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Abstract. From the observation that self-similar solutions of conservation laws in two
space dimensions change type, it follows that for systems of more than two equations,
such as the equations of gas dynamics, the reduced systems will be of mixed hyperbolic-
elliptic type, in some regions of space. In this paper, we derive mixed systems for the
isentropic and adiabatic equations of compressible gas dynamics. We show that the
mixed systems which arise exhibit complicated nonlinear dependence. In a prototype
system, the nonlinear wave system, this behavior is much simplified, and we outline the
solution to some typical Riemann problems.
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1 Background: The Occurrence of Mixed Systems

For a large class of equations governing unsteady compressible flow in two
space dimensions, study of self-similar problems (such as Riemann problems
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2 S. ČANIĆ, B. KEYFITZ and E. KIM

and shock reflection problems) results in boundary value problems for reduced
systems which are of hyperbolic type far from the origin but change type at a
sonic line or shock, determination of which is part of the solution. This class,
consisting of systems with acoustic and linear waves, was characterized in [1].
In particular, for the compressible Euler equations of gas dynamics (either isen-
tropic or adiabatic), and for a simpler nonlinear wave system, there are one or
more characteristic families which are linearly degenerate and which remain
real inside the subsonic region determined by the acoustic wave speeds. These
families govern the evolution of shear and entropy waves; although they are also
degenerate from the point of view of wave propagation, in that the characteris-
tic normals form a plane rather than a cone supported in a half-plane, they are
not trivial. For example, they are responsible for the intricate patterns of swirls
seen inside the subsonic regions in shock reflection experiments and numerical
simulations.

As part of our program to study multidimensional conservation laws by solv-
ing self-similar problems in two space dimensions, in this paper we formulate
boundary value problems for some reduced equations of this mixed type. In [1],
Čanić and Keyfitz demonstrated that if one linearizes such a system at a constant
state, then a second-order, degenerate elliptic equation can be obtained by taking
some combination of the variables, while a complementary set forms a hyper-
bolic system. However, this formal reduction did not show how the nonlinear
equations could be reduced, nor how to formulate boundary value problems for
these systems.

In this paper, we lay out the problem and outline the solution for a simple
case. We do not tackle the important question of how to solve the free boundary
problems that couple shock evolution with the flow in the subsonic regime, a
problem for which we have found solutions in some cases involving the unsteady
transonic small disturbance (UTSD) equation, [2, 3]. The advantage of the UTSD
equation is that linear waves have been eliminated, so that the subsonic flow is
governed by an elliptic equation. The disadvantage of that equation is that the
subsonic region is typically unbounded; that is one reason we were able to obtain
only local solutions (near the shock interaction point) where the UTSD equation
correctly models the flow. To extend the methods we are developing to a full
flow field, one needs to solve more realistic equations, such as the compressible
gas dynamics equations for ideal flow. Many obstacles remain before we can
complete this program.

In this paper, we apply recent work of Čanić and Kim, [6], which solves a
class of degenerate elliptic problems with fixed boundaries. This work provides
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existence of a weak solution for domains satisfying a uniform exterior cone
condition but does not deal with continuity up to the boundary for non-convex
domains. As we show in the present paper, even for the simplest Riemann
problems the subsonic regions are not convex and extension of the results in [6]
to non-convex domains is needed. This is the subject of a companion paper, [4],
where continuity up to the sonic boundary of a non-convex domain is proved for
a set of Riemann problems for the nonlinear wave system. The present paper
focusses on the complications which are added by coupling linearly degenerate
hyperbolic with quasilinear elliptic equations.

To our knowledge, there is no general theory for quasilinear mixed systems.
Specific problems from gas dynamics can guide our ideas about how to reduce
the system. In particular, the hyperbolic part of the system, we find, linearly
convects variables from the sonic boundary toward the origin, and is singular,
in self-similar coordinates, either at the origin or at points determined by the
elliptic part of the flow. In the nonlinear wave system, no new singularities are
introduced into the solution in the interior of the subsonic region. However, the
quantities convected by the hyperbolic equation are themselves quite singular
because of the nature of the flow variables in self-similar coordinates. For the
equations of compressible gas dynamics, which we do not solve in this paper,
these singularities are the centers of the spirals seen in visualizations of shock
reflection problems. Serre, [10], has pointed out that, for example, the vorticity
cannot be in Lp for any p.

The structure of this paper is as follows. Sections 2, 3 and 4 carry out the
reduction for several conservation law systems: the nonlinear wave system and
the isentropic and the adiabatic Eulerian gas dynamics equations. In the final
section, we present a solution for one problem for the nonlinear wave system.

The work of Serre [11] on reformulating the self-similar Euler equations in
pressure-angle variables has been very useful to us. Serre derived the quasilinear
equation which governs the elliptic part of the problem, using either the pressure
or (in the steady case) the flow angle as the state variable. Serre also proved
some useful maximum principles for this equation.

The paper of Zhang and Zheng [13], see also earlier work [7], by Chang
(Zhang) and Chen, performs the service of displaying and reducing the gas dy-
namics equations, calculating the characteristics and identifying the sonic and
subsonic states. Zhang and Zheng classify the different types of Riemann prob-
lems satisfying two conditions: (1) the initial data are constant in quadrants, and
(2) the discontinuities propagate as single waves (shock, rarefaction or contact)
at infinity.
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Following Zhang and Zheng’s work, Schultz-Rinne, Collins and Glaz [9],
performed a series of numerical calculations which offer instructive comparison
with Zhang and Zheng’s conjectures. Later work further refined these conjectures
[8]. Recent progress in theory and computation of multidimensional problems
is detailed in the papers of Serre, Zhang and Zheng, and Schultz-Rinne, Collins
and Glaz cited here.

2 The Nonlinear Wave System

The nonlinear wave system (NLWS) is obtained either by starting with the isen-
tropic gas dynamics equations and neglecting terms which are quadratic in the
velocity, or by writing the nonlinear wave equation as a first-order system. In
terms of the conserved quantities (density and momenta) the system is

ρt + mx + ny = 0
mt + px = 0
nt + py = 0;

(2.1)

here p = p(ρ) with p′ = c2(ρ), m = uρ, and n = vρ. Thus (m, n) is the
momentum vector and (u, v) the velocity vector.

To change to self-similar coordinates, define (ξ, η) = (x/t, y/t), so

t∂t = −ξ∂ξ − η∂η, t∂x = ∂ξ , t∂y = ∂η.

The system in self-similar coordinates reads

−ξρξ − ηρη + mξ + nη = 0

−ξmξ − ηmη + pξ = 0

−ξnξ − ηnη + pη = 0.

(2.2)

We obtain a second-order equation which changes type at the sonic line by
eliminating m and n from (2.2). This equation, the nonlinear wave equation, in
physical coordinates reads:

ρtt = −(mx + ny)t = −(mt)x − (nt )y = pxx + pyy = ∇ · (c2(ρ)∇ρ).

Then we obtain(
(c2 − ξ 2)ρξ − ξηρη

)
ξ
+ (

(c2 − η2)ρη − ξηρξ
)
η
+ ξρξ + ηρη = 0, (2.3)

the self-similar nonlinear wave equation, here written with the principal part in
divergence form.
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To find a third equation, which, together with (2.3), will give a system equiv-
alent to the reduced nonlinear wave system, (2.2), observe that a quantity which
evolves independently of ρ is the specific vorticity, w = nx − my = (ρv)x −
(ρu)y , which is time-independent: wt = 0. Working in self-similar coordinates,
we replace this with a self-similar expression,

w = tw = nξ − mη,

which satisfies

ξwξ + ηwη + w = (ξ, η) · ∇w + w = 0. (2.4)

This could be written in divergence form as (ξw)ξ + (ηw)η −w = 0. Equations
(2.3) and (2.4) form our prototype system in which (2.3) changes type at ξ 2+η2 =
c2 and the system is of mixed type for ξ 2 + η2 < c2. We discuss appropriate
boundary conditions and the solution of this problem in Section 5.

This problem is somewhat artificial, because it came from dropping some
terms in the Euler equations. Before studying it further, we look at the Euler
equations to see if similar systems arise. It appears that they do.

3 The Isentropic Gas Dynamics Equations

The equations for isentropic flow again form a system of three equations, con-
serving the same quantities as in the nonlinear wave system, and respecting the
same thermodynamic relation p = p(ρ). The system is

ρt + (ρu)x + (ρv)y = 0
(ρu)t + (ρu2 + p)x + (ρuv)y = 0
(ρv)t + (ρuv)x + (ρv2 + p)y = 0;

(3.1)

Reduction to a self-similar system is carried out in [11] and in [13].
The self-similar equations, ignoring conservation form, are

(u − ξ)ρξ + ρuξ + (v − η)ρη + ρvη = Uρξ + ρuξ + Vρη + ρvη = 0

(u − ξ)uξ + pξ/ρ + (v − η)uη = Uuξ + pξ/ρ + V uη = 0

(u − ξ)vξ + (v − η)vη + pη/ρ = Uvξ + V vη + pη/ρ = 0;
U = u− ξ , V = v−η are the components of the ‘pseudovelocity’. This term is
somewhat deceptive, as it buries the fact that, unlike steady transonic flow, and
like the nonlinear wave system, the distinction between supersonic and subsonic
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6 S. ČANIĆ, B. KEYFITZ and E. KIM

regions depends on position in space as well as on the states. A version that
refers only to the pseudovelocity is

Uρξ + ρUξ + Vρη + ρVη + 2ρ = 0 (3.2)

UUξ + pξ/ρ + VUη + U = 0 (3.3)

UVξ + VVη + pη/ρ + V = 0. (3.4)

A second-order equation for ρ, whose coefficients depend on U and V , is

∂ξ
(
(U 2 − c2)ρξ + UVρη + ρU

)+ ∂η
(
(V 2 − c2)ρη + UVρξ + ρV

)
+ (UVη − VUη)ρξ + (VUξ − UVξ)ρη + 2(UξVη − VξUη)ρ = 0. (3.5)

This equation, which is similar to the equation for steady transonic potential flow,
was obtained by Serre, [11]. Serre makes the pressure the dependent variable.
This is the better choice for the adiabatic case. In the isentropic case it makes no
difference.

Next, we obtain the analog of the vorticity equation, (2.4); a simpler equation
results when we use the vorticity itself instead of the specific vorticity (that is,
modified by the density) as we did for the nonlinear wave system. The procedure
is to eliminate ρ from (3.3) and (3.4) by differentiating the first with respect to η,
the second with respect to ξ and subtracting. We define the self-similar (pseudo)
vorticity

W = Uη − Vξ = uη − vξ ,

and the equation obtained is

UWξ + VWη + (Uξ + Vη + 1)W = (UW)ξ + (VW)η + W = 0. (3.6)

The first form represents the operator as the directional derivative of W in the
direction (U, V ) of the pseudovelocity. This is a clear analogy to (2.4) for w
in the nonlinear wave system. The operator in equation (3.6) is also singular,
now when the pseudovelocity is zero. (But recall, as in our comment on the term
‘pseudovelocity’that (U, V ) is alternatively the ‘pseudoposition’.) For a constant
solution, this occurs at the center of the sonic circle, (u − ξ)2 + (v − η)2 = c2.
For a nonconstant subsonic flow, there may be one or several points where the
pseudovelocity vanishes.

Now, (3.5) and (3.6) couple an elliptic and a hyperbolic equation in the subsonic
region. The coupling is through coefficients which depend on U and V and their
derivatives. This is to be expected: since the type of (3.5) depends on (U, V ),
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these functions must appear as the coefficients of (3.5). In this problem, we
must solve equations for U and V simultaneously with (3.5) and (3.6), instead
of afterwards, as in the nonlinear wave system. To recover U and V from the
conserved quantities ρ and W , we may use

Uη − Vξ = W (3.7)

and (3.2) in the form

Uξ + Vη = − 1

ρ
(Uρξ + Vρη) − 2 (3.8)

and this pair of equations forms a linear elliptic system for U and V with a
source term determined by W and coefficients depending on ρ. However, we
shall see in Section 5 that this may not be the best way to view the problem.
As an alternative, we may regard (3.3) and (3.4) as transport equations for the
components U and V . The coupling of (3.5) and (3.6) via U and V does not
occur in the nonlinear wave system, and we have not yet considered this problem.
We shall see in Section 5 that finding (u, v) by solving transport equations is an
effective procedure for the nonlinear wave system.

The analogy with the nonlinear wave system suggests that the possibly singular
behavior in (3.6) may be similar to that of w in (2.4). We shall see that (2.4),
while singular, does not pose any difficulties, and we conjecture that the solutions
of (3.6) will also be well-behaved.

We note that the system (3.5), (3.6) does not conserve the same quantities
as the original system. This does not matter for the solution ρ of (3.5) in the
subsonic region, where we expect ρ to be continuous. It is possible to replace W
by a specific vorticity, for example (ρv)ξ − (ρu)η, at the cost of obtaining a more
complicated equation. However, since the only discontinuities in the subsonic
region are linear, we conjecture that maintaining the correct conservation form
is unnecessary.

4 The Adiabatic Gas Dynamics Equations

We also consider the system of four equations governing the evolution of an ideal
gas with a polytropic equation of state, p = e(γ − 1)ρ, in which an equation
for conservation of energy is added to those for mass and momentum. In the
subsonic region, there are two coincident real characteristics. In this situation,
we supplement the elliptic equation for the density or pressure with a pair of
equations for the evolution of shear (vorticity) and entropy variables.
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A standard form of the system is, [13],

ρt + (ρu)x + (ρv)y = 0
(ρu)t + (ρu2 + p)x + (ρuv)y = 0
(ρv)t + (ρuv)x + (ρv2 + p)y = 0
(ρE)t + (ρuH)x + (ρvH)y = 0;

(4.1)

with the notation E = e + q2/2, q2 = u2 + v2, H = e + p/ρ + q2/2, and the
relations

e = 1

γ − 1

p

ρ
, E = 1

γ − 1

p

ρ
+ 1

2
q2, H = γ

γ − 1

p

ρ
+ 1

2
q2.

We work with the variables ρ, u, v, and p.
In self-similar coordinates, one can reduce (4.1) to a simplified form, [13]:

(ρU)ξ + (ρV )η + 2ρ = 0 (4.2)

UUξ + VUη + U + pξ

ρ
= 0 (4.3)

UVξ + VVη + V + pη

ρ
= 0 (4.4)

(p1/γU)ξ + (p1/γ V )η + 2p1/γ = 0. (4.5)

(This reduction does not conserve the correct quantities; however, it is a conve-
nient way to examine the characteristic structure of the system.) We have again
used the pseudovelocities, U = u − ξ , V = v − η.

The equation for p, derived by Serre in [11], with 	u = (U, V ), Q2 = U 2 +V 2,
and c2 = γp/ρ, is

∇ ·
(

1

ρQ2

[
∇p − 1

c2
	u(	u · ∇p)

]
− 1

Q2
	u
)

= 0.

Here the principal part, exhibiting change of type at the sonic circleU 2+V 2 = c2,
is the familiar form(

1 − U 2

c2

)
pξξ − UV

c2
pξη +

(
1 − V 2

c2

)
pηη.

Rewriting (4.2) and (4.5), we have

(U, V ) · ∇ρ + ρ(∇ · (U, V ) + 2) = 0

(U, V ) · ∇p + γp(∇ · (U, V ) + 2) = 0,
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from which we obtain

(U, V ) · ∇p = γp

ρ
(U, V ) · ∇ρ = c2(U, V ) · ∇ρ . (4.6)

Now, (4.6) leads immediately to the first hyperbolic equation:

(U, V ) ·
(
γ

∇ρ

ρ
− ∇p

p

)
= 0.

This can also be written as an equation for ρ (as the second-order equation is an
equation for p):

(U, V ) · ∇ log

(
ρ

p1/γ

)
= 0. (4.7)

This equation expresses the transport of entropy, S = ργ /p, along streamlines
(pseudostreamlines in this case).

Finally, the other hyperbolic equation describes the evolution of the self-similar
vorticity, as in the previous two examples. Define

W = Uη − Vξ , (4.8)

differentiate (4.3) and (4.4) with respect to η and ξ respectively and subtract.
The result is

∇ · (UW,VW) + W = pξρη − pηρξ

ρ2
(4.9)

which is now more complicated than before, because it involves p and ρ, but is,
as before, a transport equation for W along the vector field (U, V ) and is, like
the equation for the entropy, (4.7), singular at points where (U, V ) = 0.

Using a slightly different form of the second-order equation, also derived by
Serre, we collect the three equations governing the flow in the subsonic region:

∇ ·
(

1

ρQ2

[
∇p − 1

c2
	u(	u · ∇p)

])
− 2c2 − Q2

ρc2Q4
	u · ∇p = 0

(U, V ) · ∇ log

(
ρ

p1/γ

)
= 0

∇ · (UW,VW) + W − pξρη − pηρξ

ρ2
= 0.


(4.10)

This form has some flaws: the first equation, as written, appears singular at
(U, V ) = 0, as observed by Serre, [11]. On the other hand, dividing by Q2 was
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simply a convenient way to obtain the equation. One could remedy this difficulty
by multiplying the equation by Q2 or by ρQ2. The same difficulty observed at
the end of the previous section, that this system does not conserve the corrrect
quantities, occurs in this reduction also.

As in the previous sections, it is necessary to solve (4.10) along with a pair
of equations for U and V . We can recover Uξ and Vη from (4.2), and the other
partial derivatives from the definition of W , (4.8):

Uξ + Vη = −ρξ

ρ
U − ρη

ρ
V − 2

Uη − Vξ = W

exactly as in the isentropic case. However, as mentioned there and as will be
discussed in the next section, it may be preferable to recover U and V from the
transport equations, (4.3) and (4.4). That is, rather than solve (4.10), we couple
the second-order equation for p with (4.7), (4.3) and (4.4).

5 The Nature of the Solution of the Nonlinear Wave System

We examine the mixed type problem formulated in Section 2. In this problem,
the part that changes type (the second-order equation for ρ, (2.3)) and the hy-
perbolic part, (equation (2.4) for w) are uncoupled. Although this problem is
oversimplified and somewhat artificial, it may serve as a prototype for the mixed
problems arising from the gas dynamics equations.

Consider sectorially constant Riemann data for u = (ρ,m, n). We illustrate
three-sector data in Figure 5.1(a). Label the sector boundaries x = κiy, i =
a, b, c.

Recall that w = w/t is constant in time and so the vorticity equation, (2.4),
has the explicit solution

w(ξ, η) = tw̄(x, y, t) = w̄(ξ, η, 1) = w̄(ξ, η, 0) = w̄(0)(ξ, η).

For sectorially constant initial data,w is a measure supported on the discontinuity
set of the data. However, no additional singularity is introduced by the fact that
the operator in (2.4) is degenerate at the origin. It is possible that the degenerate
equations (3.6), (4.7) and (4.9) will have solutions of this nature.

The solution far from the origin is locally one-dimensional. Construction of
one-dimensional Riemann solutions is standard, see Smoller [12]; we give the
formulas in Appendix A to fix notation.

A one-dimensional Riemann problem at x = κiy gives rise to three waves, at
ξ = κiη + χ−

i , ξ = κiη, and ξ = κiη + χ+
i . Denote the state adjacent to uj , for
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Figure 5.1: (a) Sectorially Constant Data and (b) The Far-Field Solution.

the Riemann problem at κi , by uji . (Rarefaction waves have finite thickness; for
simplicity, we use the same notation.) Up to six sonic circles are generated by
the far-field data, corresponding to the three original states and to the three new
values of ρ which appear in the solution. These are indicated in Figure 5.1(b).

The one-dimensional waves interact near the origin to produce interesting
subsonic behavior of the solution. Some analysis of these interactions is possible
by elementary means, [1].

No matter how many sectors we consider, the first set of interactions takes
place within a single sector, between the incoming waves generated by the two
sector boundaries. Using the one-dimensional solutions, the interaction points
in similarity space can be calculated in a straightforward way, as the shocks are
of the form ξ = κη + χ±, and χ± is determined from the densities (only) on
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either side by equation (6.1). Similarly, the leading edge of a rarefaction entering
a region with density ρ is ξ = κη±√

1 + κ2c(ρ), where c(ρ) is the local sound
speed. We denote by 'i the intersection point of the waves in sector i. Each
wave is either a shock or a rarefaction, so there are three kinds of interactions;
we discuss each in turn.

Shock-Shock Interactions

The interaction of two one-dimensional shocks produces a quasi-one-dimen-
sional Riemann problem, as described in [1]. For the NLWS, the fact that w,
the vorticity, is constant in time means that no linear waves are generated, and a
solution of the quasi-one-dimensional Riemann problem, when it exists, consists
of two waves, each of which may be a shock or a rarefaction centered at the
interaction point, 'i . However, hyperbolic theory does not predict a solution if
one or both states are subsonic at 'i . In addition, not all hyperbolic quasi-one-
dimensional Riemann problems have solutions. Explicit conditions can be given
for both of these obstructions. In either case, the solution may not be a pair of
waves from 'i but may be qualitatively different. Nonexistence of solutions to
this type of quasi-one dimensional Riemann problem is the genesis of the ‘von
Neumann paradox’ in weak shock reflection.

Rarefaction-Rarefaction Interactions

The interaction begins where the leading edges of the two waves intersect; if it
were localized at a point, it would give a quasi-one-dimensional Riemann prob-
lem consisting of hyperbolic data (since rarefactions exist only in the supersonic
region), and the solution would typically consist of two centered quasi-one-
dimensional rarefaction waves, with a new state between them. We conjecture
that this describes the qualitative behavior. The outgoing waves are approxi-
mately centered. They emerge from the interaction zone as simple waves, since
they are adjacent to the same constant states that lie behind the trailing edges
of the incoming rarefactions. (Theorem 3.2 of [1] does not apply here, as we
are dealing with more than two equations; however, it can be extended to this
case, since there are no linear waves in this open sector.) Furthermore, since both
outgoing waves are expanding (rarefaction) waves, the solution in the hyperbolic
region is continuous up to the sonic line. Thus, one can estimate the value of the
new approximately constant intermediate state, the shape of the sonic boundary
and the data on that boundary.
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Shock-Rarefaction Interactions

The third type of interaction is also nonlocal, since it begins at'i where the shock
intersects the leading edge of the rarefaction, but is not centered there. At this
point the state behind the shock may be subsonic, so that even if the problem were
approximated by a quasi-one-dimensional Riemann problem, a solution might
not exist. Finally, unlike the previous case the solution will not be continuous
beyond the interaction point. We conjecture that in the case of supersonic states
the solution will be similar to a quasi-one-dimensional Riemann problem at 'i ,
and will typically give rise to a shock, a rarefaction, and a new intermediate
state. However, in the case that one state is subsonic, then, as in the case of
shock-shock interactions with a subsonic state, qualitatively different behavior
may occur.

Examples

We expect each wave interaction in the hyperbolic region to produce a pair of
waves, simple or shock. The flow in the hyperbolic region could then be tracked,
by an adaptation of front-tracking (on a discrete scale), until the flow becomes
sonic. Beyond that point, transonic shocks, which correspond to free boundary
problems, will occur. To prove existence of a solution in the subsonic region,
then, would require extensions of the method we used in solving free boundary
problems for the transonic small disturbance equation, [2, 3] (extensions are
needed because uniform obliqueness typically fails at points on the shock); we
have yet to tackle this problem.

We illustrate one case with a finite-difference simulation; contours of ρ and
n are shown in Figure 5.2. For this set of data, there are two rarefactions (in
the southeast corner) and four shocks. Two shocks entering the picture from
the top have intersected in the hyperbolic region, producing a reflected shock
(traveling southwest) and a rarefaction. (We know there is a rarefaction by
explicitly solving the quasi-one-dimensional Riemann problem here.) The two
shocks which enter from the south and west sides and intersect also produce a
reflected shock, traveling northeast. These two reflected shocks merge to form a
transonic shock; proving the existence of this free boundary poses an interesting
challenge.

We note that the primary intersection of the two shocks in the southwest corner
is already a situation which cannot be resolved using only hyperbolic techniques.
This is because the shock entering from the south is transonic before the inter-
section takes place, and thus a quasi-one-dimensional Riemann problem at this

Bol. Soc. Bras. Mat., Vol. 32, No. 3, 2001
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Figure 5.2: Contour Plots of ρ and n.

point does not have a solution unless the state behind the transonic shock is ex-
actly sonic. In that case there may be a solution, consisting of a rarefaction and
a shock, which does not violate the triple point paradox. This situation is similar
to the scenario suggested for the UTSD equation in our earlier paper, [5]. To
complete the solution, one needs to prove that an elliptic free boundary problem
has a global solution.

Finally, the contour plot for n shows clearly the linear waves along the original
sector boundaries, and shows that they appear to interact with the nonlinear waves
via linear superposition.

In one case we have been able to establish existence of a weak solution to the
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nonlinear wave system in the entire plane, [4]. This case is given by a three-
parameter family of Riemann data, U0 = U2 = (ρ0,m0, n0);U1 = (ρ1,m0, n1),
κa = −κb, κc = 0, with ρ1 < ρ0; ρ0, m0 and n0 are free parameters and n1 is
chosen so that the far-field solution consists of two outgoing rarefaction waves
(the χ+

a and χ−
b waves) and two linear waves along κa and κb. There are no

supersonic wave interactions in this case: Each one-dimensional rarefaction fills
a half-strip in similarity space, terminating where it becomes sonic. Thus the
sonic boundary consists of sectors of the sonic circles corresponding to ρ1 and
ρ0, and the ends of the strips, as pictured in Figure 5.3.

According to the calculation in Appendix C we expect the solution near the
smaller circle to exhibit a square-root singularity in ρ, while near the maximum
ρ1 the density should decrease linearly with slope given by equation (6.4). The
theory in [6], which provides existence of a weak solution but does not yield
continuity of the solution up to the boundary, is extended in [4] to prove that a
solution ρ to this subsonic problem exists, is continuous up to the boundary of
the subsonic region, except possibly at the inner corners, and lies in a Sobolev
space consistent with these estimates.

The Linear Waves

Once the solution component ρ has been determined, the solution can be com-
pleted by finding the momentum vector (m, n). The most straightforward way
to do this is to note that the original self-similar system, (2.2), gives transport
equations for m and n:

∂m

∂s
= pξ ; ∂n

∂s
= pη; (5.1)

where s = (ξ 2 + η2)/2 is a radial variable and ∂/∂s is differentiation in the
radial direction. In problems like the two examples above, the subsonic region is
(weakly) starshaped with respect to the origin. In the supersonic region, m and n
are found by solving quasi-one-dimensional problems (in the second example)
or by other hyperbolic techniques such as front-tracking (we conjecture). Then
(m, n) is known at the sonic line: by continuity where the flow is continuous
and from the Rankine-Hugoniot relation where the sonic boundary is a shock.
We show in Appendix C that if ρ is continuous at the sonic line, then so are
m and n. Thus, since ρ is known in the subsonic region and is continuous up
to the boundary, [4], m and n can be recovered by integrating (5.1) from the
sonic line inward to the origin. Since ρ is smooth in the interior of the subsonic
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region, the values of m and n obtained this way are consistent with the vorticity
w(ξ, η) = w(0)(ξ, η).

Rarefaction Rarefaction

U
1

Linear Wave→ ←Linear Wave

SubsonicU
0

Figure 5.3: Subsonic Region for Outgoing Rarefaction Data

The form of the problem suggests the alternative of recovering (m, n) from
ρ and w by the following procedure. From the first equation of (2.2) and the
definition of w we have

mξ + nη = ξρξ + ηρη

mη − nξ = w.

Decoupling m and n results in Poisson problems:

)m = (ξρξ + ηρη)ξ + wη

)n = (ξρξ + ηρη)η − wξ .

Each problem comes with Dirichlet data: the values of m and n at the sonic line.
Regularity of solutions found this way is low, since the terms on the right hand
side are derivatives of measures. In particular, this approach suggests possible
singularities in (m, n)which, on the basis of the transport equation approach, are
not realized. In principle, this approach is effective if the subsonic region is not
starshaped with respect to the origin; however, if the functions found this way
are not compatible with the original transport equations, then it is not at clear
how to interpret them as solutions.

As a variant of this approach, one may note that w ≡ 0 in the interior of each
sector, and so (m, n) = ∇ψi in the i-th sector; then the first equation of (2.2)
implies

)ψi = ξρξ + ηρη
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MIXED PROBLEMS 17

in sector i. Now, the value of ∇ψi is given on the sonic line, and the jump in w

across the sector boundary j is equal to its initial value:

[n + κjm] = [n(0) + κ
(0)
j ]

on Lj . That is,

(κj , 1) · (∇ψi − ∇ψi−1) = [n(0) + κ
(0)
j ].

Since this is a tangential derivative, we can integrate to obtain

ψi(κjη, η) − ψi−1(κjη, η) = η
(
n
(0)
i − n

(0)
i−1 + κj (m

(0)
i − m

(0)
i−1)

)
where we adopt the convention ψi(0, 0) = 0 for each potential. This formu-
lation has the disadvantage that the boundary conditions do not immediately
lead to a solution, as the problem is overspecified on the sonic boundary, and
underspecified on the radial lines.

We conclude that coupling the elliptic equation for ρ in the subsonic region
with transport equations for the conserved quantities m and n is an effective
method for this problem, when the subsonic region is starshaped with respect
to the origin. However, in examples (which are easy to construct) where the
subsonic region is not starshaped, some compatibility must be demonstrated.
The pair of equations (5.1) is overdetermined, but can be seen to be consistent
because the evolution equation for w, (2.4), is linear.

We conclude with a comment on the relevance of this simplified problem to the
gas dynamics equations. In the case of the gas dynamics equations, the transport
equations are also linear in the characteristic variables, and the discontinuities
in the subsonic region are also linear. We conjecture that our conclusions on
transport in the nonlinear wave system will be relevant there. That is, we expect
to see low regularity, essentially linear behavior, and no additional complications
due to the singularities in the coefficients of the hyperbolic equations.

6 Appendices

A: One-Dimensional Riemann Problems: Nonlinear Wave System

One-dimensional waves solve Riemann problems along lines transverse to x =
κy; self-similar solutions U(x − κy, t) = U((x − κy)/t) = U(χ) to Ut +Fx +
Gy = 0 satisfy the Rankine-Hugoniot relation (the notation [·] refers to the jump
in a quantity) χ [U ] = [F − κG] at discontinuities. For our problem, this leads
to the equations

χ [ρ] = [m − κn], χ [m] = [p], χ [n] = −κ[p].
Bol. Soc. Bras. Mat., Vol. 32, No. 3, 2001
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In the standard way, [12], we have

χ− = −
√

1 + κ2

√
[p]
[ρ] , or χ+ =

√
1 + κ2

√
[p]
[ρ] (6.1)

along shock curves S− and S+, and

[m] = χ

1 + κ2
[ρ] and [n] = −κ[m].

These are curves in U -space; we can parameterize them by ρ for fixed U0. The
shock admissibility conditions apply: λL > χ > λR where λ is the characteristic
speed, λ± = ±√

1 + κ2c(ρ), c2 = dp/dρ. We have ρL > ρR for a +-shock and
ρL < ρR for a −-shock. The backward portions of the curves, S±∗ , correspond
to choosing U0 to be the right state, UR.

The continuous solutions are rarefaction waves; for fixed U0 these can also be
parameterized by ρ; the curves are

m = m0 ± 1√
1 + κ2

∫ ρ

ρ0

c(r) dr, n = n0 ∓ κ√
1 + κ2

∫ ρ

ρ0

c(r) dr.

We have ρR > ρL for R+ and ρR < ρL for R−. Figure 6.1(a) shows projections
of these curves in the (m, ρ) plane.

The linear waves are simply contact discontinuities at χ = 0; they also form
a one-parameter family with [ρ] = 0 and [m] = κ[n].

For some data, even the one-dimensional problem will not have a solution, as
a vacuum state will arise. The condition for this can be given explicitly. Define

G(0) = 1√
1 + κ2

(∫ 0

ρR

c(r)dr +
∫ 0

ρL

c(r)dr

)
+

+ 1

1 + κ2

(
mR − mL − κ(nR − nL)

)
.

Then we have

Proposition 6.1. For a pair of states{UL,UR} and a given slopeκ, there is a
unique self-similar solutionU(χ) to the Riemann problem ifG(0) < 0 and no
solution otherwise.
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Figure 6.1: (a) Shock and Rarefaction Curves and (b) The Downstream Locus

B: The Quasi-One-Dimensional Problem

We solve the Riemann problems generated by two states UL and UR and a point
'0 in the forward timelike direction: a sector pointing toward the origin in the
(ξ, η) plane. The orientations ‘left’ and ‘right’ refer to an observer at '0 facing
the origin. The new middle state, UM , is separated from UL and UR by ‘−’ or
‘+’ waves (shocks or rarefactions) respectively.

A useful approach, developed in [1], is to construct the downstream locus of
a state U0: this locus consists of all the states that could serve as UM whether
U0 is on the left or the right at '0. See Figure 6.1(b). The Riemann problem
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has a solution if the downstream loci of UL and UR intersect at a point which is
a ‘−’ wave from UL and a ‘+’ wave from UR. Parameterizing the points on the
downstream locus of U0 by ρ, we have ρ > ρ0 for shocks and

[m] = [p]
ξ 2

0 + η2
0

ξ0 ± |η0|
√
(ξ 2

0 + η2
0)[ρ]

[p] − 1

 ,

χ = [p]
[m] , κ = ξ0 − χ

η0
, [n] = −κ[m]

where [f ] = f − f0 and the shock equation is ξ = κη + χ ; the − sign goes
with the −-shock. The points on the downstream locus with ρ < ρ0 are centered
rarefactions. Along a line ξ = κη + χ in the rarefaction, the states are

m = m0 +
∫ ρ

ρ0

c(r)

(
c(r)

ξ 2
0 + η2

0

ξ0 − |η0|
√
ξ 2

0 + η2
0 − c2(r)

)
dr,

n = n0 + [p] − ξ0[m]
η0

;
here χ and κ are

χ =
ξ0c

2 + η0

√
c2(ξ 2

0 + η2
0 − c2)

c2 − η2
0

, κ = ξ0 − χ

η0
.

C: Weak Solutions at the Sonic Line

In our earlier paper about self-similar solutions, [1], we noted that the nonlinear
wave equation appears to have both regular (Lipschitz continuous) and singular
(Hölder continuous) solutions at the sonic circle. We amplify on that here. The
wave system (linear or nonlinear) in matrix form is −ξ 1 0

c2 −ξ 0
0 0 −ξ

 ρξ
mξ

nξ

+
 −η 0 1

0 −η 0
c2 0 −η

 ρη
mη

nη

 = 0 ;

the sonic line is given by ξ 2 +η2 = c2. We examine the solution on the subsonic
side of a sonic line at which U is constant on the supersonic side. Introducing
polar coordinates ξ = r cos θ , η = r sin θ to straighten the sonic line, we obtain −r cos θ sin θ

c2 cos θ −r 0
c2 sin θ 0 −r

Ur + 1

r

 0 − sin θ cos θ
−c2 sin θ 0 0
c2 cos θ 0 0

Uθ = 0,
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for U = (ρ,m, n). The second-order equation for ρ(r, θ) is

(
(c2 − r2)ρr)r + c2

r
ρr +

(
c2

r2
ρθ

)
θ

= 0. (6.2)

In [1] we showed that if c′(ρ) �= 0 then this equation has a solution with finite
slope at the sonic line. We also expect to see a solution with a square root singu-
larity; in the case of a linear equation, this behavior characterizes the fundamental
solution. For the linear equation, c2 is constant and if we seek a solution ρ(r),
then (6.2) becomes a first-order linear equation for ρr whose general solution is

ρ = a1 log

(
c + √

c2 − r2

r

)
+ a2.

Since we are interested in solutions near the sonic line, r = c, these solutions
all have square-root (not logarithmic) singularities. If we seek a solution of the
form

ρ = ρm + α(rm − r)β, (6.3)

inside the sonic line (circle) r = rm = cm for a general nonlinearity with c2 =
dp/dρ (ignoring the θ dependence of the solution, which will not influence the
leading term), then the equation becomes, to leading order,

p′′(ρ)ρr + [
p′′(ρm)(ρ − ρm) + r2

m − r2
]ρrr
ρr

+ p′ − 2r2

r
= 0.

(We have written c2 = p′(ρ) for convenience and used Taylor’s theorem to
expand c2 − r2 = c2 − c2

m + r2
m − r2 near rm.) Now using (6.3) we have

−(2β − 1)[(rm − r)β−1αp′′(ρm) + rm] = 0.

If p′′(ρm) = 0 (the linear case) then we must have β = 1/2 and we obtain a
square root singularity, exactly as in the linear solution given above; the value of
α is undetermined. On the other hand, if p′′(ρm) �= 0 there is still a solution of
this form, but now there is a second solution with β = 1. This solution, whose
first derivative will be Lipschitz continuous at the sonic line, has slope α there,
with

α = − rm

p′′(ρm)
, (6.4)
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the value found in [1].
To determine the complete solution U from the solution for ρ, we write the

system in conservation form as

F̃r + G̃θ = S .

Then the condition for a weak solution is dr/dθ [G̃] = [F̃ ]. At the sonic line
r = const, then, F̃ is continuous; now

F̃ = (−rρ + cos θm + sin θn, p(ρ) cos θ − rm, p(ρ) sin θ − rn)

and so this means that all three components of U are continuous across the sonic
line.
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