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What this talk is about:

-conservation law approach to PDE
-shock solutions of CL, tests for admissibility
-structure of some model eqns for 2-phase or 2-comp’t flows

What this talk is not about:

-how to model two-fluid flows
-how to compute two-fluid flows

-how to optimize, experiment on, or measure two-fluid flows

Cons. Laws Model Dynamics of Fluid Flow on Acoustic Scale

- well-posed equations are hyperbolic (real char speeds)
- distinctive feature is discontinuous solutions (shocks)

Loss of Hyperbolicity in Two-Fluid Equations

- characteristics, which should be real, are instead complex
Shocks, Singular Shocks and Nonhyperbolic Waves
- generalizations of shocks in hyperbolic and nonhyperbolic probs

Consequences in the Model Equations
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Conservation Laws, Hyperbolicity and Well-Posedness

e Example: Isentropic Compressible ldeal Gas Flow:

Cons. of Mass: pt + (pu), =0  rewrite as
Cons. of Mom.: (pu); + (pu® +p)z =0 ,
Closure Relation: p = p(p) iy (7 +p(p)) =0

QL form  w; + A(w)w, = 0 Characteristics: A =u £ 1/p'(p)
( 0 ] ) real and distinct if p’(p) > 0.
A =

pt +mg =0

Hyperbolicity: acoustic waves from

2 . .
g g dynamics and modeling

Focus of this research: new theory for new kinds of char. structure
Hyperbolicity closely related to well-posedness of IVP:
Hadamard example (linear): uy + Uz, = 0, u(x,t) = — sin nx sinh nt.

e Cons. Law System w; + q(w), = ... {lower and higher order terms}
Point of departure: 1%* order nonlinear diff. operator, ignoring

— balance terms (reaction, body forces, drag)

— dissipation (viscosity), surface tension, higher-dim. effects
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Basic 1-D Hyperbolicity: Linear and Nonlinear

Linear Equation: waves move with characteristic speed A

uy + A\u, = 0; u= f(xr— \t)
ur, T < )\t

Jump Data: u(z,t) =
Ur, T > At

Ug —
Nonlinear Equation: u; + uu, = 0, characterlstlc speed )\ =u
t

ur, x < st Shock

Riemann Data: u(z,t) = {

URr, I > St X
Ug — 1 Ug — 0
2 2
2 — 2
s = UR/2 = UL/ ~ u (char. speed) for small shocks only
Up — UL

Rankine-Hugoniot relation for wy + q(w), = 0: s[w] -
e Cons. form allows def'n of weak solution [ wy; + g(w)p, =0
e No smooth well-posedness: Even ('°° data = discontinuous solution
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Two Surprises
1. Some conservation laws fail to have classical shocks

2. Some physical models lead to nonhyperbolic equations

Motivating example: a ‘two-fluid” model for two-component flow.

Work of our group: mathematical analysis to show that this equation
and others like it, even though nonhyperbolic, have solutions with

wavelike behavior.

Potential applications of the analysis:
- understand what computer simulations produce
- determine whether model has predictive power
- allow systematic study of multiscale effects

Study of full system begins with CL operator
Begin with a hyperbolic equation with no classical sol'n
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Riemann Solution with Singular Shocks to Hyperbolic Model System
Isentropic isothermal gas dynamics equations (v = 1) —

(smoothly) equivalent to strictly hyperbolic GNL system:

ug + (u? —v), =0  (velocity) { p=p(q) = el
where

ve + (3u —u)y, =0 (enthalpy) v=1u?—gq

2

Ri Probl - - -
iemann Problem 3 limits of approximate solutions:

o w(z,t) = H+a’teyd(x — st)
w_, x <st

, wy € Q7
Wy, T > st

=~

slv] = [3u’ —u RH deficit

o1l >s>u; =1
Theorem[K. & Kranzer|: 3

sol. w. shks, raref. and sshks.

o wi+ q(we), ~ ews,
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Approximations to Singular Shocks in Hyperbolic Model Problem

“Self-similar viscosity”: w; + q(w), = etwy,, w = w(§) = w(7).
Singular shocks, near £ = s (inner expansion, width €2):

)-(Zhs)

Degenerate Vector Field

(Homoclinic Connection):

] 7/
r/
7
s
/7
v
77

h$ (&) 4+ ap(§)
hs (&) + a?d¢(&)
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A Mathematical Theory for Singular Shocks (Sever)

Approximate solutions {w®}: w§ + q(w®); — 0

: w® — w and q(w®) — q(w)
Singular weak solutions: w® — w and ¢(w®) — @ # q(w) (at sing)
Or w® — w in measure space where g(w) not defined

Comparison of different kinds of singular weak solutions:

1. Measure-valued solutions [Azevedo et al, Chen-Frid]: oscillatory —
found in model quadratic change-of-type systems
. Delta-shocks [Tan, Zhang, Zheng; Bouchut, James; E, Rykov &
Sinail: |g(w)| < ¢(1 + |w|), w € D, so w® — w in space of
measures = ¢(w®) — @ in space of measures
. Singular shocks [KK; Schaeffer, Schecter, Shearer; Sever|: q(w*®)

not locally bdd meas. unif. w. r. to € (cf. u® term in KK ex.)

up + (u? —v)y =0
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Singular Shock Weak Solutions in Hyperbolic Problems

1. “something worse can happen” [pace Glimm]

2. Theorem [Sever|: A pair of strictly hyperbolic, genuinely
nonlinear CL, with a convex entropy and satisfying a set of
asymptotic conditions, admits singular shock solution limits of

approximate solutions to w; + f(w), = €Wy, (Or etwy, ).

. Singular shock solutions:

w(z,t) =w(x, ) + >, Mi(t)xr, () (x — z;()) :@+ws
w: nonsingular weak solution on open set R*\{ U; {z = z;(t)}}
I =[I7,I7) CRy; M; € L : I; — R?; singular mass

: M, = a? = R-H deficit

/ Q = f(w)+32; Ai(t)xr, ()6 (z — x4(t))
L . Finite # of singular shocks at each t.

Sing Shock: Red Shock: Blue (Existence for Cauchy problem, KLS)
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A Little Viscous Profile Analysis

Admissibility criterion: H{we}, w® — w, w(+oo) = w4
wi +q5 —ew,, —0 or wi—+gq;—ew,, —0, ase—0.

xr—st

Classical: =7, w' = q(w) — sw’; "

Integrate: w’ = q(w) — sw + z

z=s(wy) —q(wy) = s(w-) — q(w-)
= slw] =1q], z=0, w. |. 0. g.

Heteroclinic connection: w,
AM(w_) > s> A(wy), s < Aa(w):

= Lax geometric entropy condition

Dafermos-DiPerna viscosity: £ = £(£ —s) = 1

w’' — ¢ +sw' = —efw' =2/, w(doo,€) = wy, z(+oo,€) =0
LGEC = d connecting orbit w. z ~ 0, w bdd., unif. in €

Singular: s[w] — [¢(w)] = C (RH deficit); \j(w_) > s > A\;(wy),

i = 1,2 (‘overcomp’) = 3 conn. orbit w. z bdd, unif. in ¢ (Sever)

10
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A New Phenomenon: Evanescent Singular Shocks in KK

w(x,t) = w(z,t)+ ME)xr(t)o(x — X(t))

M = C = s[w] — [q(w)] = R-H deficit

w_, <0
+ Ad(x),
W4, x>0

A >0 butwy € Q_(w-):
Singular mass decays to 0 in finite time

IVP: w(z,0) = {

and ‘fission’ occurs.
|C in movie: 3 states Uy, Uy, Us
Simulation: evolution of viscous solution

11
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Two-Phase Flow: An Incompressible One-Dimensional Model

Ex: stratified pipe flow — 1-D avg.
Conservation of Mass & Momentum:

O (aipi) + Oz (aipiu;) =0

Oy (aipi;) + Oy (aipiu?) + a;O0pps = F;

FLUID TWO Gy Py Py

FLUID ONE

water )
(water )

Assumptions: .
P O air Bubbles

@) O O

Incompressible, isentropic
oUp O

pi const., p1 — pa =1
a1 + ao = 1 (saturated)

us # uq (2-velocity)
p2 = p1 | (1-pressure) Notes:
relaxes to other models o F, — a;pig + M; (drag)
e Conservation form ambiguous
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Simplified Coordinates

State Space +  Flux Functions .
| |

atai + 833 (O&L’U/Z) =0 —p
piOgu; + piu;Ozu; + Ogp = Fi /v
Reduction to 2 egns:

2 Py— “—p

Py
complex !

2

eigenvalues

;=0

o O = poay + pras: mass
P H—

e ) — Plul — 102’1,[,2 — K: mom complex
° K(t) = QU1 _|_ AU inlet eigenvalues

B1<0

— B1=0

Equiv. System for Mass and Mom:

Be + (vB1(B) — KB3)z =0
v + (V¥ Ba(B) — Kv), =G
Bi(B) = (5—/)1%5—/02)

_ 52—01/02 Complex: Bl S O, Bé > 0.
Balf) = "t o H = (3=p} Un=0)

p2 < B < py e [inearly unstable, ps < 3 < p1

Characteristics:

A= 2@32(6) + U/ BlBé
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Riemann Problem, Incompressible System, Nonhyperbolic Operator
Appearance of Singular or “Phase Boundary” Shocks

w_, x<0
RP  w+qw), =0, w(z,0)= {
W4, x>0

Approx: wy + q(w); = €twy,, w = w(§) = w(z/t).
Singular shocks, near & = s (inner exp, width f(e)):

o=(2)- (I

Find heteroclinic connections

with amplitude e'/€ in

~ ~

B =0B1(B)

0" = 9°By(3)
Complete with outer expansion

w((£—s)/€) to connect w_, wi
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Singular Shock Solutions to Riemann Problem
Singular shock: w4 € Q(w-)

Generalized R-H cond:

"7 s[B] = [vBi(B)]

s[v] = [v2B2(B)] + C
e Overcompressive admissibility condition, R(A7) > s > R(AT)

«— s=Re(\") :
Q) :
o.c. shock :

Proposition: In the class of self-similar solutions, with the weakly
overcompressive admissibility condition for singular shocks and the
standard Lax admissibility condition for regular shocks, a solution

of the Riemann problem exists for any pair of states w_, w.

U, \ —_—

0

o
-
.0
©
c
& o
o
—o
[
.%u
>
o
o

o

v
sk Rarefaction |

N oL
250" ¢

Phase Plane: v

Contact

Phase EIane:B ’ N - Phynsical Plane: x " . ﬁACéar;lpouner;tQofoisronf?le:nax/t‘ b o ;“Cdﬁpoaner:‘tzofo‘l‘sroof‘?lezu‘éx/t“ b
Singular shock + contact + rarefaction form composite wave.
Cont. dependence on Riemann data except as w crosses 0Q).
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Stratified Pipe Flow Model: Flow Separation

1. Spatial scale centered at contact

Two Phase Separated Incompressible Flow

discontinuity

Singular shock (singularity in

velocity/mom) at moving phase

I
1o e
FluidOne

Stable single-phase states appear

—
FIu@ne
—

0 015 1‘
Axis of Pipe; Units are x/t

e ‘Rarefaction’ occurs in absent phase (constant flow in other phase)

e Trivial Riemann data (w_ = w ) lead to nonconstant solution,
similar to above (ill-posedness!); expected for nonhyperbolic problem

e With no surface tension or drag, Bernoulli effect dominates

e Scale for origin for Riemann problem is implicit
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Numerical Simulation of Singular Shock: Self-Similar Viscosity

Wi + @ = €lWyy

+0.5000 T T T T T
-6.000 -4.000 -2.000 0.000 +2.000 +4.000 +6.000

Profiles of 5 and v vs. /et for e = .

N

0.000
-6.000

01

T
=4.000

T T T T
=2.000 0.000 +2.000 +4.000 +6.000
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Exponential Growth Rate of Peak Height

C
2e(p1tp2)

Analysis: v¢(0) ~ exp

+0.5000 T T T T T 0.000 T T T
=-6.000 =4.000 =-2.000 0.000 +2.000 +4.000 +6.000 0.000 +20.00 +40 .00 +60.00

Profiles of 5 and v, e = .05 log(ve(0)) vs. €

T
+80.00

18
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Balance Terms: Bubble Column with Gravity and Interfacial Drag

Preliminary Results

Two-fluid, single-pressure, two-velocity, incompressible, 1-D model:

— same operator as stratified pipe flow , @
Typical balance term in 3-v equations:

O air Bubbles

B+ (vB1(B) — KB), =0 o O ©

oUy o

ve + (V2B (B) — Kv), = o .

G=—(g+ 25" o ©
o A 0

: I O ¢ O

Solution tends to curve of stable equilibria. N0 9/

Shock formation vs. trend to equilibrium.

Relaxation to single-velocity model?
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Summary

Two-fluid models of multicomponent systems are nonhyperbolic.

Analysis of nonhyperbolic equations is possible using CL theory.
Results are physically plausible.
Nonlinear effects mitigate catastrophic instability.

Viscosity /drag damp high-/low-frequency oscillations.

Novel shocks appear (but may be damped by drag).

Mathematical analysis may be useful: shows what is being
computed in simulations using two-fluid model.

Two-pressure model relaxes to equal pressure.

Two-velocity model studied here may approach single-velocity
limit if drag terms present.

20



