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What this talk is about:

-conservation law approach to PDE

-shock solutions of CL, tests for admissibility

-structure of some model eqns for 2-phase or 2-comp’t flows

What this talk is not about:

-how to model two-fluid flows

-how to compute two-fluid flows

-how to optimize, experiment on, or measure two-fluid flows

• Cons. Laws Model Dynamics of Fluid Flow on Acoustic Scale

- well-posed equations are hyperbolic (real char speeds)
- distinctive feature is discontinuous solutions (shocks)

• Loss of Hyperbolicity in Two-Fluid Equations

- characteristics, which should be real, are instead complex

• Shocks, Singular Shocks and Nonhyperbolic Waves

- generalizations of shocks in hyperbolic and nonhyperbolic probs

• Consequences in the Model Equations
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Conservation Laws, Hyperbolicity and Well-Posedness

• Example: Isentropic Compressible Ideal Gas Flow:
Cons. of Mass: ρt + (ρu)x = 0
Cons. of Mom.: (ρu)t + (ρu2 + p)x = 0
Closure Relation: p = p(ρ)

rewrite as
ρt +mx = 0

mt +
(

m2

ρ + p(ρ)
)

x
= 0

QL form wt +A(w)wx = 0

A =





0 1

−m
2

ρ2 + p′(ρ) 2m
ρ





Characteristics: λ = u±
√

p′(ρ)
real and distinct if p′(ρ) > 0.

Hyperbolicity: acoustic waves from

dynamics and modeling

Focus of this research: new theory for new kinds of char. structure

Hyperbolicity closely related to well-posedness of IVP:

Hadamard example (linear): utt +uxx = 0, u(x, t) = 1
nk

sinnx sinhnt.

• Cons. Law System wt + q(w)x = . . . {lower and higher order terms}
Point of departure: 1st order nonlinear diff. operator, ignoring

— balance terms (reaction, body forces, drag)

— dissipation (viscosity), surface tension, higher-dim. effects
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Basic 1-D Hyperbolicity: Linear and Nonlinear

Linear Equation: waves move with characteristic speed λ

ut + λux = 0; u = f(x− λt)

Jump Data: u(x, t) =
{

uL, x < λt

uR, x > λt -
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Jump

u0 = 1 u0 = 0
Nonlinear Equation: ut + uux = 0, characteristic speed λ = u

Riemann Data: u(x, t) =
{

uL, x < st

uR, x > st -
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Shock

u0 = 1 u0 = 0

s =
u2
R/2− u2

L/2
uR − uL

≈ u (char. speed) for small shocks only

Rankine-Hugoniot relation for wt + q(w)x = 0: s[w] = [q(w)]
• Cons. form allows def’n of weak solution

∫

wϕt + q(w)ϕx = 0
• No smooth well-posedness: Even C∞ data ⇒ discontinuous solution
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Two Surprises

1. Some conservation laws fail to have classical shocks

2. Some physical models lead to nonhyperbolic equations

Motivating example: a ‘two-fluid’ model for two-component flow.

Work of our group: mathematical analysis to show that this equation

and others like it, even though nonhyperbolic, have solutions with

wavelike behavior.

Potential applications of the analysis:

- understand what computer simulations produce

- determine whether model has predictive power

- allow systematic study of multiscale effects

Study of full system begins with CL operator

Begin with a hyperbolic equation with no classical sol’n
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Riemann Solution with Singular Shocks to Hyperbolic Model System
Isentropic isothermal gas dynamics equations (γ = 1) —

(smoothly) equivalent to strictly hyperbolic GNL system:

ut + (u2 − v)x = 0 (velocity)

vt + ( 1
3u

3 − u)x = 0 (enthalpy)
where

{

ρ = ρ(q) = eq

v = 1
2u

2 − q
Riemann Problem

U
0

D

E

Q
7 J

1

J

J
2

R
1R

2

S
2

S
1

Theorem[K. & Kranzer]: ∃ !

sol. w. shks, raref. and sshks.

∃ limits of approximate solutions:

• w(x, t) = H + a2 t e2 δ(x− st)

H =
{

w−, x < st

w+, x > st
, w+ ∈ Q7

• s[u] = [u2 − v]

• a2 ≡ s[v]− [ 13u
3−u] RH deficit

• u0 ± 1 > s > u1 ± 1

• wεt + q(wε)x ≈ εwεxx
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Approximations to Singular Shocks in Hyperbolic Model Problem

“Self-similar viscosity”: wt + q(w)x = εtwxx, w = w(ξ) = w(xt ).

Singular shocks, near ξ = s (inner expansion, width ε2):

w̃ =
(

u

v

)

=
( 1

εp ũ
(

ξ−s
εq

)

1
εr ṽ
(

ξ−s
εq

)

)

=
( 1

ε ũ
(

ξ−s
ε2

)

1
ε2 ṽ
(

ξ−s
ε2

)

)

Degenerate Vector Field

(Homoclinic Connection):

ũ′ = ũ2 − ṽ

ṽ′ =
ũ3

3

Match to outer expansion

uε(ξ) = hε1(ξ) + aρε(ξ)

vε(ξ) = hε2(ξ) + a2δε(ξ)
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A Mathematical Theory for Singular Shocks (Sever)

• Approximate solutions {wε}: wεt + q(wε)x ⇀ 0
• Classical weak solutions: wε → w and q(wε)→ q(w)
• Singular weak solutions: wε ⇀ w and q(wε) ⇀ Q 6= q(w) (at sing)

• Or wε → w in measure space where q(w) not defined

Comparison of different kinds of singular weak solutions:

1. Measure-valued solutions [Azevedo et al, Chen-Frid]: oscillatory —

found in model quadratic change-of-type systems

2. Delta-shocks [Tan, Zhang, Zheng; Bouchut, James; E, Rykov &

Sinai]: |q(w)| ≤ c(1 + |w|), w ∈ D, so wε ⇀ w in space of

measures ⇒ q(wε) ⇀ Q in space of measures

3. Singular shocks [KK; Schaeffer, Schecter, Shearer; Sever]: q(wε)
not locally bdd meas. unif. w. r. to ε (cf. u3 term in KK ex.)

ut + (u2 − v)x = 0 vt + ( 1
3u

3 − u)x = 0
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Singular Shock Weak Solutions in Hyperbolic Problems

1. “something worse can happen” [pace Glimm]

2. Theorem [Sever]: A pair of strictly hyperbolic, genuinely

nonlinear CL, with a convex entropy and satisfying a set of

asymptotic conditions, admits singular shock solution limits of

approximate solutions to wt + f(w)x = εwxx (or εtwxx).

3. Singular shock solutions:

w(x, t) = w̃(x, t) +
∑

iMi(t)χIi(t)δ
(

x− xi(t)
)

= w̃ + ws
w̃: nonsingular weak solution on open set R2

+\
{

∪i {x = xi(t)}
}

Ii = [I−i , I
+
i ) ⊂ R+; Mi ∈ L∞ : Ii → R2; singular mass

x

t

Sing Shock: Red Shock: Blue

Ṁi = a2 = R-H deficit

wt +Qx = 0
Q = f(w̃)+

∑

iAi(t)χIi(t)δ
(

x−xi(t)
)

Finite # of singular shocks at each t.

(Existence for Cauchy problem, KLS)
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A Little Viscous Profile Analysis

Admissibility criterion: ∃{wε}, wε ⇀ w, wε(±∞) = w±

wεt + qεx − εwεxx ⇀ 0 or wεt + qεx − εtwεxx ⇀ 0, as ε→ 0.

Classical: x−st
ε = η, w′′ = q(w)′ − sw′;

Integrate: w′ = q(w)− sw + z

z = s(w+)− q(w+) = s(w−)− q(w−)
⇒ s[w] = [q], z = 0, w. l. o. g.

Heteroclinic connection:

λ1(w−) > s > λ1(w+), s < λ2(w±):

⇒ Lax geometric entropy condition

x−st
ε

w−

w+

0

ε

u

v

w−

w+

Dafermos-DiPerna viscosity: ξ = 1
ε

(

x
t − s

)

= η
t

w′′ − q′ + sw′ = −εξw′ ≡ z′, w(±∞, ε) = w±, z(±∞, ε) = 0
LGEC ⇒ ∃ connecting orbit w. z ∼ 0, w bdd., unif. in ε

Singular: s[w]− [q(w)] = C (RH deficit); λi(w−) > s > λi(w+),

i = 1, 2 (‘overcomp’) ⇒ ∃ conn. orbit w. z bdd, unif. in ε (Sever)
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A New Phenomenon: Evanescent Singular Shocks in KK

w(x, t) = w̃(x, t) +M(t)χI(t)δ
(

x−X(t)
)

Ṁ = C = s[w]− [q(w)] = R-H deficit

IVP: w(x, 0) =
{

w−, x < 0

w+, x > 0
+Aδ(x),

A > 0 but w+ ∈ Q−(w−):

Singular mass decays to 0 in finite time

and ‘fission’ occurs.

IC in movie: 3 states U0, U1, U2

Simulation: evolution of viscous solution
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Two-Phase Flow: An Incompressible One-Dimensional Model

Ex: stratified pipe flow – 1-D avg.

Conservation of Mass & Momentum:

∂t(αiρi) + ∂x(αiρiui) = 0
∂t(αiρiui) + ∂x(αiρiu2

i ) + αi∂xpi = Fi

FLUID TWO

FLUID ONE

x

α
2
,

α
1
,

ρ
2
,

ρ
1
,

p
2

p
1

u
2

u
1

Assumptions:

• incompressible, isentropic

• ρi const., ρ1 − ρ2 = 1
• α1 + α2 = 1 (saturated)

• u2 6= u1 (2-velocity)

• p2 ≡ p1 (1-pressure)

• relaxes to other models

z water

air bubbles

U

U

L

R

Notes:

• Fi = αiρig +Mi (drag)

• Conservation form ambiguous
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Simplified Coordinates

∂tαi + ∂x(αiui) = 0
ρi∂tui + ρiui∂xui + ∂xp = Fi/αi

Reduction to 2 eqns:

• β = ρ2α1 + ρ1α2: mass

• v = ρ1u1 − ρ2u2 −K: mom

• K(t) = α1u1 + α2u2: inlet

Equiv. System for Mass and Mom:

βt + (vB1(β)−Kβ)x = 0
vt + (v2B2(β)−Kv)x = G

B1(β) = (β−ρ1)(β−ρ2)
β

B2(β) = β2−ρ1ρ2
2β2

ρ2 ≤ β ≤ ρ1

← H

H→

complex

eigenvalues

complex

eigenvalues

B
1
<0

← B
1
=0

B
1
=0 →

State Space

β

v

ρ
1
→←ρ

2

B
1
 →

B
2
 →

0

ρ
1
→←ρ

2

β

Flux Functions

Characteristics:

λ = 2vB2(β)± v
√

B1B′2

Complex: B1 ≤ 0, B′2 > 0.
• H = {β = ρi} ∪ {v = 0}
• Linearly unstable, ρ2 < β < ρ1
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Riemann Problem, Incompressible System, Nonhyperbolic Operator

Appearance of Singular or “Phase Boundary” Shocks

R P wt + q(w)x = 0, w(x, 0) =
{

w−, x < 0

w+, x > 0
Approx: wt + q(w)x = εtwxx, w = w(ξ) = w(x/t).

Singular shocks, near ξ = s (inner exp, width f(ε)):

w̃ =
(

β

v

)

=
( 1

εp β̃
(

ξ−s
εq

)

1
εr ṽ
(

ξ−s
εq

)

)

=
(

β̃
(

ξ−s
ε2

)

1
ε ṽ
(

ξ−s
ε2

)

)

vε

Find heteroclinic connections

with amplitude e1/ε in

β̃′ = ṽB1(β̃)
ṽ′ = ṽ2B2(β̃)

Complete with outer expansion

w((ξ−s)/ε) to connect w−, w+

Flux Vector Field
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Singular Shock Solutions to Riemann Problem

U−

U
0

o.c. shock
Q(U−)

H →

← s=Re(λ−)

← s=Re(λ+)

β

v

← ρ
2

ρ
1
 →

Singular shock: w+ ∈ Q(w−)
Generalized R-H cond:

s[β] = [vB1(β)]
s[v] = [v2B2(β)] + C

• Overcompressive admissibility condition, <(λ−) ≥ s ≥ <(λ+)

Proposition: In the class of self-similar solutions, with the weakly

overcompressive admissibility condition for singular shocks and the

standard Lax admissibility condition for regular shocks, a solution

of the Riemann problem exists for any pair of states w−, w+.
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v

• Singular shock + contact + rarefaction form composite wave.

• Cont. dependence on Riemann data except as w+ crosses ∂Q.
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Stratified Pipe Flow Model: Flow Separation

−0.5 0 0.5 1 1.5

0

0.2

0.4

0.6

0.8

1

Two Phase Separated Incompressible Flow

Axis of Pipe;  Units are  x/t

Fluid One

Fluid Two

Fluid Two

Fluid One

1. Spatial scale centered at contact

discontinuity

2. Singular shock (singularity in

velocity/mom) at moving phase

boundary

3. Stable single-phase states appear

4. Left phase boundary moves

upstream relative to contact

discontinuity and downstream

relative to left inflow boundary
• ‘Rarefaction’ occurs in absent phase (constant flow in other phase)

• Trivial Riemann data (w− = w+) lead to nonconstant solution,

similar to above (ill-posedness!); expected for nonhyperbolic problem

• With no surface tension or drag, Bernoulli effect dominates

• Scale for origin for Riemann problem is implicit
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Numerical Simulation of Singular Shock: Self-Similar Viscosity

wt + qx = εtwxx

Profiles of β and v vs. x/εt for ε = .01
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Exponential Growth Rate of Peak Height

Analysis: vε(0) ≈ exp
(

C
2ε(ρ1+ρ2)

)

Profiles of β and v, ε = .05 log(vε(0)) vs. ε
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Balance Terms: Bubble Column with Gravity and Interfacial Drag

Preliminary Results

Two-fluid, single-pressure, two-velocity, incompressible, 1-D model:

— same operator as stratified pipe flow

Typical balance term in β-v equations:

βt + (vB1(β)−Kβ)z = 0

vt + (v2B2(β)−Kv)z = G

G = −
(

g + A|v|v
β2

)

Solution tends to curve of stable equilibria.

Shock formation vs. trend to equilibrium.

z water

air bubbles

U

U

L

R

Relaxation to single-velocity model?
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Summary

• Two-fluid models of multicomponent systems are nonhyperbolic.

• Stratified flow: interfaces are unstable.

• Analysis of nonhyperbolic equations is possible using CL theory.

• Results are physically plausible.

• Nonlinear effects mitigate catastrophic instability.

• Viscosity/drag damp high-/low-frequency oscillations.

• Novel shocks appear (but may be damped by drag).

• Mathematical analysis may be useful: shows what is being

computed in simulations using two-fluid model.

• Two-pressure model relaxes to equal pressure.

• Two-velocity model studied here may approach single-velocity

limit if drag terms present.


