Laws in Elasticity 233 

and 

IS  2 in region (~) above, 

T 2 = ] S o + p ( r z , r o )  ' in region (~), 

[ 1 + x(r2, 1)  in region @. 

These regions are illustrated in Figure 9. In an analogous  fashion, we find 

U(2) _ , , (0)  2 _  
4 - - 4  - To sin 0 0 + T 2 sin 0 2. 

Similarly in joining U 2 to U 4 by two forward waves, we have 

u(2)_, , (4) ,  q. c o s 0 2 +  T,  cos0 ,  2 - - ~ 2  ~ ~2 
and 

,/(2) _ _  ~,(4) 4 - - 4  + T2 sin02 + 7"4 sin04 
where 

[ - - $ 2 ,  [ - - p ( r 2 , r 4 ) + S  2 in @, 

T2=~--S4--P(r2,r4), T4=IS 4 i n  (2 ) ,  

t -  1 - z ( r 2 ,  1), 1 -)~(1,r4) in @. 

Now, eliminating u(2 2~ and u~ 2) f rom these equations, we get 

u~ ~ + To cos 00 + T2 cos 0z = u~ *~ + ~ cos Oz + T4 cos 04, 

u~4 ~ + T O sin 00 + T 2 sin 02 = u ?  ) + T2 sin 02 + T 4 sin 04. 
Let 

R 2 = u o,] 2 + _ . , o , 1 2  , [ u ? '  - L~'4 ~4 J , CO = t a n -  b,~3~_,,E~t" 
x ~ 2  ~ 2  

Then defining 
A = T 4 COS 0 4 - -  T O cos 00 + R cos co, 

B = T 4 sin 04 - To sin 0 o + R sin co, 

we can eliminate 02 to obtain  a single equat ion for r2: 

(10) 

(T 2 - 7~) z = A 2 + B z. (11) 

Define 

G(r2)=G(rz; ro,r 4, 0 o , 04,R,  co)=(T z - 7~2) 2 - A  2 - B  z. (12) 

We now look for condit ions on U o and U 4 which guarantee a solution to G = 0. 
First we shall show that  there can be no more  than one solution, because at a 
roo t  of  G = 0, G is an increasing function of  r z. N o w  G is not  differentiable at 
some values of  r 2, but  G is cont inuous  and one-sided derivatives do exist 
everywhere. Hence we can calculate 

1 dG 
~ ~ r 2 = ( T ~ -  ~ ) ( T z - -  T 2 ) - - A ' A - - B ' B ,  

d 
w h e r e  ' = -  

dr 2" 
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It may  be verified that  T ~ > 0  and 7~2<0 for all cases, while* T ~ < 0  and 
T~>0 ;  in fact 

O>=T~>-T~ and 0__<T4<-7~2 . 

Thus  at a root  of  G =0 ,  
(T~ - 7~)(T 2 - ~ )  > IA'A +B'BI, 

for T 2 -  T2 is always posit ive {by the Schwarz inequali ty on Z) and is greater  than 
max(IAk IBI) if G = 0  by (11), while 

]A'A + B'BI = I T~(A cos 04 + B sin 0 4 ) -  T~(A cos 0 o + B sin 0o) I 

< T~ max(IAI, ]BI) -  Td max(IAI, [Sl) 

< ( T  2 - ~ )max( ]A] ,  IBI). 

Thus  G ' > 0  at any root  of  G = 0  so that  the solution Us, if it exists, must  be 
unique. 

N o w  when does such a state U 2 actually exist? A necessary and sufficient 
condi t ion for its existence is that  G(rmin) < 0 < G(rm,x), where 0 =< rmi . < r < rma x =< 
+ O0 is the r- interval  in which the assumpt ions  49 > 0, (r 49), > 0, (r 49),, :4= 0 of  our  
t heo rem hold. We  must  therefore investigate the signs of  G(rmin) and G(rm,x). 

We  look first at G(rma.). The  simplest  behavior  occurs when rm, *-- oo and 
r lim r  + ~ .  Then r * - ~ 0  as r ~ ,  so that  (ro,r2) and (r4,r2) are r~oo 
always in region (~) of  Figure  9 when r 2 is large. Hence  for r 2 = r ~ 

To=lP(r, ro,(r-ro,-r ]// 49(r, =r l/~-dp(r) []/ (1-r~ 49~ ( 1 - ? ) -  1] 
r49! 

-- ~ro ~ ] f ~ [ ( l + ~ r ) ) + O ( ! ) ] '  

which approaches  - o 0  as r--+0r while T s = S s = r ] / ~  approaches  + Go at a 

faster rate. Similarly T4_~ +�89 ~ ] / - ~ - . + c ~ ,  while 7 ~ = - $ 2 + - o 0 .  Thus  as 
r -+ oo we have (T 2 - 7~2) 2 = O(r 2 49) while A 2 + B 2 = 0 ( 4 9 )  only. Hence  G(r) > 0 for r 
sufficiently large; i.e., G(rm,x) = G( + oo) > 0 in this case. 

Next,  we consider r= ,~= c~, but  49(rmax) finite; this can happen,  for example,  
with a 49 which behaves  like const. - r  - }  for large r. In this case r*,x m a y  be 
positive, so that  the possibili ty exists of  an r o (or r, 0 between rmi n and r*m,x," for 
such an r o or  r 4 the corresponding r 2 will lie in region (~) of  Figure 9. But 
whether  we are region (i) or  (~) we find that  T 2 - 7~ still approaches  + 0% while 
now T O and T 4 approach  finite limits as r--*oo. Hence  again 
G(rm,x) > 0. 

* For, in region (~), 

(2 0 21)- x(jq _0)(22 _ 2  1 0 ) < 0  ' r2 >ro,  
T~;= 1 , 2 

--~(*~,l--A2) <0, r e < r  o, 

and To'= 0 in (2) and @. Similar formulas hold for T~. 
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Finally, suppose 1 <rmax< o0. We may  then take r o and r 4 less than rma x. 
Then taking rz=rma x places (ro,r2) and (r4,r2) in regions @ or (~) of  Figure 9; in 
these regions we have 

T 2 = - T o + P ( r 2 , r o )  , 

T 2 = _ T 4 -  P(r2,  r4) 

and O < p ( r 2 , r l ) = O ( r 2 , r i ) ( r 2 - r l ) < S 2  i f r  2 > r  i, so that  T o < 0 <  T 4. But from (10), 

A 2 + B  2 < (I T41 + Igol +R)2 ;  

hence 

G = ( r  2 - T2) 2 - A  2 - B  2 => (T, - T O + p ( r  2, ro )+p( r  2, r,)) 2 - ( T 4  2 T O + R )  2 > 0  

if 

g < P ( r 2 ,  to)  + P(r2, r4) = I#(r2, to)(r2 -- ro) + ~t(r 2 , r4)(r2 -- r4) , 

where r 2 =rma x. Thus if R is smaller than some positive value Rerlt (which 
depends on r o and r4), G(rmax)>0. 

TO summarize,  we have G(rmax)> 0 always when rma x = oO and for sufficiently 
small R when rma x is finite. 

To complete the existence p roof  we must  consider G(rmin). N o w  0 = rmi n < 1, 
so that  ( ro , r2 )  and (r4,r2) are in regions (~) or  (~) in Figure9.  In any case, r 2 < r  o 

and r z < r r  so 
T 2 = _ T O + z ( r2 ,  ro), 

T2 = - -  7"4 - -  z ( r2 ,  r4) 
and 

z(r2, rl) < O. 

Therefore (T 2 - T2) 2 = ( -  T O + T 4 + z(r2, ro) + z ( r 2 ,  r4)) 2 < (T 4 -  To) 2. To find the 
sign of  G(rmi,) we must  compare  (T 2 -  T2) 2 with A 2 + B  2. N o w  the two-vector  
(A, B)  defined in (10) is the vector sum of three vectors of  lengths T4, I Tol and R, 
as indicated in Figure 10. It is clear that  under  some circumstances (for example 
00=04  and I w - O o l < r c / 2 ) ,  we will have A 2 + B 2 > = ( T 4 - T o )  2 and therefore 
G(rmi,)<0. In other  circumstances (e.g., r o and r 4 close to rmi., 04 -0o- - -~ ,  R 
small), the functions Z(r z , r i )  will be close to zero and (T 2 -  7~2)2 ~(T4 - To) 2 but  
AZ+B2~(T4-1Tol) 2 and so G(rmln)>0. Some bounds  on F, the region in which 
U o and U 4 should lie for the R iemann  problem to have a solution, can be found 
by setting R = 0. Then it is found that  G(rmi.)< 0 if 

c o s ( 0 o -  04)~ 1 

where Z = Z(rmin, ro) + Z(rmin, r4) < 0, and 

Z ( Z -  2 To + 2  T4) 

2TOT4 ' 

~ - S o , r o <  1, 
To = {Z(1, ro) - 1, r o > 1, 

By the Schwarz inequality, 

T S S 4 ' r 4 <  1' 
* = [ 1  -Z(1 ,  r 4 ) , r 4 >  1. 
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< A' B >, t/' R ~  

/ I ol/ 
I I Oo 

/ T ..J 
/ ,.: j 

Figure 10 

Ix(r, r,)l a <= ( r , -  to) (r, (a(r,) - r 4)(r)) ~ r z daft,) = S~, 

so for r o and r 4 larger than rmin, a positive sector, [Oo-04l<Cro,r4, exists in 
which G(rmin)< 0. By the usual continuity argument, G(rmi,) will remain negative 
for small values of R < Refit, where Refit may now depend on 0 o - 0 4  and on o). 

Since G( r~x)>0  for sufficiently small R independent of 0o,04 and co, we see 
that there is a subset F of IR 4 x 1lt 4 in which the Riemann data U o, U 4 must lie in 
order for a U a satisfying the above equations to exist; whenever U 2 exists it is 
unique. Lower bounds on F are given by rmi n ~ ro, r 4 ~ rmax; 100- 041 < Cro,r 4 and 
R < Rcrit(ro, r4, 0 o - 04, w). 

Corollary. A pair of  initial states Uo, U 4 belong to F if and only /f G(rmax)>0 
and G(rmin)<0 where G is the function defined in equation (12). 

In the proof  we have considered the case (r 4~)" > 0 explicitly. The case (r 4))" < 0 
requires that the roles of t) and Z be reversed, and the regions defined in Figure 9 
are reflected in the diagonal; then the properties of To, T4, T 2 and T2 are the 
same and the analogous calculation on G leads to the same conclusion on the 
existence of solutions. 

It should be mentioned that r 2 is a continuous function of the data U o and 
U 4. However, for values of r 2 near r~ or r~ (solutions with these values can 
easily be constructed), the states U 1 or U 3 may suddenly change, just as did the 
intermediate state in the model problem in Section 2. 

5. Conclusions 

In this paper we have looked at a class of non-strictly hyperbolic con- 
servation laws characterized by a relatively simple flux F(U) which enabled us to 
find the subspaces on which equal characteristic speeds occurred and to con- 
struct solutions to the Riemann problem, at least in a neighborhood of the non- 
strictly hyperbolic points. In an application of interest, shocks on an elastic 
string, we found conditions for the existence of solutions to the Riemann 
problem but could not give a priori bounds to determine which intermediate 
states would occur. All the solutions we found have the property, though, that 
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for certain states U z and Ur, the intermediate states are extremely sensitive to 
small changes in U z and U r, This implies, among other things, that the Glimm 
difference scheme for solving the Cauchy problem cannot be applied without 
some changes, including perhaps some modification to the total variation norm 
u~ed in establishing convergence in [6] and other papers. This, in turn, may 
affecl! ~stim~tes on asymptotic decay of solutions to such systems. It would be 
iqte,r~sting to obtain results along these lines. 

In another direction, our results relate to other equations displaying "pa- 
thological" behavior. KORCHINSKI [10] studied a non-strictly hyperbolic model 
equation in which the "linear" family had solutions containing 6-functions. We 
also demonstrated in Section3 that a problem which has no solution in a 
hyperbolic region may be solvable if the definition of the problem is extended to 
inc!ud~ both sides of the parabolic line. Some examples of hyperbolic problems 
for wh},ch the Riemann problem has no solution were given by BOROVIKOV in 
[1]; it would be interesting to see whether many such problems arise because of 

la~rabolic degeneracy that is artificially used to limit the domain of the 
solutions. To study this problem it will be necessary to extend the construction 
of the present paper to systems which are genuinely nonlinear in both families. 
Model problems [9] we have considered indicate that this is possible in some 
cases. 

Appendix A: Condition for Evolutionary Shock Solutions 

To distinguish physically meaningful weak solutions it is often required that 
they be evolutionary. The solution 

U(x, t) = { Uo, 
u,, 

of the Riemann problem 

x < s t ,  
x > s t  (A.1) 

L~ + F(U)x = 0, (A.2) 

U(x, 0)=~ U~ x<0,  (A.3) 
x > 0  ( % ,  

is ~aUed ovotutionary if the perturbed problem obtained by adding a small 
viscous damping term e Uxx to the right-hand side of (A.2) has a solution which 
is close to (A.1) except in a narrow band around the line x =s  t. A system of two 
genuinely nonlinear, strictly hyperbolic conservation laws is evolutionary if and 
only if the Lax entropy condition holds. Here we extend this equivalence to our 
system (1). Specifically, we prove that, under appropriate conditions on the 
function qS, both the ordinary (U,~I) and anomalous (UI~IV) shocks described 
in Section ! are evolutionary. 

Theorem. In the notation of Section 1, assume that U 1 eH(Uo) satisfies either 

UleI with rl <ro[rx>r o /f(r~b)rr<0] (A.4) 
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IV I 

Uo Uo 

Figure A-1 

o r  

U, ~(Uo, W) c IV (A.5) 

and the R-curves 4)=const .  through U o and U 1 are convex. 

Then for  e > 0  the equation Ut+Fx=eUxx possesses a traveling wave solution 

U(x, t ;  e ) = w ( ~ ) w i t h  w ( - ~ ) = U  o and w ( + o o ) = U  1. 

Proof.  We consider explicitly the case (r qS)rr>0 ; the other case is proved in 
similar fashion. As in CONLEY & SMOLLER's work [4], we let ~ = ( x - s t ) / ~  and 
find 

w'( ~) = V(w) = F ( w ) -  s w + C (A.6) 

where C = s U o - F ( U o ) = s U I - F ( U 1 ) .  N o w  V(Uo)= V(U1)=0 and if (A.4) holds, 
the solution of  (A.6) reduces to w = r ( r  where r satisfies the scalar equation 

dr  
d~- = r q~(r Uo) - ~b (Uo) - s(r - 1), 

with r ( - ~ ) = l ,  r ( + ~ ) = r i / r  o. The convexity of  r(b on each radial line is 
assurance that the r ight-hand side is negative for rl /r  o < r < 1 and thus guarantees 
a solution. 

When  (A.5) holds, we must  look at the singularities of  V(w) in ~ 2 _  {0}. Any  
singularities must  be points U on the Hugon io t  locus H(Uo) with the addit ional 
restriction that  s * - s ( U ,  Uo) is equal to s. We consider the case UoeD+(ro >r~)  
illustrated in F igureA-1 ;  the case Uo~D- is treated similarly. Since s*=~b(Uo) 
for U on II and I I I  while s<qg(Uo) , we see that no singularities occur  on II or  
III.  On I, s* = ( r  $ - r  o Oo)/ (r-ro)  is monotonic ,  so there is besides U o at most 
one other singularity 0 o on I, which must  lie in (0, U0*), since s * ( U * ) = $ o > S .  On 
IV, s* = (r (~ + r o Oo)/(r + ro), so c~s*/Or = (2 2 - s*)/(r + to) > 0 in [ U 1 , W). Since s* = s 
at U~ and s * = O o > S  at Uo ~, there are singularities at U~ and at some point 
01 ~(w, O~'). 

Consider  now the closed annulus K bounded  by the R-curves F o = II through 
U o and F 1 th rough  U 1. The only singularities of  V in K are U o and U 1. Since 
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8 V / ~ 3 w = S F / S U - s = A - s  has eigenvalues # 1 = 2 1 - s  and ]./2=•2--8, V 0 is an 
unstable node with #2>/~1 >0,  while U 1 is a saddle with # 2 > 0 > # 1 .  Further- 
more, we may calculate from (A.6) that V(w) is a positive scalar multiple of 
w -  U o on F o and of U 1 - w on F1. Because of the assumed convexity of F 0 and F~, 
this means that the vector field V points out of the region K along its entire 
boundary except perhaps at Uo and U~. Thus every solution curve of equation 
(A.6) within K must have entered at U0 or U~. Since only one trajectory enters K 
from the saddle Ux, infinitely many solution curves must enter K from Uo, and 
these fall into two classes according as they leave K through F o or F 1. By 
continuity, there must be at least one trajectory T originating at Uo which 
separates the two classes, and T must leave K at a singularity. Since Uo is an 
unstable node, T must run to U~. Thus T represents a solution of (A.6) with 
W ( - - G o ) = U o ,  W( "-~- (X)) = V 1 . �9 

Appendix B: An "Entropy" Inequality for the Nonlinear Elastic String 

Another criterion for evolutionarity of weak solutions is the existence of a 
concave functional of the solution, usually called an entropy, which is constant 
for smooth solutions but increases in t ime when discontinuities are present. See 
[11]. We can associate with the problem of the elastic string of Section4 the 
total energy (kinetic and strain), which is non-increasing for any of the discon- 
tinuities we have allowed. Hence its negative will serve as an "entropy." The 
strain energy is a function of the stress; for a given strain e which determines, in 

our problem, a value of r = ] / ~  2 +v~, we may define 

q)(r) = ~ r(e) de = ~ r ck(r ) dr 

to be the stored energy function, and 
L L 

E(t) = ~ e(x, t) dx = ~ { 1/2(w 2 + v 2) + q~(]/~2 + v~)} dx 
- L  - L  

to be the total energy in a length 2L of the string. If the motion has compact  
support in ( - L ,  L), we find that 

dE(t)= 0 
dt 

for smooth solutions. If there is a shock at x = ~(t), then 

and 

~(t) L 

E(t)= S e (x , t ) dx+  ~ e(x , t )dx  
- L ~ ( t )  

dE 
- [e]s-[c~(W, Wx+V, Vx) ] 

dt 

where s =  ~ and I f ]  means the jump across the shock, f ( ~ + ) - f ( ~ - ) ;  here f(~+) 
= lira f (x , t ) ,  and so on. 

x ~ ( t ) + O  
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Thus decrease of energy is equivalent to [e] s + [q~(w, w x +v, vx)] > 0  for a 
shock of speed s. 

Across a contact discontinuity, ~b =q~+=s 2, [w2+v2]=0 ,  so [e] -1-~[-W'2 
+v2];  since [wx]=r[cosO], [v~]=r[sinO] and w+=wi --sr[cosO], it can be 

dE 0 verified by calculation that dt---  " 

Across a shock, 0 is constant and we select 0 = 0  for convenience; then 

S 2 - -  [-(~ r 1 vx +=v; =O, w;+ =r_+, [ w , ] = - s E w  N 
Jr] ' 

and 
[v , ]  = - s [vx]  = 0. 

Hence dE~dr is calculated to be 

( 1 "+ +4~_r_.t  -s[r]Ir~_r_~rf~(r)dr q~+r+ 2 . '  

Now if rq5 is convex (that is, (r 40,,>0), the quantity in braces is negative; if rq5 
is concave, the quantity is positive. Thus the sign of dE/dt is the sign of s[r] 
(r qS),, and we see that E(t) is decreasing precisely in the cases we have called 
entropy shocks. 

It is also interesting to investigate the sign of dE/dt for anomalous shocks 
which are constructed as in Section 1. Here [ 0 ] =  _+m and for simplicity we 
select 0+ = 0  and 0 =m We then have 

s2= (O+r+ +~O-r- and w+=_+r+;  
r++r_ 

all else is as above. We find 

1 dE 1 "+ 
s dt -~(r+ +r_)(r+ #)+-r #a ) -  5 r#)(r)dr 

r -  

= ( r+- - r_ ) ( r+4~++r  q~ ) - ~ r 4 ~ ( r ) d r  + r + r  [~b] 
r -  

Now for an anomalous forward shock ~b_ > s > q~ +, so [q~] < 0. If [r] (r 0),, < 0, 
however, the expression in braces is also negative, for it is identical with the 

value of 1 dE obtained in the preceding paragraph for an ordinary shock joining 
s dt 

(r_,0) to (r+,0). If, on the other hand, [r] (r q~),r > 0, so that (r_,0) and (r+,0) 
would normally be joined by a rarefaction wave, the expression in brackets, 
though positive, is only of third order in [r], while the term r+ r [~b] is negative 
and of first order, and so predominates. Thus in both cases dE/dt <0, and the 
anomalous shock on the elastic string is evolutionary. 
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