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A QUALITATIVE STUDY OF THE STEADY-STATE SOLUTIONS FOR
A CONTINUOUS FLOW STIRRED TANK CHEMICAL REACTOR*

M. GOLUBITSKY" AND B. L. KEYFITZ

Abstract. An approach to the bifurcation of steady-state equilibria using singularity theory is applied to
the problem of multiple equilibria in a continuous flow stirred tank chemical reactor where the flow rate is the
bifurcation parameter. Under the assumption of a single first-order exothermic chemical reaction, all the
qualitatively different bifurcation diagrams which occur locally are found. They form the universal unfolding
of the singular bifurcation problem x + A 0.

Introduction. It is well-known to chemical engineers that a complex reacting
system can exhibit multiple equilibria which may differ dramatically from each other as
to the extent of the reaction, the equilibrium temperature, and other phenomena.
Analysis of this sort of problem is complicated by the fact that the equations are highly
nonlinear, and contain many parameters, or control variables, which affect the
configuration of the equilibria. This paper is an attempt to bring a new method to bear
on such problems by the application of singularity theory to a chemical reactor problem.
Singularity theory is a nonlinear theory which provides a framework for a qualitative
analysis of many-parameter problems via the notions of contact equivalence, in terms of
which "qualitatively similar" behavior can be precisely defined, and a universal
unfolding, by means of which essential parameters can be identified. When a particular
universal unfolding can be found for a complex problem, it may then be regarded as a
perturbation of a simpler problem with the parameters varied about a particular choice.
We feel that this technique, of building up a complete description of the solution from
the behavior near this particular choice, or "organizing center" of the problem, may be
widely applicable in those chemical engineering and combustion problems where a
diversity of multiple steady-state phenomena makes any global analysis very difficult.
The possibility of providing such a description was suggested by some work of Uppal,
Ray and Poore [6], [7], on a continuous flow stirred tank reactor model in which an
analysis of the steady-state behavior is a prerequisite for an understanding of the
dynamic behavior of the model. Uppal, Ray and Poore were unable to prove that their
analysis was complete, but provided some partial results supplemented by numerical
experiments. Using singularity theory, we have been able to show that they did indeed
identify all the qualitatively different types of equilibrium behavior of the system, and
that the same classification also applies to a generalized system in which the standard
temperature dependence of the reaction is replaced by a function with similar proper-
ties. To be precise, Uppal, Ray and Poore consider a single-step chemical reaction with
Arrhenius-type kinetics, that is a reaction rate term of the form exp (-E/RT). For a
class of reaction rate terms which includes a C3-open neighborhood of the Arrhenius
terms, we show that the structure of solutions is the same. In 1, we describe the model
used by Uppal, Ray and Poore and its generalization.

For physical reasons it is often convenient to analyze the steady states of a system
by examining the dependence of these states on a distinguished parameter which is
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varied "quasi-statically"--i.e., the system is supposed always to remain in equilibrium.
Of particular interest are the parameter values where the number of equilibria changes
(bifurcation of equilibria)--hence the term "bifurcation parameter" which will be used
to describe this variable throughout the paper. Although the approach to the reactor
and similar systems as bifurcation problems is natural, classical bifurcation theory (for
example [3]) has generally not considered such problems because there is no "trivial
solution" about which to look for bifurcation points. Instead, we have the familiar
S-curves of combustion theory. The recent approach of Golubitsky and Schaeffer [4] to
bifurcation problems via singularity theory extends and specializes the theorems and
techniques of singularity theory to steady-state bifurcation problems, and it is this
theory that we apply to the reactor problem. Specifically the theorems of singularity
theory are adapted to include the bifurcation parameter indicated above as a dis-
tinguished control variable. A brief description of the theory and an analysis of the
singularities that appear in this problem are given in 2. The "organizing center" for
the problem turns out to be a singularity we have named the winged cusp: it corresponds
to a particular, physically reasonable, choice of control variables. This singularity is of
codimension three" that is, three independent controls must be varied in the neighbor-
hood of the organizing center to yield all the qualitatively different types of bifurcation
diagrams. These perturbed bifurcation diagrams are also listed in 2. In 3 we verify
that the winged cusp singularity is presen’t in this problem, and that the physical
parameters do indeed provide a complete set of perturbations (or "unfolding
parameters") not only near the organizing center but everywhere in control space.

We are grateful to Rutherford Aris for pointing out this problem to us, and would
like to thank David Schaeffer for many helpful conversations. Articles by Ray [5] and
Aris [1], where an attempt was made to adapt the catastrophe theory cusp, by the
addition of a wing, to explain the results of Uppal, Ray and Poore, served as a guide for
our intuition. Elementary catastrophe theory now seems an inappropriate theory for
the analysis of this model, although the type of mathematics ultimately used is identical
in spirit to that of elementary catastrophe theory. Needless to say, our name for the
organizing center of this problem, the winged cusp, was motivated by the papers of Ray
and Aris.

1. A mathematical model for a continuous flow stirred tank chemical reactor. In
this section we derive an equation to describe the steady-state temperature and
concentration for a first-order, single-step, exothermic, irreversible, volume-preserving
chemical reaction which takes place in a continuously stirred tank with in- and out-flow,
and heat loss to the surroundings. If a reactant, , is converted to a product, , in the
reaction, the assumption that the tank is stirred permits the concentration of , c, and
the temperature inside the tank, T, to be described as functions of time, t’, alone, while
the heat-loss rate is modeled by a term of the form -hS(T- To), where To is the ambient
temperature and h is a heat-transfer coefficient which depends on the thermal conduc-
tivity of the mixture and of the walls, and $ is the heat-transfer area (surface area of the
container). In the reaction, is converted to at a rate k(T)c, where k(T) is the
temperature-dependent reaction rate. For chemical reactor problems, in which radia-
tion is usually ignored, k(T) is assumed to have a temperature dependence of the
Arrhenius form,

(1.1) k T) Z e-(E/RT),
where Z is a frequency factor and E is called the activation energy of the reaction. The
constant R is the Boltzmann constant, The heat release of such a reaction is
(-AH)k(T), where AH, the heat of reaction, is negative for an exothermic reaction.
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Finally, if reactant with concentration cf and temperature Tf are fed into the tank at
a flow rate F, and the mixture of reactant and product removed at the same rate, the
equations governing the time-evolution of T and c are

(1.2)

vdC=F(c-c) Vk(T)c,
dt’

dT
VpCo dt---7 pCoF(T- T) + V(-AH)k(T)c hS(T- To),

where V is the volume of the container and p and Co are the density and specific heat of
the mixture (assumed constant). This standard system is discussed in [6], [1].

The following scalings are also conventionally used to develop nondimensionalized
equations. Concentration and temperature are scaled by feeder concentration and
temperature so that

C/-- C(1.3) x
cf

measures the extent of conversion of Y to , and

T- T(1.4) Y= T
is the rise above entrance temperature. Note that y > 1. Time is conveniently scaled by
the heat-transfer rate,

hS
(1.5) t’.

vG
Then (1.2) is replaced by

(1.6)
=-ex +D(1-x)A(y)=fl(X, y),
dt

dt
-(1 + e)Y +BD(1 -x)A(y)+ r/=h(x, y),

where now the essential parameters appearing are

FG=!(.7) e
hS

which can be identified as a flow-rate based on the time-scale (1.5) (its reciprocal, 0, is
called the residence time, and is often in the literature taken as the fundamental
flow-rate parameter),

k Tf VpCo
(1.8) D

hS

a Damk6hler number relating the chemical heat-gain rate at T to the heat-loss rate,

(.9) B (-aH)Ce
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which is proportional to the exothermicity, and also measures the "adiabatic tempera-
ture rise" which would occur if the reaction proceeded to completion in the absence of
heat-loss or flow in the reactor, and

(1.10)

the ambient temperature scaled by (1.4).
The function

(1.11) A(y)
k Tfy + T)

k(T)
is the temperature-dependent reaction rate, scaled by the rate at Tf. For an Arrhenius
temperature dependence,

(1.12) A(y)= exp (i:Yy)
where

E
(1.13) ?=--
is a scaled activation energy. For a truly temperature-dependent reaction, 3, cannot be
too small, and, in fact, in many applications to ignition problems, y is further scaled by
)7 3,y and the approximation 3’ oo is used. Alternatively, A(y) is often approximated
by a low-degree polynomial for the range of y known to occur in some particular
problem. These approximations are introduced to make computations simpler, and
will, in general, change the qualitative properties of solutions of (1.6) outside the range
in which they are valid. In the present paper, we will not insist that A(y) be an Arrhenius
term, but we will, in 3, impose on A(y) a set of conditions, satisfied by all Arrhenius
terms with 3" > 8!3, which will guarantee a certain qualitative behavior for steady-state
solutions of (1.6).

The system (1.6) has the property that multiple steady states, that is solutions to
jel je2 0, can exist for certain values of the parameters e, D, B and r/. In this paper, we
shall classify these steady states by means of the bif.urcation diagrams which occur when
D, B and r/are regarded as fixed control parameters, and e is varied quasi-statically as a
bifurcation parameter. This was the approach of Uppal, Ray and Poore in [7]. While it is
possible to regard any of the parameters as a bifurcation variable, in any experiment it is
clear that e can be varied independently by adjusting the flow rate, while it would be
difficult to design an experiment in which changing a single physical variable changed
only one other dimensionless variable.

Thus, in what follows, a "bifurcation diagram" is defined as the graph of the
steady-state solutions of (1.6) versus e. The description is simplified somewhat in this
problem because x or y can be eliminated from the equations fl =f2 0 and the
equilibrium is determined by a single state variable, temperature or concentration,
alone. Since (1.6) is linear in x, it is convenient to eliminate x by

(1.14) x
DA(y) rl-(l+e)y+BDA(y)

e +DA(y) BDA(y)

Introducing the notation 8 1/D and M(y) 1/(A(y)), we find the equilibrium
temperature satisfies G 0, where

(1.15) G(y, e, B, 8, n) n -(1 + e)y +
1 + e,4(y)"
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All the qualitative analysis of the bifurcation diagrams is based on an analysis of the C
function G.

2. The theory. In this section we shall state the theorems of [4] specialized to one
state variable and discuss in detail the "winged cusp" singularity which we claim is the
organizing center for the bifurcation problem associated to the stirred tank reactor
described in 1.

Let gx,x be the space of Coo germs of mappings from R2--> R at 0 depending on the
variables x and A. A bifurcation problem is the solution of

(a.) G(x, x)=0,

where G(0, 0)=0 for G in g’x,x. Two bifurcation problems G and H are contact
equivalent if

(2.2) G(x, A) T(x, A )H(X(x, a), a(a)),

where T(0, 0) 0, (OX/Ox)(O) > 0, (OA/0a)(0) > 0, and X(0) A(0) 0. We shall use
contact equivalence as our formalization of the term "qualitatively similar" for bifur-
cation problems as discussed in the Introduction.

There are two problems about contact equivalence which need to be investigated in
order to analyze the stirred tank reactor. Although these problems have similar
statements their resolution requires different methods. First, when is a bifurcation
problem G contact equivalent to a (simple) polynomial and if it is how does one find this
normal form? Second, we ask this question for a k-parameter family of given bifur-
cation problems. As we shall see the theoretical answer to both questions is the same
although the mathematical sophistication needed to prove the second is of a much
higher order.

Let

(2.3) TG G,

be the ideal in gx,a generated by G and OG/Ox; that is, all function germs of the form

OG
a(x, a)G(x, a)+ b(x, a) (x, a),

where a, b e
DEFINITION 2.4. G has finite codimension if there exists a finite dimensional

vector space V c g.x such that G@ V
Theorem 2.8 of [4] states that if G has finite codimension then G is contact

equivalent to a polynomial. More interesting is the question of how one finds this
normal form. The main step is given by the following proposition whose proof is
elementary, requiring only the standard existence theorem for ordinary differential
equations, and is a special case of the discussion after Lemma 3.8 of [4].

PROPOSlTO 2.5. Let H G +P and define Gt to be G + tP. Then H is contact
equivalent to G g TG, TG for 0 1.

The following is useful for checking the hypothesis of Proposition 2.5. Let
(x, a be the maximal ideal generated by x and a.
LEMMA 2.6 (Nakayama’s lemma). Let =(p,... ,Pk) be the

generated by Pl,’’’,Pk and suppose that ql,’’’,qk are in . Then
(pl + q, , Pk + qk).
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Note..tt denotes the product of the ideals //and and is the ideal generated by
the products of the generators of :b/and .

Proof. See, for example, Lemma 3.10 of [4].
Before discussing the second problem we analyze two bifurcation problems which

both occur in the stirred tank problem and serve as examples of the general theory.
PROPOSITION 2.7. Let H(x, A) satisfy one of the following set of conditibns"

(2.8a) H=Hx=H =Hxx=Hx =0 and HxxxH, >0,

(2.8b) /- =/-}, =/-x det (d:rH) 0 and Ixxd3H(v, v, v) > O,

where the bar indicates evaluation at x A 0 and v # 0 satisfies (d2H)(v) O. Then (i)
TH is computed to be

(2.9a) (Z 2, x + 2(/-)xx//xxx)xZ)

or

(2.9b) A 3, x +--- A +

and (ii) H is contact equivalent to

(2.10a)

H,,,H,,xx’ 2

H 2IYI3x. ]

3 2x +A

or

(2.10b) x2/A 3

respectively.
Note. We call the bifurcation problem G(x, A) x3 + A 2 a winged cusp.
Proof. The main part of the proof is the computation of TH. We show first how (ii)

follows from this computation along with Proposition 2.5. The assumption (2.8a)
implies

(2.1 la) H(x, A) aA 2
/ bx 3 + cx2A / dxA 2 / eA 3

/ O(x, A ),

where Q(x, A) begins with terms of order four and ab > 0. Observe that by a change in
coordinates of the form x 2+BA we can assume that 2c =Hxx 0. After this

p.reliminary change of coordinates the computation of TH given by (2.9a) shows that
TH (A 2, x2). Let P dxA 2 + eA 3 + Q(x, A and apply Proposition 2.5 to see that H is
contact equivalent to bx3+ aA2. Since multiplication by -1 and scaling are contact
equivalences (2.10a) is proved. As case (b)of Proposition 2.7 is similar we just point out
briefly that assumption (2.8b) implies

(2.11b) H(x,A)=ax2+bxA +cA2+dx3+ex2A +fxA2+gA3+Q(x,A),
where Q is as above and a # 0. The computation of 7H given in (2.9b) shows that if we
can make preliminary changes of coordinates so that b -f 0 then (2.10b) will follow
from Proposition 2.5. The assumption that det (d2H)- 0 implies

(2.12) ax2 + bxA + cA 2 a x +a A

Letting 2 x +(b/2a)A puts H in the fo,rm (2.11b)with b c 0. A short calculation
shows that letting 2 ff+BA2 will now put H in the form (2.11b) with f 0 also.
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To compute (2.9a) and (2.9b) we will make repeated use of Nakayama’s lemma
along with the following simple observation. Let P, A, B, be in gx.x. Then

(2.13) (A,P)=(B,P) ifA=B+fP.

First we compute (2.9a). From (2.11a) we see that

(2.14) TH , + C, x +-27-, xl + C’

where C and C’ begin with terms of order three. Observe that

l c , x+- xa

so that Nakayama’s lemma implies

(2.15) TH A 2
X2..[.G XA

As c Hxx,/2 and b H,,x,/6 (2.9a) is proved.
To compute (2.9b) observe that (2.11b), (2.12), and (2.13) imply

(2.16) 7H (dx 3 + ex2h +fxA 2 + gA 3 + O,, 2ax + bh + 3dx2 + 2exh +fh 2 + C),

where C =cubic+... and Q’ quartic+. . Note that x +(b/2a)A =-
quadratic+.. mod 7H; thus (,x +(b/2a)A)2 =-quartic+... mod iH. Hence the cubic
terms in the first generator of TH in (2.16) are the same as the cubic terms of H as in
(2.11b). Next observe that x -(b/2a)A +... mod f’H; thus (2.16) implies

(2.17) 7H (KA 3 + O"(d, A.), + C’(d, X)),

where K (d-)(v, v, v) 0 and 2ax + b, + 2ex, + 3dx 2 +f& 2. To see that K is as
claimed one needs the following observation"

(2.18) 6(dS)(v, v, v)=- +3Hxxk
which is obtained from the fact that v may be taken to be (-Hx/Hx, 1).

Since a 0, is a legitimate change of coordinates. One may use Nakayama’s
lemma in the , h coordinates to obtain

( bh+fh2)(2.19) TH (h 3, ) h 3, x +2a + 3dx + 2eh
so 3c H. Next compute

bh +fh :z b
h + ( f be) 2 3bd 3)(2.20)

2a + 3dx + 2eh 2a -a f-fa : h -a2 xh (mod :t/

Therefore using (2.13) we have

( b (f be 3bZcl )(2.21) TH= A3, x+-aA+ -a 2a 2 + 8a3]A
Using the fact that a Hx,,/2, b =Hx, d H,x/6, e =Hxx/2, and f=H,,xx/2 the
proposition is proved.



STEADY-STATE SOLUTIONS 323

We now turn to the second problem; polynomial normal forms for k-parameter
families of bifurcation problems. This is formalized through the notion of unfoldings
and solved through the notion of universal unfoldings.

DEVINITION 2.22. (i) F’ (R x R x Rk, 0) R is a k-parameter unfolding of G in
if F(x, A, O) G(x, ).

(ii) Let H(x, ,/3) be an m-parameter unfolding of G. Then Hfactors through F if

(2.23) H(x, A, fl) F(X(x, A, fl), A(A, fl), ce (fl)),

where all mappings are smooth and a (0)= 0.
(iii) Two unfoldings H and F are equivalent if H factors through F and the map

a/(a) in (2.23) is an invertible change in coordinates (so rn l).
(iv) F is a universal unfolding of G if every unfolding H factors through F.
Note (a). The number of parameters in H need not be the same as the num-

ber in F.
Note (b). Equation (2.23) means that for every fl, H(.,., fl) is contact equivalent

to F(.,., a) for some a. Thus, if H factors through F then every bifurcation problem
included in the unfoldingH is already included in the unfolding F, at least up to contact
equivalence.

In what follows we shall show why it is relatively easy to put a universal unfolding
into a polynomial normal form.

PROPOSITION 2.24. Let F and H be universal unfoldings of G depending on the
same number ofparameters. Then Fand H are equivalent.

Proof. Proposition 2.5 of [4].
THEOREM 2.25. Let F(x, A, ) be an l-parameter unfolding of G(x, h and assume

that G has finite codimension. Then F is a universal unfolding if

00 =0 OOlk =0

Proof. Theorem 2.4 of [4].
We see from (2.26) that G has a universal unfolding precisely when G has finite

codimension. The following remarks should make this clear.
Note. Equation (2.26) may be restated as follows: for every germ p(x, A) there

exist function germs a(x,h), b(x,A), and c(A)--not c(x,A)and real numbers
&,’’’, rk such that

OG OG OF OF
(x, A, 0).(2.27) P(X’A)=a(x’A)G+g(x’A)-x +C(A)-+rl(X’A’OCel O)+" "+rko----

This condition may look difficult to check but, in reality, it is not. Consider:
Example 2.28. Let G(x, A) x3 + A 2. Then F(x, A, c, a2, ce3) X

3 + (aEA + Ce3)X +
O +, 2 is a universal unfolding of G. Moreover codim G 3.

DEFINITION 2.29. The codimension of G is the minimum number of parameters
necessary for a universal unfolding of G.

Proof. From (2.9a), 7G (x2, A 2). Hence (2.27) becomes

(2.30) p(x,A)=a(x,A)x+b(x,A)AE+c(A)A +rl+rEAx +rax.

It is easy to check that (2.30) holds for all p by Taylor’s theorem.

In the literature the term "universal" is reserved for the unfolding in (iv) with the minimum number of
parameters, and "versal" for what we have defined. We shall not make this distinction.
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All of the germs G that will be considered in this paper have the property that
A (OG/A) is contained in TG. As a result (2.26) may be reduced to a question of linear
algebra.

CortOLLAR 2.31. Assume (G/A is in TG, and let ql(x, ), , qs(X, be a
basis for a complementary subspace to ’G in x.a. Let F(x, , a) be an l-parameter
unfolding of G(x, X ).
Let

(x, A, O) c,xq +. + ci,sqs d- ti

and

(X, A Cl+l,lql +" + Cl+l,sqs + tt+l,

where ti is in TG for 1 <- <-_ + 1. Then F is a universal unfolding if rank C s where
C (ci/) is the (l + 1) s matrix described above.

Note. Example 2.28 is now a triviality as a complementary space to (x 2, A 2) 7G
is spanned by 1, x, A, xA.

Examples of the application of Theorem 2.25 and its Corollary 2.31 in identifying
universal unfoldings can be found in [4]. We provide the specific results for the new
singularities--the winged cusp (x 3 + A z) and x2 + A 3--which arise in the present appli-
cation in the next proposition.

PROPOSITION 2.32. LetF(x, A, ax, O2, a3) be an unfolding of G(x, A ). Assume that
(i) G satisfies (2.8a) and suppose that rank C 4 where C is the matrix

0

evaluated at x A 0, or
(ii) G satisfies (2.8b) and suppose that rank C 2 where C is the matrix

evaluated at x A O. Then F is a universal unfolding of G.
Note. One may apply Proposition 2.24 to see that if F is a universal unfolding as in

(i) then F is contact equivalent as a parameterized family to x 3 + (a2 + c3A)x + al + A 2,
thus solving our second problem for the winged cusp.
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Proof. The heart of the proof has already been completed by the computation of
in (2.9a) and (2.9b). Given a germ O(x, h) in x.x we may write--where t(x, h)

(2.33a)

or

(2.33b)

Q(x,h)=Q+Qxx +Qxh + (xx-txxx (xx xh +t(x,h)

Q(x,h)=O+(O.a-AOx)h +K(Q)A2+t(x,A),
where A Gx/Gxx and

(2.34) K(Q)=1/2[OA2-20xA-20B + (a
and

B
2Gx -+Gxx 2Gx-3

Incase (i) the proposition follows from Corollary 2.31 directly along with the
observation that (2.8a) implies that Gx Gx 0.

In case (ii) Corollary 2.31 implies that F is a universal unfolding of G if

Fx-AF,, K(F,)\
F,2 F,2,-AF,,, K(Fo:)|rank
F, Fo, AF K(F)]

3.

Gx Gxx AGx K Gx )/

One computesusing (2.18)that K(Gx) (d3G)(G v, v) 0 by (2.8b). Also by (2.8b)
x =0 and ax-Ax =det (daG)/xx =0. So the proposition is proved.

We are now ready to discuss the problem of classifyingup to contact
equivalencethe types of bifurcations which occur in the universal, unfolding of a given
problem. Suppose one has a bifurcation problem G(x, A) and an/-parameter universal
unfolding F(x, A, a), how does one classify in a qualitative way the types of bifurcation
diagrams F(.,., a)= 0 for various a? A good start at the answer is given by the
following theorem. First observe that if G has a universal unfolding then it is contact
equivalent to a polynomial and if G is a polynomial then F may also be assumed to be a
polynomial. (This is Corollary 2.9 of [4].) Next define

(@) {a It[:lx, with F Fx Fx 0 at (x, , a)},

() {a [[:lx, h with F Fx Fx 0 at (x, , a)},

(..) {O R/I](X1,/ 1) and (X2, /2) with F F 0

at both (Xl,/ 1, O and (x2, A 2, O )}.
These are called the bifurcation, hysteresis, and double limit varieties, respectively.

THEOREM 2.35. Let , () U (Yg) U ()c Rl. (Note that X is a codimension one
algebraic variety in Rl.) Then there exist open neighborhoods ell of 0 in and of0 in
l such that if and ce2 are in the same connected component of-, then F( a 1)
and F(., ., a2) are contact equivalent on

Proof. This is Corollary 2.16 of [4].
Using this theorem we analyze the local nature of bifurcation diagrams near the

winged cusp.
PROPOSITION 2.36. LetF(x, A, a) x3 +(a2+a3h)x +al +h 2. Then

() {, +,, =o; _-< o}, (e)
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and () is parameterized by the equations
’2 2 2

O 2x 3 ce 3x o 3x
ce2 --3x:+.

4 2

Proof. A short computation.
To visualize how the varieties () and () intertwine it is perhaps easiest to graph

(:) and () for a3 fixed. The results are given in Fig. 2.1. The numbered regions
correspond to connected components of the complement of 5;. The lettered regions
correspond to various branches of the variety E. The bifurcation diagrams are given in
Fig. 2.2. (Note that the diagrams associated with Y_, are obtained by continuity as one
crosses Y_,.) Also observe that () is just the "Whitney Umbrella" while () is a cylinder
over a cusp curve. They are pictured in Fig. 2.3.

In the Introduction we stated that the winged cusp is an "organizing center" for
bifurcation diagrams associated with the stirred tank reactor described in 1. We are
now in a position to make that statement more precise.

PROPOSITION 2.37. Let G(x, A) be defined on f in 2. Assume that the following
sets of equations are never satisfied in f

(i) Gxx 0;
(ii) G Gx Gxx Gxxx 0; and
(iii) G=Gx =Gx =det (d:G)=dSG(v, v, v)=0;

where (d:G)(v, v) O. Then at any point (Xo, h0) in f for which G(Xo, A0) 0, the local
nature of the bifurcation diagram {G 0} is described by one of the eight singularities in
Table 2.1. Moreover each of these local situations occurs in the universal unfolding of the
winged cusp.

Proof. A simple check shows that conditions (1)-(8) of Table 2.1 yield an
exhaustive list for the possibilities for G satisfying (i)-(iii). The normal forms for the
singularities (1)-(4) and (6)-(7) are given by Proposition 4.1 of [4]. Singularities (5) and
(8) were given in Proposition 2.7.

TABLE 2.1

Defining conditions at (x ho)

(1) G=0, G, 0
(2) O=Gx =0, Gxx" Gx 0
(3) O=O,, =Gx =0, G,,," detd2G0

index dEG
4) G=Gx=Gx =0, Gx. det (d-G)0

index dEG 0, 2
(5) G G Gx det (d G) 0

Gxx (d3G)(v, v, v) 0
(6) G=Gx=Gx=O
G=.GO

(7) G=G=Gx=Gx=O
G,=.GO

(8) G=Gx=Gx =Gx Gx,=0
Gx,x Gxx 0

Normal form

X

x2-t- A
X --A

X3+/-AX

Bifurcation
diagram Codimension

We shall use the following specialized result in our analysis for the stirred tank
reactor in the next section.

PROPOSITION 2.38. LetF(x, A, O1, a2, Ce3) eel +F(x, A, Ce2, Ce3) be an unfolding of
G(x, A) as in Proposition 2.37. Then F is a universal unfolding of G if---in each of the
eight cases listed in Table 2.1---the following conditions are satisfied.
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TABLE 2.2

Case Condition

(1)-(4)

(5)

(6)

(7)

(8)

Always

F,3,,F,2 F,2,,F3x 0

rank (F,z F,x G,,,)

Gxxx
rank Fx F,,,x-Fx-- i=2

Gxxx

G
rank F3

axxx

=3

Proof. Cases (5) and (8) are easy consequences of Proposition 2.32. The remaining
cases are proved in a fashion similar to that proposition.

NUMBERS REFER TO OPEN REGIONS
LETTERS REFER TO COMPONENTS OF THE (B) U (H) VARIETY

FIG. 2.1

3. The local nature of the bifurcation diagrams. In I we showed that the steady
state solutions to our model chemical reactor are described by the equation:

n
(3.1) G(y,e,B, 6, r/) rt-(1 +e)y + =0,

1 + e6sC(y)

where y is a nondimensionalized temperature, e is a nondimensionalized flow rate, B, 6
and rt are parameters, and is a reaction rate term which is usually assumed to have the



(winged cusp point)

THE OPEN REGIONS

FIG. 2.2a

OPEN REGIONS ON BIFURCATION VARIETY

]PIG. 2.2b



OPEN REGIONS ON HYSTERESIS VARIETY

SELF-INTERSECTION OF HYSTERESIS VARIETY

FIG. 2.2c

NON-IMMERSION POINTS ON BIFURCATION VARIETY

TRANSVERSE INTERSECTION OF BIFURCATION AND HYSTERESIS VARIETIES

TANGENCY OF BIFURCATION AND HYSTERESIS VARIETIES

FIG. 2.2d
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THE HYSTERESIS VARIETY

THE BIFURCATION VARIETY

FIG. 2.3

form

(3.2) M(y) exp ( l+y)"
When M has the form (3.2) we call M an Arrhenius term with activation energy y > 0.

The problem we address in this section is the global classification of the local
bifurcation problems which appear in this model. We shall prove that for each member
of a class of reaction terms which are both open and include the Arrhenius terms when
y > 8/3, there is a unique winged cusp point and that globally the only local bifurcation
problems which occur are those found in the universal unfolding for the winged cusp.
Moreover, the physically motivated parameters B, & and turn out to be universal
unfolding parameters; it is indeed a curious fact that these parametersgiven phys-
icallyare the minimum number necessary to determine the qualitative classification.
This fact suggests strongly that the winged cusp should be considered as the "organizing
center" for this model.

The region in space which we consider is

(3.3) l {B >0, 8>0, r/>-1, y >-1, e >0}.

The main assumptions about M are

(A) M(y) >0, y>-l,

(3.4)
(B) M’(y) < O, y>-l,

(C) d"(y) > O, y > -,
2M,M,,,- 3(M,,)-(D) {y, M} < 0 y > 1(,)

The expression {y, M} is called the Schwarzian derivative of M and has been useful in
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projective geometry. (See E. Cartan [2].) We mention one fact; namely {y, g} 0 if g is a
fractional linear transformation; that is, g(y) (ay + b)/(cy + d).

A calculation shows that for (3.2) with y >-1

(a) >0,- (y) < 0,(b) ’(y)
( +y)

v + 2 +)2y. (y) >(c) M"(y) 0,
(l+y

2

(d) {y, M} -Y
(l+y)4<0"

So the assumptions (A-D) are indeed satisfied for the usual Arrhenius terms.
Remark 3.5. Equation (d) shows that {y, M}= _(M,/M)2. We claim that this

differential equation along with the boundary conditions M(0)= 1 and M(-1)= +o
uniquely define the Arrhenius terms up to % For assume M e then a computation
yields {y, M} _(g,)2 + {y, g}. As M’/M g’ we see that {y, g} 0. As noted above this
implies that g is fractional linear; the boundary conditions yield the claim.

Before stating our main results we need two lemmas.
LEMMA 3.6. Let satisfy (B), (C), and (D). Then there exists a unique point y0 > 0

such that v y"+M’= 0.
Proof. Observe that solutions to v 0 are obtained as intersections of the two

functions f(y) -y and g(y) y + 2M’/M". Assumption (D) shows that g is monotone
increasing while f is clearly monotone decreasing to -oo. As /(0)=0 and g(0)=
2sg(O)/M"(O) < 0 the result is proved.

Remark 3.7. For (3.2) y0=x/ +(y2/4)-(T/2).
LEMMA 3.8. Let M satisfy (A-D). Then there is at most one point yz such that

(-)" 0.
Proof. Let =2(’)2-’’, then (-1),, o/3 and we need only find points

where o 0. Consider the following identity:

(3.9)

and observe that if @-> 0, then ’ < 0. This proves the lemma.
Note. If > 0 for all y, let yz +oo and if < 0 for all y, let yz 1.
Remark. For (3.2), yz (3,/2)- 1.
The following list of derivatives of (3.1) will be needed for subsequent compu-

tations.
LEMMA 3.10. Let A 1 + eM(y). Then

(i)

(ii)

(iii)

(iv)

(v)

(vi)

G=n-(l+e)y+A,
G -y +B/A2;

(y --(1 + B)-BE2t6’/A2;
G, -2B6M/A3;

Gy -1 2Be&,rd’/A3

Gyy.= Be2tQ/A3 where Q 2e(M’)2- AM";
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and

(vii) Gyyylo=o Be 28(3eSsC’s’’- A’")/A3.
PROr’OSITION 3.11. There exists at most one point (yo, co, Bo, 80, rio) II where the

bifurcation problem G(y, e, Bo, 80, r/o)= 0 is contact equivalent to the winged cusp on a
neighborhood of (yo, co).

Moreover ifthefollowing assumptions are made on then such a point actually exists
in 1).

(E) (In )"(yo) > 0,

(F) yz > yo, i.e., (yo) > 0 (Lemma 3.8),

(G) yoz + yo + (yo)/.-’(yo) < 0.

In fact, these points may be computed as follows:
(i) yo as in Lemma 3.6,

(ii) sO+ 2ys’

(iii) no -yo(1 + co),

(iv) 60 (d + 2ys’)eo Y=Yo

(v) Bo yoao.
RZMAnK 3.12. Assumptions (E) and (G) are satisfied for all Arrhenius terms while

(F) is satisfied when y > 8/3. As one is really interested in 3’ large--say of the order of
10--this is a reasonable hypothesis.

Proof. Proposition 2.7 states that to prove this proposition one must show that
there is a unique choice of/3o, 80, r/o yielding a unique solution (yo, co) to the equation
(2.8a) with G, y, e replacing H, x, A. Observe that the equations Gyy Gy 0 imply
that

(3.13a) w (2(M’)2- SM") 6’",

(3.13b) w(+ 2ys’) -1,

where w eS. (Here one substitutes B yA2 into Gy.) Thus sg"(b)+ (a) implies

(3.14) 2wM’(M’ + ysg") O.

As wM’ # 0 in fl we have that yo is given by Lemma 3.6. Next solve (3.13a) for

(3.15) w sg"/(2(sg’)z- sCs")= "/F.
Hence Wo eoSo > 0 by (C) and (F). Next substitute B y Az into Gy 0 to obtain

(3 16) eo =-1/(1 + yowoM’(yo))=
M + 2yeg’[M+yM’ =o

The last equality is obtained by solving (3.13b) for Wo. Recall that at yo, " =-’/yo.
Thus (E) implies that sC(yo)+yo’(yo)>0 and (F) (or (3.13b)) implies (yo)+
2yoC’(yo)<0. So co>0 and 80>0. Now Bo=YoA2o>0 where Ao= 1 + Wo’(yo) and
from G 0

(3.17) no (1 + eo)Yo-Boeo/Ao -(1 + eo)Yo.
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The last equality is obtained as follows: from Gy 0 derive A --2ysg’ and from
derive A 2(e + 1)/e. Now use (3.17) and (3.16) to obtain

(3.18) r/o sg + ysg’ =o
So r/o >- 1 is equivalent to assumption (G).

To complete the proof of the proposition one shows that G < 0 and Gyy < 0 at
(yo, eo, B0, 80, r/o). In fact G, < 0 on 12 by (A) and Lemma 3.10 (iv) and Gryr < 0 on
f 71 {Gyy 0}. To obtain this last fact, note that Lemma 3.10 (vi) and (vii) imply that
sign (G) on {Gy 0} is just sign (3eSsC’sg"-Asg’"). Now

(3.19) 3eM’M" As"’-- {y, 6}< 0 on Oyy 0

as zX 2eB(sg’)2/sg on Gy =0.
For the following we need one more assumption.

(H)
(2yag’" + 3s") [ 1 +,/1 + 8y/s 2s’]+, + >0 on[yo, yz].

3 y

We shall show in the appendix that this inequality is satisfied for Arrhenius terms with
y > 2. Note that at y0, v 0 and the first term of (H) is positive by the Schwarzian
condition.

PROPOSITION 3.20. Under the assumptions (A)-(H) the only local bifurcation
problems which occur in fl are those which appear in the universal unfolding for the
winged cusp.

Proof. Proposition 2.37 states that Proposition 3.20 is true if none of the following
systems of equations is ever satisfied in

(3.21) O =0,

(3.22) G Oy Gyy Gyyy 0,

(3.23) G Gy G det (d2O) d3G(v, v, v) O,

where v # 0 and (d2G)(v, v)= O.
At the end of the proof of Proposition 3.11 we showed that (3.21) and (3.22) are

never satisfied in 12. To analyze (3.23) we need a preliminary result.
AsG is never zero we may solve implicitly G (y, e) 0 uniquely for e e (y). Let

f(y) G(y, e(y)).
LEMMA 3.24. The equations (3.23) are equivalent to the following system of

equations:

(3.25) f =f’=f"=f"’.=O.
Pro@ Observe that

(3.26a) /’(y) Oy(y, e (y)),

(3.26b)

(3.26c)

f’ Gye’ + Gyy,

f’"= Gy (e’)2 + 2Gyye’ + Gyyy + Gye".

By (a) we have that f=f’ =0 if G Gy G =0. Next differentiate the defining
equation G 0 to obtain

(3.27) e’ -Gy/G.
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Thus " 0 if det dZG 0. Differentiating G 0 a second time yields

(3.28) e" --(Gyye + 2G,e’+ G(e’)2)/G.
Substituting (3.28) and (3.27) into (3.26c) yields

(3.29) f’"= (d3G)(v, v, v)

by application of (2.18). This proves the lemma.
Of course one may use Lemma 3.10 (ii) to solve for e (y) explicitly, obtaining

(3.30) e(y)

Thus we may take

(3.31) f(y)=s4G(y,e(y))=(,1-y)sg+(’,/-}-B):/6,
where/3 x/. Since s4 is never zero on 12 we still maintain the equivalence of (3.25)
with (3.23).

To complete the proof of Proposition 3.20 we must show that (3.25) is never
satisfied on 1. A computation shows that

(3.32a) f’(y)= (rt y)s4’-s4 +(x/-;-B)/Sx/-,
(3.32b) f"(y)=(rl-y)xg"-2.s’+/(28y3/Z),
(3.32c) f"’(y) (rt y)"’- 3s4"- 3B/(46y5/2).

We use the following notation:

(3.33) u s’ + y", r 3s4" + 2ys4’", 5 2s4’s’"- 3(s4")2;
and make the following observations at a solution to (3.25):

(3.34a) r/- y < 0,

(3.34b) r/-y 6u/r,

(3.34c) B/8 4yS/Z/ r,

(3.34d) " < 0,

(3.34e) u > 0,

(3.34f) _1 sg 6,sg’/.r + 4y/r.

It is clear from (3.31) that to solve f 0 implies (3.34a). Equations (3.34b) and (3.34c)
are obtained from (3.32b) and (3.32c). So (3.34d) follows from (3.34c) as /8 > 0 and
O< 0. Now (3.34e) follows from (3.34b). Finally (3.34f) is obtained from (3.32a).

Substitution of this data into (3.31) yields

(3.35) s4.r 6 u + 4y 2 6,sg + y .rsC 6 ,s4 :Z O

which is an equation in y alone. Letting

(3.36) w "r/6,

we obtain from (3.35), noting that yoW s4’--3s4"u,

(3.37) w + +- w + -)-- O.
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As w < 0 (by (3.34a) and (3.34b)), M’/M < 0 by (A) and (B) and u > 0 (by (3.34e)) we
have

(3.38)

Hence

w =-(1 +41 + 8y./M)/2y d’/d.

(1
+ O.

+/1 + 8yv/M)
(3.39) z/3 + v

y M_I

Let y be a solution to (3.39) satisfying (3.34). In particular v(y)> 0 implies by
Lemma 3.6 that y > y0. For y to generate a solution to (3.2:5) in f it must also satisfy

(3.40) 0 < e(yf).

We claim that (3.40) implies that yr < yz thus proving the proposition. In particular
(3.30) and (3.40) together imply that/3 > /. Using (3.34c) and (3.34f) one obtains

"rM 6vM’
(3.41) 1+ _.2 <1,

45ry

which holds only if

(3.42) zM-6vM’>O

as 5< 0. Upon expanding r we obtain

(3.43) 2--yz < 2vM’/M.

Substituting this inequality in (3.39) implies

M+ 4yM’
(3.44) 41 +8yv/<

If (M + 4yM’)ly is positive then y does not correspond to a solution to (3.35) in f.
So assume that it is negative and square (3.44) to obtain

(3.45) 2(M’)2- MM"Iy, (y)> 0.

As (y) < 0 for y >= yz by Lemma 3.8 we have that y0 < y < y.
Then by (H) the proposition is proved.
We now state and prove the main result of this section. In particular this result is

satisfied for Arrhenius terms when , > 8/3.
THEOREM 3.46. Let

G(y, e, B, 6, rt) r/-(1 + e)y +Be
where A 1 + e6M and M satisfies the conditions (A)-(H). Then them exists a unique
winged cusp point in f and for every (y’, s’,B’, 8’, q’) the bifurcation problem
G(y, e, B’, ’, q’)= 0 is contact equivalent to a bifurcation problem contained in the
universal unfoMing of the winged cusp point. Moreover B, 6, and q form universal
unfolding parameters for any such bifurcation problem.

Proof. The first two statements are the results of Propositions 3.11 and 3.20. The
proof of the last statement uses Proposition 2.27. In fact, it is sufficient to show that

(a) GG GG
(b) rank
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(c)

Gny Gnrr Gn, G-t
Gyyy

rankGay Gayy-Ga, =2;

Gyyy

at points where Gy Gyy 0 and

(d) det Gy
at the winged cusp point.

One calculates:

(3.47)

(i) GBy

(ii) GB 1/A2;
(iii) Gay BezM’(eSM 1)/A3;
(iv) Ga -2BeM/A3.

Thus

(3.48) GayGn GnyGa -Be2s’/A4 > O.

So (a) is satisfied. Since Gny > 0 on f by (ii) (b) is also satisfied.
To show that (d) holds observe that if a function f(e, 8) has the form g(eS) then

ef, =- 8fa so that f/fa 8/e. Observe--using Lemma 3.10m that this is the case for G,
Gy, and Q. Also note that Gyy/Gyya Q/Qa when Q 0. Thus (d) holds if

(3.49) Gay det

Recall from (3.13) that

Gyy
G \

G Gy-M+ yM’
(3.50) eSM- 1 -2 2/eo> 0

M+2yM’

at the winged cusp point. Now note that Gyy =0 when Q =0 and that GyyB
e28Q/A3= O. So we need only evaluate

(3.51) det (Gn"G Gy (a,,)2)GeYe2 B6 (2M’
OyGyy/Gyyy $3- \

+ > 0

since M’< 0 by (B) and Oy < 0 by (3.19).
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To complete the proof of the Theorem we must verify (c). Now note that (c) holds if

(3.52) det
Gn Gs,

Or O, Gry

This is a sufficient though not necessary condition. Recall that Gyy BeZtQ/A3 and that
Q 0 iff Gyy 0. Hence GyyB 0 when Gyy 0. Now using the same observation as in
the proof of (d) that O and Ge" are functions of e6 we see that the rank of

Thus we need only compute

(3.53) det

is 1.

Gy 0 Gyys).
Note that Gne" 1/A2 7 0 SO this computation reduced to showing

(354) D=det ( Gyaye, ayye’]
7 O.

Now

(355) D
BE2t ( Gy e)=’"A3 det

Gye 8

where 2(’)z-". Observe that Q e&-" so that o% # 0 when Q 0. The
problem is reduced to computing

(3.56) 6Gy, eGye" e + Be26Sg’/A2 --1.

This last equality is obtained from Gy 0.

Appendix A. We now sketch a proof of:
PROPOSITION A. 1. Condition (H) is satisfied for the Arrhenius terms for all y > 2.
To prove this proposition we need to show that (3.39) has no solutions on [yo, yz ].

From the derivation of (3.39) this is equivalent to showing that (3.37) has no solutions
on [yo, yz] when r < 0. This is our approach.

Note that if e g then

(A.2) -_ (g,)2 + g,, and (g,)3 + 3g’g"+ g"’.

For the Arrhenius terms g(y) =-yy/(1 + y). Thus

(A.3) - -Y)2, 3’ [2y + y+2],,, (1 + y (l+y)4

4"__’ -y)6 [6y2 + (12 + 6y)y +6 +6y + y2]"
(l+y
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Recall that z 3"+ 2y--’", so

(A.4)
"r 63"

)6 [y3 + (1 +.3")y2 +(_)3,’-1 y- +1
4 (l+y

Since u M’+ y’"> 0 on [yo, yz] we may compute (3.37) in the form

(A.5) +-" y +-’- + -2

Compute

(A.6) 3’ (y2 + 3"Y 1)
(1 +y)4

Then (A.5) is given by

(A.7)

2

(l+y)l2 +1 -t3" +23"+2)y __(_3"3_[_ +-3"-l)y

2

+-6---4 y _[_ (_,]/ 3 3" +-3"+l)y -t3’-23"+2)y+ -1

Letting y (K/3") we now show:
LEMMA A.8. Expression (A.7) < 0 for all K > 1.2.
LEMMA A.9. " > 0 for all K <- 1.2 when 3" >= 2.
These two lemmas together prove Proposition A. 1. Substituting for y in (A.7) and

grouping terms by powers of 3" yields"

C3 C4 C5 C6 C7 C8(A. 10) c13" + c2 + +--+ +-+--3 +---g,

where

(A.11)

c1= \ 9 3 12

C2 -(K 1)2,

(K4K35K2- K)c=- +6 2
+2

C4 -(K4- K2),

c5 =--({ g5 +-g4-4K3),

c6 -(2K5- K4),

C8 -K6.
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We make the following observations:

Cl < 0 for K > 1.2,

c2<0 for allK,

c3<0 forK>l.2,

c4<0 forK>l,
(A. 12)

c5<0 forK>l.2,

c6<0 forK>l/2,

c7<0 forK>0,

cs<0 for allK.

This proves Lemma A.8.
Next we compute -(K/y)--grouped in powers of K--obtaining

K3 (13 3)K2 (:_ 1 )(A.13)
3’ --+ 1 K+ +1

Note that for any positive 3" (A. 13) has at most one positive root by Descartes’ rule of
signs. Since r(0) > 0 and r < 0 for large K, (A. 13) has exactly one positive root. So if we
evaluate (A.13) at K 1.2 and obtain a positive number then Lemma A.9 is proved.
This evaluation yields,

(A.14) -(.1 +2.23"3 96 -1.443"-1.728).

Again by Descartes’ rule of signs (A. 14) has one positive root. Since (A. 14)evaluated at
y 0 is <0 and at 3" 2 is 10.752, Lemma A.9 is proved and Proposition A.1 follows.

REFERENCES

[1] R. ARIS, Num in olla agitata papilio est? or, Catastrophes and chemical reactors, Catastrophes and Other
Important Matters, University of Minnesota, Minneapolis, MN, 1977.

[2] E. CARTAN, Leons sur la Thorie des Espaces & Connexions Projective, Cahiers Scientifiques Fascicule
XVII, Gauthier-Villars, ed., Paris, 1937.

[3] M. CRANDALL AND P. RABINOWITZ, Bifurcation from simple eigenvalues, J. Functional Analysis 8
(1971), pp. 321-340.

[4] M. GOLUBITSKY AND D. SCHAEFFER, A theory for imperfect bifurcation via singularity theory, Comm.
Pure Appl. Math., 32 (1979), pp. 21-98.

[5] W. H. RAY, Bifurcation phenomena in chemical reacting systems, Applications of Bifurcation Theory,
P. Rabinowitz, ed., Academic Press, New York, 1977, pp. 285-316.

[6] A. UPPAL, W. H. RAY AND A. B. POORE, On’ the dynamic behavior of continuous stirred tank reactors,
Chem. Eng. Sci., 29 (1974), pp. 967-985.

[7], The classification of the dynamic behavior ofcontinuous stirred tank reactorsminfluence of reactor
residence time, Chem. Eng. Sci., 31 (1976), pp. 205-214.


