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Outline

Systems of quasilinear hyperbolic PDE (conservation laws)

Where they come from; why they are studied

Some of the challenges (well-posedness)

How symmetry is broken in a system that is formally
time-reversible

Analysis of conservation laws

Results on Riemann problems (geometric)

BV spaces and well-posedness in one space dimension

Open questions
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Partial Differential Equations
How PDE arise: local information (u, Du at a point)
Why solve them: obtain global conclusions about function

Example
Wave Eqn (1-D string)

Pu ≡ utt − c2uxx = 0

ρutt force
proportional to
uxx curvature

TT

u, vertical displacement

x

Equation (∂t − c∂x)(∂t + c∂x)u = 0 predicts

waves travelling with characteristic speeds (±c =
√

T/ρ)

which is not obvious from the local description

Note conservation form ∂t

(

ut

ux

)

+ ∂x

(

−c2ux

−ut

)

= 0
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Hyperbolicity

Model ut + aux = 0, u = f(x − at)
Characteristics

1. Propagation of information

2. Barrier to information

Linear Theory:

τ

t

x0

x=at+x0

x

ν

Characteristic normals for linear eqns and systems

P (∂)u = f, ∂ = ∂x1
∂x2

. . . ∂xn

P0(ν) = 0: characteristic normal
First-order system:

∑

i

Ai∂xi
u + Bu = f, P0(ν) = det

(

∑

Aiνi

)
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Quasilinear Hyperbolic Equations
Specialize to space & time (x, t) = (x1, . . . , xn, t)
Picture in multi-D

ν

x1 x2

t Variable coefficients

x

t

Characteristics are surfaces; still feature
1. Propagation of information (inside envelope)
2. Barrier to information (domain of dependence)
Burgers Equation ut + uux = 0

u(x0 + u0(x0)t, t) = u0(x0)
Converging characteristics:

form shock, weak solution
Diverging characteristics:

form rarefaction

x

t

0t=x0

x0

x−u

Loss of time reversibility: information is lost in forward time
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Weak Solutions

Notion of weak solution central to modern PDE

smooth categories (C∞, Cω) not correct for
well-posedness

“Derivative bad – Integral good”

classical spaces not closed under taking of classical
derivatives (unbounded operators)

spaces of distributions allow definition of weak derivatives
(
∫

u′ϕ = −
∫

uϕ′) for linear operators

ut + aux = 0

∫

(uϕt + auϕx) dx dt = 0, ∀ϕ ∈ C∞

0
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The Weakness of Weak Solutions
Three facts about linear theory:

1. useful spaces are Sobolev spaces (Banach or Hilbert, not
merely topological) – Wm,p: m weak derivatives in Lp

2. “weak convergence” is useful, and is a different concept
from “weak solution”

3. combine with regularity to get classical solutions
(especially for elliptic equations)

Three difficulties with nonlinear equations:

1. D′ is too broad (need to define f(u))

2. weak convergence does not preserve nonlinear relations

3. hyperbolic and elliptic theory very different
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Parabolic equations and entropy
Quasilinear system ut +

∑

Ai(u)∂iu + B(u) = 0
Weak solutions defined if each Ai = dfi (conservation laws)
Shocks are a type of weak solution:

∫

{

uϕt +
∑

fi(u)∂iϕ − B(u)ϕ
}

dx dt = 0

Discontinuity at shock – RH relation s[u] = [f(u) · ν]

Time reversal: like backward
heat equation

Vanishing viscosity

ut +
∑

Ai(u)∂iu + B(u) = ε∆u

x

t

0t=x0

x0

x−u

Entropy: convex function η(u), η(u)t +
∑

∂xi
qi(u) ≤ 0
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Analysis of Conservation Laws

Geometric approaches:

existence of solutions to RH relation – bifurcation theory

admissibility of shocks – phase plane analysis

resolution of a discontinuity (Riemann problem) – IFT

Analytic tools:

function spaces, L1, L∞, BV

geometric measure theory

nonlinear semigroup theory

compactness: Helly’s theorem, compensated
compactness

Krieger-Nelson Lecture, CMS Summer Meeting, June 4, 2005 – p.10/17



Bifurcation Theory
Existence of solutions of RH equation s[u] = [f(u)] (1 D)

V (u, s;u`) ≡ f(u) − f(u`) − s(u − u`) = 0 R-H relation
V : u ∈ R

n → R
n, parameterized by s

States joined to u` by a shock: soln set (u, s) of V = 0
∃ Trivial solution u = u` for all s

“t-equivalence”; transcritical bifurcation
IFT ⇒ u` unique soln if dVu(u`, s) = A(u`) − sI nonsingular
canonical form h(x, λ) = x2 − λx: hx = 0, hxx 6= 0, hxλ 6= 0

u1

u2

1

r2

r

sλ1 λ2

s = λi(u`)
Liapunov-Schmidt reduction to
single equation — follows from
distinct eigenvalues

hx = 0 implies u̇ = ri

hxx 6= 0 follows from ri · ∇λi 6= 0 (genuine nonlinearity)
hxλ 6= 0 follows from `iri 6= 0
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Riemann Problems
One space dimension ut + f(u)x = 0, u ∈ R

n

Travelling waves for shocks ut + f(u)x = εuxx; u = u
(

x−st
ε

)

Note determination of time direction

Riemann Data

u(x, 0) =

{

u`, x < 0

ur, x ≥ 0
u1

u2

1

r2

r

sλ1 λ2

u0 = u`, u1 = W1(ε1;u0), . . . , un = Wn(εn;un−1)

Solve un(ε1, . . . εn) = ur

by IFT for small ε u0

u1 u2

un x

t
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Random Choice and Wave Front Tracking
Weak solutions defined for u ∈ L∞ (bdd, mble)
1-D, more regularity: u(x, 0) ∈ BV ⇒ sol’n in BV
“Outside a set of 1-D Hausdorff measure 0, a BV fn is either
approx continuous or has an approx jump discont.”
Use Riemann solutions to prove existence:
Glimm’s random choice

x

t

Risebro-Bressan’s wave
front tracking

x

t

Varu(·, 0) ≤ ε ⇒ Varu(·, t) ≤ M ,
∫

|u(t, x) − u(s, x)| ≤ L|t − s|
Helly’s theorem ⇒ subsequence cvges ptwise to BV soln.
Bressan: SRS (Standard Riemann Semigroup) –
uniqueness, well-posedness, & regularity (cont’s except for
countable set of shock curves & interaction points)
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Nonlinear Semigroups

Solutions to scalar eqn form L1-contractive semigroup:
∫

|u(x, t) − v(x, t)| dx ≤

∫

|u(x, s) − v(x, s)| dx, t > s

Basis for existence theorem (Crandall): abstract Cauchy
problem

du

dt
+ A(u) = 0, in L1

False for systems. But for systems, Bressan and Liu & Yang
found a nonlinear functional equiv to L1 dist and such that:

Φ
(

u(t), v(t)
)

≤ Φ
(

u(s), v(s)
)

+ L(t − s), ∀ s < t

and showed that any stable solution coincides with front-
tracking solution
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Multidimensional problems

Two-D Riemann problems
Self-similar problems
Model equations
• Canic, K & Kim
• T Chang (D Zhang)
• S-X Chen
• Y Zheng, K-W Song
• G-Q Chen & M Feldman

INCIDENT
SHOCK

WALL

DOWNSTREAM
STATE

U  = (1, −a)1

U  = (0,0)0
*

U  = (1, a)1

EXAMPLE:
SHOCK
REFLECTION
(BY A WEDGE)
IN THE
UTSD
EQUATION

UPSTREAM STATE

RIEMANN DATA

x

y

x = a y

x = −a y

WEAK STRONG

Incident Shock Incident Shock

Reflected
Shock Reflected

Shock

Sonic Line
ELLIPTIC
REGION

ELLIPTIC
REGION

FREE BOUNDARY

DEGENERACY IN ELLIPTIC EQUATION
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Future Directions

Large Data: obstructions to existence of weak solutions

“Resonances” among different wave families

Relation to kinetic theory and other “more physical”
continuum mechanics theories

Multidimensional problems:
- BV not the correct space: what are good candidates?
- what are good model problems?
- what information can numerical simulations give?

Slides for talk
http://www.math.uh.edu/∼blk
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