Conservation Laws

Past and Future

Barbara Lee Keyfitz
Fields Institute and University of Houston

bkeyfitz@fields.utoronto.ca

Research supported by the US Department of Energy,
National Science Foundation,
and NSERC of Canada.

Introduction

Cecilia Krieger and Evelyn Nelson

Outline

Systems of quasilinear hyperbolic PDE (conservation laws)

- Where they come from; why they are studied
- Some of the challenges (well-posedness)
- How symmetry is broken in a system that is formally time-reversible

Analysis of conservation laws

- Results on Riemann problems (geometric)
- BV spaces and well-posedness in one space dimension
- Open questions

Partial Differential Equations

How PDE arise: local information (u, Du) at a point) Why solve them: obtain global conclusions about function

Example
Wave Eqn (1-D string)

$$Pu \equiv u_{tt} - c^2 u_{xx} = 0$$
 ρu_{tt} force
proportional to
 u_{xx} curvature

Equation $(\partial_t - c\partial_x)(\partial_t + c\partial_x)u = 0$ predicts

• waves travelling with characteristic speeds ($\pm c = \sqrt{T/\rho}$) which is not obvious from the local description

Note conservation form
$$\partial_t \left(\begin{array}{c} u_t \\ u_x \end{array} \right) + \partial_x \left(\begin{array}{c} -c^2 u_x \\ -u_t \end{array} \right) = 0$$

Hyperbolicity

Model
$$u_t + au_x = 0$$
, $u = f(x - at)$
Characteristics

- 1. Propagation of information
- 2. Barrier to information

Linear Theory:

Characteristic normals for linear eqns and systems

$$P(\partial)u = f, \qquad \partial = \partial_{x_1}\partial_{x_2}\dots\partial_{x_n}$$

 $P_0(\nu) = 0$: characteristic normal

First-order system:

$$\sum_{i} A_{i} \partial_{x_{i}} u + B u = f, \quad P_{0}(\nu) = \det \left(\sum_{i} A_{i} \nu_{i} \right)$$

Quasilinear Hyperbolic Equations

Specialize to space & time $(x,t)=(x_1,\ldots,x_n,t)$

Picture in multi-D

Characteristics are surfaces; still feature

- 1. Propagation of information (inside envelope)
- 2. Barrier to information (domain of dependence)

Burgers Equation
$$u_t + uu_x = 0$$

 $u(x_0 + u_0(x_0)t, t) = u_0(x_0)$

Converging characteristics: form shock, weak solution

Diverging characteristics:

form rarefaction

Loss of time reversibility: information is lost in forward time

Weak Solutions

Notion of weak solution central to modern PDE

- smooth categories (C^{∞}, C^{ω}) not correct for well-posedness
- "Derivative bad Integral good"
- classical spaces not closed under taking of classical derivatives (unbounded operators)
- spaces of distributions allow definition of weak derivatives $(\int u'\varphi = -\int u\varphi')$ for linear operators

$$u_t + au_x = 0$$

$$\int (u\varphi_t + au\varphi_x) dx dt = 0, \quad \forall \varphi \in C_0^{\infty}$$

The Weakness of Weak Solutions

Three facts about linear theory:

- 1. useful spaces are Sobolev spaces (Banach or Hilbert, not merely topological) $W^{m,p}$: m weak derivatives in L^p
- 2. "weak convergence" is useful, and is a different concept from "weak solution"
- 3. combine with regularity to get classical solutions (especially for elliptic equations)

Three difficulties with nonlinear equations:

- 1. \mathcal{D}' is too broad (need to define f(u))
- 2. weak convergence does not preserve nonlinear relations
- 3. hyperbolic and elliptic theory very different

Parabolic equations and entropy

Quasilinear system $u_t + \sum A_i(u)\partial_i u + B(u) = 0$ Weak solutions defined if each $A_i = df_i$ (conservation laws) Shocks are a type of weak solution:

$$\int \left\{ u\varphi_t + \sum f_i(u)\partial_i\varphi - B(u)\varphi \right\} dx dt = 0$$

Discontinuity at shock – RH relation $s[u] = [f(u) \cdot \nu]$

Time reversal: like backward heat equation

Vanishing viscosity

$$u_t + \sum A_i(u)\partial_i u + B(u) = \varepsilon \Delta u$$

Entropy: convex function $\eta(u)$, $\eta(u)_t + \sum \partial_{x_i} q_i(u) \leq 0$

Analysis of Conservation Laws

Geometric approaches:

- existence of solutions to RH relation bifurcation theory
- admissibility of shocks phase plane analysis
- resolution of a discontinuity (Riemann problem) IFT Analytic tools:
- function spaces, L^1 , L^∞ , BV
- geometric measure theory
- nonlinear semigroup theory
- compactness: Helly's theorem, compensated compactness

Bifurcation Theory

Existence of solutions of RH equation s[u] = [f(u)] (1 D)

$$V(u, s; u_{\ell}) \equiv f(u) - f(u_{\ell}) - s(u - u_{\ell}) = 0$$
 R-H relation

 $V: u \in \mathbf{R}^n \to \mathbf{R}^n$, parameterized by s

States joined to u_{ℓ} by a shock: soln set (u,s) of V=0

 \exists Trivial solution $u = u_{\ell}$ for all s

"t-equivalence"; transcritical bifurcation

IFT $\Rightarrow u_{\ell}$ unique soln if $dV_{u}(u_{\ell}, s) = A(u_{\ell}) - sI$ nonsingular canonical form $h(x, \lambda) = x^{2} - \lambda x$: $h_{x} = 0$, $h_{xx} \neq 0$, $h_{x\lambda} \neq 0$

$$s = \lambda_i(u_\ell)$$

Liapunov-Schmidt reduction to single equation — follows from distinct eigenvalues

$$h_x = 0$$
 implies $\dot{u} = \mathbf{r}_i$

 $h_{xx} \neq 0$ follows from $\mathbf{r}_i \cdot \nabla \lambda_i \neq 0$ (genuine nonlinearity) $h_{x\lambda} \neq 0$ follows from $\ell_i \mathbf{r}_i \neq 0$

Riemann Problems

One space dimension $u_t + f(u)_x = 0$, $u \in \mathbf{R}^n$ Travelling waves for shocks $u_t + f(u)_x = \varepsilon u_{xx}$; $u = u\left(\frac{x-st}{\varepsilon}\right)$ Note determination of time direction

Riemann Data

$$u(x,0) = \begin{cases} u_{\ell}, & x < 0 \\ u_{r}, & x \ge 0 \end{cases}$$

$$u_0 = u_\ell, \quad u_1 = W_1(\epsilon_1; u_0), \quad \dots, \quad u_n = W_n(\epsilon_n; u_{n-1})$$

Solve
$$u_n(\epsilon_1, \dots \epsilon_n) = u_r$$
 by IFT for small ϵ

Random Choice and Wave Front Tracking

Weak solutions defined for $u \in L^{\infty}$ (bdd, mble)

1-D, more regularity: $u(x,0) \in BV \Rightarrow$ sol'n in BV

"Outside a set of 1-D Hausdorff measure 0, a BV fn is either approx continuous or has an approx jump discont."

Use Riemann solutions to prove existence:

Glimm's random choice

Risebro-Bressan's wave front tracking

 $\operatorname{Var} u(\cdot,0) \leq \varepsilon \Rightarrow \operatorname{Var} u(\cdot,t) \leq M, \ \int |u(t,x)-u(s,x)| \leq L|t-s|$ Helly's theorem \Rightarrow subsequence cyges ptwise to BV soln. Bressan: SRS (Standard Riemann Semigroup) – uniqueness, well-posedness, & regularity (cont's except for countable set of shock curves & interaction points)

Nonlinear Semigroups

Solutions to scalar eqn form L^1 -contractive semigroup:

$$\int |u(x,t) - v(x,t)| \, dx \le \int |u(x,s) - v(x,s)| \, dx, \quad t > s$$

Basis for existence theorem (Crandall): abstract Cauchy problem

$$\frac{du}{dt} + A(u) = 0, \quad \text{in} \quad L^1$$

False for systems. But for systems, Bressan and Liu & Yang found a nonlinear functional equiv to L^1 dist and such that:

$$\Phi(u(t), v(t)) \le \Phi(u(s), v(s)) + L(t - s), \quad \forall \quad s < t$$

and showed that any stable solution coincides with front-tracking solution

Multidimensional problems

Two-D Riemann problems Self-similar problems Model equations

- Canic, K & Kim
- T Chang (D Zhang)
- S-X Chen
- Y Zheng, K-W Song
- G-Q Chen & M Feldman

WEAK

STRONG

DEGENERACY IN ELLIPTIC EQUATION

Future Directions

- Large Data: obstructions to existence of weak solutions
- "Resonances" among different wave families
- Relation to kinetic theory and other "more physical" continuum mechanics theories
- Multidimensional problems:
 - BV not the correct space: what are good candidates?
 - what are good model problems?
 - what information can numerical simulations give?

Slides for talk http://www.math.uh.edu/~blk

References

- A. Bressan. Hyperbolic systems of Conservation Laws: The One-Dimensional Cauchy Problem. Oxford University Press, Oxford, 2000.
- S. ČANIĆ, B. L. KEYFITZ, AND E. H. KIM. A free boundary problem for a quasilinear degenerate elliptic equation: Regular reflection of weak shocks. Communications on Pure and Applied Mathematics, LV:71–92, 2002.
- C. M. DAFERMOS. Hyperbolic Conservation Laws in Continuum Physics. Springer, Berlin, 2000.
- B. L. KEYFITZ. Self-similar solutions of two-dimensional conservation laws. *Journal of Hyperbolic Differential Equations*, 2004.
- P. D. LAX. Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves. Society for
 Industrial and Applied Mathematics, Philadelphia, 1973.