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LACK OF HYPERBOLICITY IN THE TWO-FLUID MODEL FOR
TWO-PHASE INCOMPRESSIBLE FLOW

Abstract. The two-fluid equations for two-phase flow, a model derived by
averaging, analogy and experimental observation, have the property (in at
least some commonly-occurring derivations) of losing hyperbolicity in their
principal parts, those representing the chief entries in modeling conservation
of mass and transfer of momentum and energy.

Much attention has centered on reformulating details of the model to avoid
this awkwardness. This paper takes a different approach: a study of the
nonhyperbolic operator itself. The objective is to understand the nature of
ill-posedness in nonlinear, as distinct from linearized, models.

We present our initial study of the nonlinear operator that occurs in the
two-fluid equations for incompressible two-phase flow. Our research indicates
that one can solve Riemann problems for these nonlinear, nonhyperbolic equa-
tions. The solutions involve singular shocks, very low regularity solutions of
conservation laws (solutions with singular shocks, however, are not restricted
to nonhyperbolic equations). We present evidence, based on asymptotic treat-
ment and numerical solution of regularized equations, that these singular so-
lutions occur in the two-fluid model for incompressible two-phase flow. The
Riemann solutions found using singular shocks have a reasonable physical in-
terpretation.
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1. Introduction: Nonhyperbolic Conservation Laws. Systems of conserva-
tion laws which are not of classical, strictly hyperbolic type have been studied
recently by mathematicians and other scientists. The original motivation was the
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appearance of such systems in models for the dynamics of complicated flow sys-
tems. Two examples are a model for three-phase convection-driven flow in porous
media, described by Bell, Trangenstein and Shubin in [3]; and a model for two-phase
elastodynamics, given by James in [12].

In the remainder of this section, we describe these models and give contexts in
which nonlinear nonhyperbolic equations can be constructively discussed. Begin-
ning with Section 2, we focus on a specific model system, arising from the two-fluid
model for two-phase incompressible flow. We find an equivalent reduced system. In
Section 3, we show that the system does not have classical Riemann solutions, and
give an asymptotic argument that singular shocks appear; then singular shocks are
used to solve the Riemann problem. Interpretation of the Riemann solution is given
in Section 4, a discussion of balance terms in Section 5, and results on numerical
approximation of singular shocks in Section 6.

We begin by noting that the use of conservation laws to model steady flows is
classical, constituting a central topic in the celebrated monograph of Courant and
Friedrichs, [6], published over fifty years ago; these equations are hyperbolic in type
for supersonic flows. It is well known that conservation law models for steady flows
which contain both supersonic and subsonic regimes (transonic flows) change type
according to the flow speed, displaying both hyperbolic and nonhyperbolic regions
in phase space. A mathematical theory for equations arising from this phenomenon
was developed even earlier, [36]; however, as far as we know, serious engineering use
was not made of these models until transonic flight became a reality in the 1970’s.
The first practical algorithm to simulate steady transonic flows by finite difference
approximation was designed by Murman and Cole, [26]. Mathematically, there are
fundamental differences between steady and unsteady change of type; not in the
equations themselves, which are identical in form, but in the boundary conditions
and entropy conditions for shocks, which are necessary for the formulation of well-
posed problems. These have their genesis in the different notions of causality in the
two types of systems: by embedding a steady transonic flow in a larger unsteady
system one immediately recovers hyperbolicity. Some of this is discussed in [14]. In
the remainder of this article we discuss only the more mysterious and controversial
problem of unsteady change of type.

The three-phase porous medium flow example appeared when the authors of [3]
stripped a set of equations commonly used in reservoir simulation down to their
essentials. In a single space dimension, assuming a homogeneous medium, using
Darcy’s law to eliminate the pressure, ignoring gravity and dispersive effects, and
choosing some well-known interpolations for the three-phase relative permeabilities
(‘Stone’s model’) results in a system of two conservation laws for two of the relative
saturations. For most values of the empirically determined parameters in Stone’s
model, one finds a small region in the saturation triangle in which the character-
istic speeds are complex. The authors found that this change of type caused no
difficulties in computer simulations of the flow; this was probably because the finite-
difference scheme used was first-order and moderately dissipative. The results did
not seem to be highly dependent on the amount of dissipation; the finite-difference
solutions appeared to be reliable approximations to straightforward shock and rar-
efaction structures, such as one would expect in a system of conservation laws. The
authors of [3] rejected the non-hyperbolic model on the grounds that the predicted
and computed solutions avoided states in the non-hyperbolic region — an avoidance
which did not appear to have any physical basis.
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A second kind of situation leading to change of type is exemplified by James’s
model in two-phase elasticity. The one-dimensional conservation law system arising
from a stress-strain law p(u) is

ut − vx = 0

vt − p(u)x = 0.
(1)

Here u is the displacement gradient (strain) and v the velocity of a point on a rod
with reference coordinate x. An accepted model for two-phase elastostatics pos-
tulates a stress function p = W ′ where W is a double-well potential. James used
the dynamic model given by (1) with the stress function p of the two-phase static
model. The characteristics of the system (1) are ±

√
p′, and they are purely imagi-

nary for the range of u in which p′ = W ′′ is negative. Now, in this example there is
some reason to suppose that states u for which W is convex down will be unstable;
one certainly does not expect them to appear in steady-state configurations, and it
would not be surprising for them to be absent from dynamic flows as well. To some
extent, it was the expectation of seeing interesting consequences of this instability
that prompted James to examine the model (1) in [12]. And, indeed, he found the
usual shock and rarefaction structures of conservation laws, including propagating
phase boundaries: shocks that divided material in one phase from a state in the
other.

These are but two of many examples. At around the same time as James,
Slemrod looked at a similar system as a model for the dynamics of a van der
Waals gas near the critical temperature, [35]. Within the last ten years, a model
that changes type has been used to describe some instabilities associated with
chemotaxis, by Levine and Sleeman, [24], and also by other authors cited by them.
Carpio, Chapman and Velázquez, [4], have introduced a change-of-type model for
dislocation interactions in crystals, mainly as a mechanism to produce instability.

Previous work of Keyfitz, [13, 16], has looked at change of type models which
appear in three-phase porous medium flow, and at a simple two-phase compressible
flow model. Keyfitz and co-authors have also studied mathematical properties of
systems that change type, [2, 14, 15, 22]; see the review articles, [17, 18, 19].

Can there be a theory of equations that change type? The Hadamard instability
suggests that the initial-value problem for a linear elliptic problem is meaningless.
Nonlinear problems may nonetheless have features which mitigate this conclusion.

1. Perturbations which are localized near a shock may be absorbed in the shock
before they have grown very large. This formed the basis of results on shock
stability in some systems which change type, by Ames and Keyfitz, [2], and
by Keyfitz and Lopes, [22].

2. In a nonlinear equation, the instability saturates: once the solution takes
values in the hyperbolic region, then it stops growing. This was observed by
Sever, [34], as described below.

3. Finally, shock formation may cause decay even in the absence of an explicit
dissipative mechanism. This feature arises even in a scalar convex conserva-
tion law, as is evidenced by L∞ decay of periodic solutions, by contrast to L∞
invariance in a linear transport equation. A suitable admissibility condition,
which may be based on a vanishing viscosity limit, is required; however, decay
is present even when viscosity is not, [23, Theorem 6.3].

We illustrate the second point by a simple example of nonlinear stabilization.
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Consider a system of conservation laws of the form

wt + q(w)x = 0, x ∈ R, t > 0, w(x, t) ∈ D = H ∪N ⊂ Rn

equipped with an entropy density U which is strictly convex for w in the hyperbolic
region H, and which satisfies

U |∂H = Uw|∂H = 0,

on ∂H, the boundary of H. For simplicity, we assume here that the nonhyperbolic
region N is bounded, noting that this can be relaxed with additional assumptions
on U . Denote by wε, ε > 0, the solution of

wε,t + q(wε)x = εwε,xx x ∈ R, t > 0, (2)

with wε(., 0) given, of bounded variation and independent of ε.

Proposition 1.1. Assume that the wε satisfy (2) and

wε(x, t)→ w± = w(±∞, 0) ∈ H, wε,x(x, t)→ 0 as x→ ±∞,
and that there exist constants c and L independent of ε such that

∫

|x|>L(1+t)

|U(wε(x, t)− U(w(x, 0))| dx ≤ c;

then for any t > 0, |wε| and U(wε) are bounded in L1,loc uniformly with respect
to ε.

A proof is given in [34]; it is an easy application of the entropy inequality for
such systems. For systems with these properties, bounded and weakly convergent
sequences of approximate solutions (in the space of measures on R, pointwise in t)
may realistically be sought, despite the failure of hyperbolicity.

The Cauchy problem for nonhyperbolic systems is obviously not well-posed in
the same sense as for hyperbolic systems. We propose to avoid this difficulty by
restricting the initial data to a class for which the Cauchy problem is well-posed. For
example, we consider Riemann problems for a nonhyperbolic pair of conservation
laws below, hoping ultimately to extend the possible form of the initial data and
thus obtain a model with predictive value.

In this context, computational methods based on Riemann solvers, such as
Glimm’s and Godunov’s schemes and front-tracking algorithms, are regularly used
for theoretical analysis and do not explicitly require hyperbolicity. To be precise,
such methods require solution of Riemann problems with suitable estimates. At
states where a system is not hyperbolic, the Hugoniot locus cannot be of classical
form locally, and small data Riemann problems are not classically solvable. How-
ever, it may be possible to extend the solution class, as we do in this paper for
a model problem. In this context, locally bounded measures such as delta-shocks
and singular shocks may be introduced; these may be compatible with some front-
tracking algorithms, even if not with random choice or averaging schemes such as
Glimm’s or Godunov’s.

The following system, discussed by Sever, [34], serves as an example. It also
introduces singular shock solutions, which will be discussed in detail later in this
paper. The system

ut +
(

u2

2
− e
)

x

= 0
(

u2

2
+ e

)

t

+
(

u3

3

)

x

= 0,
(3)
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although it does not have complex characteristics, is not hyperbolic, as it has a
single characteristic speed λ = u of multiplicity two with a single, nondegenerate
characteristic family.

The system (3) does not admit classical shocks; however, Riemann problems
can be uniquely solved by introducing singular shocks, [31, 34]. Thanks to the
exceptionally rich symmetry group possessed by the system, a convergent sequence
of front-tracking approximations is obtained, provided the initial data satisfies

u(·, 0) ∈ BV (R)

and e(·, 0) is piecewise constant, with
∑

i

|e(xi + 0, 0)− e(xi − 0, 0)|1/2 <∞,

where {xi} are the points of discontinuity of e(·, 0). Given such data, for all t > 0
we find u(·, t) ∈ BV (R) and e(·, t) a locally bounded measure on R. At each t,
the isolated singularities appearing in the solution u(., t), e(., t), are weak limits, in
the space of measures on R, of approximations with viscous structure. The limits
satisfy equation (3) weakly in the dual of the space of functions θ ∈ C1(R×R+ → R)
such that θx = 0 in a neighborhood containing the singular support of e [34].

2. Model Equations for Incompressible Flow. In the remainder of this paper,
we focus on a model for incompressible flow. The details of the solution illustrate
three points raised in the introduction: by focusing on Riemann problems, we
localize the perturbation of a nonhyperbolic state; the oscillations we find are finite
in amplitude; and the oscillations have a fixed frequency.

Consider the simplest model for two-phase, one-dimensional incompressible flow,
exhibited under this name in Drew and Passman’s book, [10, page 248]. The
authors distinguish between continuous and dispersed phases, but this distinction
is unimportant here. We shall examine two applications of this model in Sections
4 and 5 of this paper. The first is stratified flow in which two continuous phases
are separated by an interface. The second is dilute bubbly flow in which a vapor
is dispersed in a liquid. We call the phases 1 and 2, and their densities (assumed
constant here) ρ1 and ρ2. Let αi be the volume fraction of the i-th phase, ui the
velocity and pi the pressure of the phase. Then conservation of mass and balance
of momentum yield the four equations:

∂t(αi) + ∂x(αiui) = 0 (4)

∂t(αiρiui) + ∂x(αiρiu2
i ) + αi∂xpi = Fi, (5)

where F1 and F2 are balance terms involving the interfacial force density, gravity
and other forces. In many common models, this term does not contain derivatives
of the variables, and hence does not influence the type of the equation. Initially, we
shall proceed as though the Fi were both zero. They represent important physical
effects, but our first goal is to make mathematical sense of the nonlinear operator
in (4), (5).

The six unknowns are reduced to four by the relations

α1 + α2 = 1 (6)

and
p1 = p2 ≡ p. (7)

The first says merely that the two fluids fill the physical space (a channel, say);
from equation (4), each is separately conserved. The second gives rise to a “single
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pressure model”, and is often altered to alter the type of the equation. However, in
at least one simple case, one-dimensional averages of stratified flows, where α1 and
α2 represent the fraction of a channel filled by each fluid, then the pressures in each
phase are equal, except for the effects of surface tension. In the present context,
surface tension is considered a higher-order effect which acts only to regularize the
flow, and is ignored.

Questions arise from the outset about the momentum equations, (5), which
are not in conservation form. This is a consequence of approximations which are
made during the averaging process in order to obtain a closed system, and which
tacitly assume smooth solutions. Dal Maso, LeFloch and Murat, [8], showed that a
consistent mathematical theory can be developed to cover equations like (5) which
are not in conservation form, but it does not provide a basis for choosing one form
of the equations over another. In fact, the momentum equations, (5), are often
replaced by a pair, easily put in conservation form, which is equivalent only for
smooth solutions, [10, p 248]:

αiρi (∂tui + ui∂xui) + αi∂xpi = Fi. (8)

A closed system of conservation laws, equivalent to (4), (8), and equivalent to (4),
(5) for smooth solutions, can be obtained using (6) and (7). For this procedure, the
forces Fi are unimportant and are neglected in the interest of notational simplicity.

The two equations in (4) both govern the time evolution of a single volume frac-
tion, while there is no term at all for the time evolution of the pressure. Drew and
Passman describe the quasilinear system (4), (5) as having two infinite-speed char-
acteristics. Technically, this is so. (The incompressible Euler equations, governing
the evolution of a single ideal fluid, have the same feature of an infinite speed.) An
interpretation of this feature is that two of the four variables adjust instantaneously
to changes in the other two, and therefore one can reduce (4), (5) to a system of
two equations for two variables, and solve by integration for the other two. The
following procedure, devised by Dafermos [7], gives a tidy reduction.

Adding the two equations in (4) and using (6) gives ∂x(α1u1 + α2u2) = 0, and
so

α1u1 + α2u2 = f(t). (9)

If we assume that the flow conditions are constant at one point, an inflow boundary
for example, then we can replace (9) by

α1u1 + α2u2 = K. (10)

Now, this observation eliminates one variable, and we can eliminate the pressure by
subtracting multiples of the two equations in (8); the pressure can later be found
by integrating one of those equations. Hence, we can write (4), (5) as a system of
two equations in two conserved quantities, from which we can recover the others.
Define two affine functions of α1, α2, u1 and u2:

β = ρ2α1 + ρ1α2 (11)

v = ρ1u1 − ρ2u2 − (ρ1 − ρ2)K. (12)

Then, from (6) and (11) we obtain

α1 =
ρ1 − β
ρ1 − ρ2

, α2 =
β − ρ2

ρ1 − ρ2
, (13)
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and from (10) and (12), using (13), we obtain

u1 =
(

β − ρ2

ρ1 − ρ2

)

v

β
+K, u2 =

(

β − ρ1

ρ1 − ρ2

)

v

β
+K. (14)

We simplify the expressions by assuming ρ1 − ρ2 = 1; this can be achieved by
rescaling the space or time variable. Thus, α1, α2, u1 and u2 are expressed in
terms of β and v.

Using (6), (7), (10), (11) and (12) in (4) and (8), with Fi = 0, one obtains a
system in conservation form for β and v:

βt + (vB1(β) +Kβ)x = 0 (15)

vt +
(

v2B2(β) +Kv
)

x
= 0, (16)

where

B1(β) =
(β − ρ1)(β − ρ2)

β
, B2(β) =

β2 − ρ1ρ2

2β2
. (17)

We write the system as
Ut + Fx = 0

with state variable U = (β, v)t and flux function F = (vB1(β), v2B2(β))t + KU .
The physical range for β is ρ2 ≤ β ≤ ρ1. The system (15), (16) contains the same
information as (4), (5) or (4), (8), always ignoring the balance terms, as the αi
and ui can be recovered from equations (13) and (14), and the pressure found by
integrating (5).

The system for the conserved quantities U = (β, v)t can conveniently be written
in symmetric or gradient form [25],

Φz,t + Ψz,x = 0, (18)

with
z = (v, β)t, Φ(z) = βv, and Ψ(z) = 1

2v
2B1(β) +Kβv.

The mapping z 7→ U = Φz is obviously globally invertible, although Φ cannot be
strictly convex in z as the system (18), which is equivalent to (15), (16), turns out
not to be hyperbolic, [11, 25].

3. Mathematical Analysis of the System. To simplify the analysis of the Rie-
mann problem, we take K = 0 (this can be effected by a Galilean change of vari-
ables) and consider the system

βt + (vB1(β))x = 0, (19)

vt + (v2B2(β))x = 0, (20)

on the strip ρ2 ≤ β ≤ ρ1. The Jacobian matrix is

A =
∂F

∂(β, v)
=
[

vB′1 B1

v2B′2 2vB2

]

.

A calculation gives
B′1 = 2B2 and B′2 =

ρ1ρ2

β3
.

The eigenvalues of A are

λ = 2vB2(β)± v
√

B1B′2 (21)

and since B1 ≤ 0 and B′2 > 0 on the physical range of β, the system is never
strictly hyperbolic. In fact, the eigenvalues have nonzero imaginary part except
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Figure 1. B1, B2, Physical Space and the Flux Vector

when β = ρi or v = 0. This corresponds to the calculation in [10] of the finite
characteristic speeds.

There is a subset of phase space, shaped like the letter ‘H’, in which there is a
single, real characteristic speed. We will call this set H. Since B2 is positive when
β = ρ1 and negative when β = ρ2 (see Figure 1), the characteristic speed increases
in the positive v-direction on the right leg of the ‘H’ and decreases on the left leg.
Each leg of the ‘H’ is an invariant set for the system (19), (20); that is, if initial
data (β0(x), v0(x)) is given in the set, then the solution remains in the set for all
t > 0. This is a simple consequence of the structure of the system: if, initially,
β = ρi, then B1(β) = 0, so βt = 0 and β remains constant. On these invariant sets,
the system reduces to the scalar equation

vt +B2(ρi)(v2)x = 0

with quadratic flux function, convex up at ρ1 and convex down at ρ2. The β-
axis is also an invariant set, on which the system reduces to a linear equation
βt = 0, with zero characteristic speed. On the vertical lines in H, solutions in the
form of shock and rarefaction waves can be found, while the horizontal line admits
contact discontinuities. One can pose Riemann problems with data in H, and if the
local wavespeeds are ordered so that they increase from left to right, then a stable
solution, completely contained in H, exists. For example, if UL = (ρ2, vL) with
vL > 0 and UR = (ρ1, vR) with vR > 0 are the left and right states, respectively,
then the solution consists of a rarefaction from UL to the state (ρ2, 0), followed by
contact discontinuity to the state (ρ1, 0) and a rarefaction to UR. The right front
of the left rarefaction and the left front of the right rarefaction both travel with
speed zero, the speed of the contact, so the solution appears to be a single wave.
These are the only cases in which classical Riemann solutions exist.

We now examine other Riemann data in the physical region. Since the region
is bounded by invariant lines, we conjecture that it is also invariant; that is, if the
initial data are in the region, the solution stays there for all t > 0. (A variant
of the theory of Chueh, Conley and Smoller, [5], could perhaps be applied to find
invariant regions.)

3.1. The Hugoniot Locus and the Hyperbolic Region. The part of phase
space with β < ρ2 or β > ρ1 does not correspond to physically realizable states.
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Nevertheless, it is useful to know something about the system there. Restricting
attention to β > 0, since the flux functions are discontinuous at zero, we see that
the system is strictly hyperbolic in this part of space. Since it is possible that shocks
might join states in this region to states in the nonhyperbolic physical region, we
calculate the Hugoniot locus. The Rankine-Hugoniot equations are

s[β] = [vB1], s[v] = [v2B2], (22)

where [·] represents the jump in a quantity across a shock of speed s. From these,
we obtain the equation for the Hugoniot locus, by eliminating s:

[v][vB1]− [β][v2B2] = 0. (23)

Solving, we find that given a state U0 = (β0, v0), the set of states (β, v) that can
be joined to U0 by a shock is

v = v0

(

B1(β) +B1(β0)±
√

Disc

2(B1(β)− [β]B2(β))

)

, s =
[vB1]
[β]

(24)

where

Disc =
[β]2ρ1ρ2

β2β2
0

(β + β0 − 2ρ1)(β + β0 − 2ρ2).

Notice that when both U and U0 are in the physical region, or if one is on its
boundary, H, then the average of β and β0 lies strictly between ρ1 and ρ2, so Disc
is negative and there are no real solutions to (23).

The hyperbolic region consists only of physically unrealizable states. However,
when performing numerical simulations on the model equations, it is of course
important to ask whether states outside the physical region may be connected to
those inside by stable shocks, which might appear in computations. Thus we look
briefly at the Hugoniot locus for hyperbolic points. When U0 is in the hyperbolic
region, the locus consists of four semi-infinite branches; two of the branches enter
the physical region and are asymptotic to the line β = β∗(β0), where β∗ is the value
which makes the denominator zero in (24). It can be checked that as β0 decreases
to ρ1, the asymptote β∗ increases to ρ1. Thus, the behavior of this system near the
change of type locus is different from that of other systems which have been studied,
in which the Hugoniot locus forms a “shock polar” which crosses the locus of change
of type, [15]. This is presumably related to the fact that the right eigenvectors of
the Jacobian matrix A are almost tangent to the change of type locus when U
is near the locus; at the locus itself, the unique eigenvector is tangent to H, the
change of type locus. This differs from the normal form in [15].

3.2. Singular Shocks in the Model System. Owing to the lack of shock so-
lutions, we are motivated to seek singular shock solutions, as studied in [20], [21],
[30], [33] and [34]. One way to look for such functions is to consider the self-similar
viscosity approximation,

Uε,t + F (Uε)x = εtUε,xx, (25)
which for fixed ε admits solutions depending only on ξ = x/t. If we seek self-similar
solutions which are concentrated near a particular speed, ξ = s, then introducing
τ = (ξ − s)/ε we get the reduced form of (25):

−(s+ ετ)U̇ε +A(Uε)U̇ε = Üε (26)

with ˙ = d/dτ . The following development uses formal asymptotics; a proof of
existence of approximate solutions to (26) and their convergence properties can be
found in [29].
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We look for solutions of the form U(x/t) = U(ξ) with growth in the second
component:

Uε =
(

βε
vε

)

=
(

β̃
(

ξ−s
εq

)

1
εr ṽ
(

ξ−s
εq

)

)

. (27)

Substituting into the equation, we find that nontrivial solutions can be found only
if q = 1 + r, and they satisfy

β̃′′ = (ṽB1(β̃))′ − ε(εr+1η + s)β̃′

ṽ′′ = (ṽ2B2(β̃))′ − ε(εr+1η + s)ṽ′;

here the variable is η = (ξ − s)/εq; we can set r = 1, q = 2 to simplify the devel-
opment, though this is not the only choice possible. Setting ε = 0 and integrating
once, we obtain a dynamical system with nonhyperbolic (in the dynamical systems
sense) equilibria:

β̃′ = ṽB1(β̃) (28)

ṽ′ = ṽ2B2(β̃). (29)

This has the dynamics of the flux vector field sketched in Figure 1. We want
orbits asymptotic to zeros of F (this is how we integrated once and eliminated the
constant), and so the solutions of interest correspond to heteroclinic orbits. There
are two kinds: orbits from (ρ1, 0) to (ρ2, 0) in the upper half-plane, and orbits from
(ρ2, 0) to (ρ1, 0) in the lower half-plane.

We construct the singular shock by expanding in powers of ε. The singular part
of the shock can be developed as the inner part of a matched asymptotic expansion
with an outer part in the form of a (possibly) regular shock, U(τ) = U((ξ − s)/ε),
with end states U± outside the shock layer. Here τ = εrη = (ξ − s)/ε. Now
we derive a Rankine-Hugoniot type condition on the end states. In the standard
procedure, one writes

d

dτ

(

dUε
dτ
− F (Uε) + sUε

)

= −ετ dUε
dτ

(30)

and then integrates between τ = −A and τ = B, where A and B are positive
numbers of order 1/ε – that is, outside the shock layer. Thus,

dUε
dτ
− F (Uε) + sUε

]B

−A
= −ε

∫ B

−A
τ
dUε
dτ

dτ

= ε

∫ B

−A

(

Uε(τ)− UH(A,B)
)

dτ, (31)

where

UH(A,B) =
{

Uε(−A), τ < 0
Uε(B), τ > 0

and we have integrated by parts. By hypothesis, dUε/dτ → 0 as A, B →∞, so we
obtain

s[Uε]− [F (Uε)] = ε

∫ ∞

−∞

(

Uε(τ)− UH(∞,∞)
)

dτ. (32)

In a standard shock profile, Uε(τ) is a bounded trajectory which approaches the
critical points UL and UR exponentially fast, so the improper integral is bounded
and we recover the Rankine-Hugoniot conditions. In fact, even without hyperbol-
icity the condition

Re(λ(U−)) > s > Re(λ(U+)) (33)
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guarantees exponential convergence, and we now find a generalized Rankine-Hugo-
niot condition for this case. (If s = Re(λ) at one or both of the states connected
this way, the improper integral in (32) may not exist, and this approach would have
to be modified. This remains an open problem.) We analyse the right side of (32)
for the system (19), (20). Note first that with Uε given by (27), βε is bounded, as
can be seen from (28), noting that (30) controls the growth of βε near τ = 0 and
recalling the exponential decay at infinity. Hence, the first component of the right
side of (32) is of order ε, so the first Rankine-Hugoniot condition holds, and the
generalized Rankine-Hugoniot condition is of the form

s(β+ − β−) = v+B1(β+)− v−B1(β−) (34)

s(v+ − v−) = (v+)2B2(β+)− (v−)2B2(β−) + C (35)

where C may have any finite value (corresponding to different trajectories in the
heteroclinic connection) but is positive for trajectories in the upper-half-plane, neg-
ative in the lower.

It will be observed that for a given (β−, v−), the set of (β+, v+) satisfying (34),
(35), forms an open region of phase space. This is typical for a pair of conservation
laws. More generally, for a system of dimension n, the limiting values and speed
of singular shocks satisfy m of the Rankine-Hugoniot relations. Thus the set of
w+ which can be connected to a given state w− by a singular shock is a manifold
of dimension n + 1 − m. For a singular shock (as distinct from a delta-shock)
1 ≤ m ≤ n− 1. So for a pair, n = 2, we necessarily have m = 1 and n+ 1−m = 2.

We can use equations (28) and (29) to describe the blow-up in vε as ε approaches
zero. For definiteness, take C > 0 in (35); then the functions vε have a very sharp,
positive peak in τ at τ = 0. In a neighborhood of τ = 0, βε decreases rapidly from
ρ1 − 0 to ρ2 + 0, (this follows from (28)), motivating the approximation

βε(τ) ≈
{

ρ1, τ < 0
ρ2, τ > 0 . (36)

The approximation (36) is remarkably well justified in computations. From the
formula (17) for B2(β) and (36),

B2(βε(τ)) ≈
{

1/2ρ1, τ < 0
−1/2ρ2, τ > 0 . (37)

Let A and B be such that vε(−A), vε(B) are bounded uniformly in ε, and such
that (29) approximates the behavior of vε in the interval (−A,B). Then using (29),
(35) and (37), we find that the second component of the right side of (32), the
Rankine-Hugoniot deficit, is

C = ε

∫ B

−A
vε dτ +O(ε) = ε

(

∫ 0

−A
vε dτ +

∫ B

0

vε dτ

)

+O(ε)

= ε

(

∫ vε(0)

vε(−A)

vε
vε,τ

dvε +
∫ vε(0)

vε(B)

vε
|vε,τ |

dvε

)

+O(ε)

= ε

(

2ρ1

∫ vε(0)

vε(−A)

dvε
vε

+ 2ρ2

∫ vε(0)

vε(B)

dvε
vε

)

+O(ε)

= 2ε (ρ1 + ρ2) log vε(0) +O(ε).
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Thus the peak value of vε is approximately

vε(0) ≈ exp
(

C

2ε(ρ1 + ρ2)

)

, (38)

again remarkably well verified in computations; see Figure 5 in Section 6. We
comment in passing that a more lengthy analysis, avoiding the approximation (36),
leads to the same asymptotic estimate (38).

Sever showed in [34] that a suitable admissibility condition for singular shocks
in similar systems is given by (33). As we shall see, we also need to allow singular
shocks in which one of the inequalities is weak, in order to solve Riemann problems.

We define a singular shock to be the limit of the O(ε) layer, and identify it by
the outer limits, U+ and U−, and the shock speed, s, satisfying (34) and (35);
singular shocks exist only if v+ and v− have the same sign, and C also has that
sign. The asymptotic structure we have developed above establishes the following
Proposition.

Proposition 3.1. If a singular shock connects U− and U+, then both states are
in the same vertical half-plane. The end states satisfy the generalized Rankine-
Hugoniot conditions, (34) and (35), where C may have any finite value and is
positive for end states in the upper-half-plane, negative in the lower. Singular shocks
satisfy an admissibility condition,

Re(λ(U−)) ≥ s ≥ Re(λ(U+)). (39)

Strict inequalities in (39) yield strictly overcompressive singular shocks, which
are locally isolated transitions. On the other hand, when equality holds in one of
the conditions in (39), then a singular shock may form part of a complex wave
pattern, as it may lie at the head or tail of a rarefaction. A calculation gives

Corollary 3.1. For a strictly overcompressive singular shock with left state U−,
the right state U+ lies in the interior of a cusped triangular region Q(U−) bounded
by the curves

v+ = v−
(

2B2(β−)(β+ − β−) +B1(β−)
B1(β+)

)

(40)

and

v+ = v−
(

B1(β−)
B1(β+)− 2B2(β+)(β+ − β−)

)

. (41)

On the boundary segment (40), s = Re(λ−), and on (41), s = Re(λ+).

The curve (41) meets H at a point U0 defined by

U0(U−) =
(

ρ2,−
v−B1(β−)

2B2(ρ2)(ρ2 − β−)

)

or
(

ρ1,−
v−B1(β−)

2B2(ρ1)(ρ1 − β−)

)

according as v is positive or negative. The significance of this point is that the
singular shock from U− to U0 may form part of a composite wave, with a rarefaction
on the right. We can give an analogous description of overcompressive shocks from
the viewpoint of a fixed state U+ on the right; in this case, there is a unique point
U1(U+) to which U+ can be joined by a singular shock preceded by a rarefaction.
The curves (40) and (41) and the region Q where overcompressive shock solutions
exist are illustrated in Figure 2.

Some shocks which are not strictly overcompressive can form part of a wave
pattern. For example, if the singular shock connects states U and U0 with U0 ∈ H
the point defined above, then the wave may continue with a rarefaction. Take U
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Figure 2. The Singular Shock Region for ρ1 = 2, ρ2 = 1

to be a given state in the interior of the physical region. Then the first Rankine-
Hugoniot equation, (34), gives (since B1(β0) = 0),

s =
vB1(β)
β − β0

, (42)

with β0 = ρi. In particular, s does not depend on the value of v0. Now, we
have either Re(λ(U)) > s = λ(U0), for the state U0 illustrated in Figure 2, or
λ(U1) = s > Re(λ(U)), for the corresponding state U1, with U now the state on
the right. We can compare s = vB1(β)/(β − ρi) with Re(λ(U)) = 2vB2(β); to fix
ideas suppose that v > 0. Then we find

s > Re(λ(U))⇔ β < ρi;

that is, U is the state on the right if and only if β0 = ρ1 > ρ2. When U is the state
on the left of the singular shock, then U0 must lie on the left leg of H (β0 = ρ2).
When v < 0, the situation is reversed: a state U in the interior of the physical
region will jump to a state on the right side of the region, with β0 = ρ1, via a
singular shock with U on the left; in the other case, U will be the right state of a
singular shock connecting it to U1 with β = ρ2. From (42), a singular shock with
U on the left has negative speed, while a singular shock with U on the right travels
with positive speed.

If s = λ(U0) (or s = λ(U1)), then the composite wave consists of a singular shock
followed (or preceded) by a rarefaction between U0 (or U1) and a state UM on the
same leg of H. The condition s = λ(U0) fixes v0 to have the value

v0 = v
B1(β)

2(β − ρi)B2(ρi)
= v

(β − ρj)ρi
β(ρi − ρj)

, (43)

as calculated above, where β0 = ρi and j is the other index (j = 3− i). For either
sign of v and either leg of H, we have |vM | < |v0|; that is, vM is closer to the origin
than v0.

3.3. Solution of Riemann Problems. The construction detailed in Section 3.2
provides a self-similar solution to any Riemann problem,

U(x, 0) =
{

UL, x < 0
UR, x > 0 , (44)

by giving a recipe for solving Riemann problems with any states UL and UR. Several
representations of a typical Riemann solution are illustrated in Figure 3.
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Figure 3. Four Views of the Riemann Solution for ρ1 = 2, ρ2 = 1

As is common, the solution of a given nonconstant (UL 6= UR) Riemann problem
is determined by specifying distinct intermediate states

UL = U0, U1, . . . , UM = UR (45)

such that for j = 1, . . . ,M , U j−1 is connected on the left to U j on the right by an
admissible wave, with the wave speeds increasing with j. We adopt the standard
convention that the speed of a discontinuity connecting U j−1 to U j must be strictly
less than that of a discontinuity conecting U j to U j+1. Otherwise, U j is omitted,
and U j−1 is considered connected directly to U j+1. For this system, the set of
admissible waves is limited to the following: entropy shocks, satisfying (22) and
λ(U−) > s > λ(U+), specifically with

U j−1 =
(

ρ2

v−

)

, U j =
(

ρ2

v+

)

, v− < v+,

or

U j−1 =
(

ρ1

v−

)

, U j =
(

ρ1

v+

)

, v− > v+;

rarefaction waves, with

U j−1 =
(

ρ2

v−

)

, U j =
(

ρ2

v+

)

, v− > v+,

or

U j−1 =
(

ρ1

v−

)

, U j =
(

ρ1

v+

)

, v− < v+;
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contact discontinuities, satisfying (22) with

U j−1 =
(

β−

0

)

, U j =
(

β+

0

)

, ρ2 ≤ β−, β+ ≤ ρ1; ,

and singular shocks, satisfying (34), (35), and (39) with

U j ∈ Q(U j−1) (46)

as shown in Figure 2 and described in Proposition 3.1 and Corollary 3.1.
Denoting a Riemann solution with intermediate states U j by {UL, UR}, we adopt

a metric based on the intermediate states. We define

|{UL, UR} − {˜UL, ˜UR}| = max
j

min
k
|U j − ˜Uk|+ max

k
min
j
|U j − ˜Uk| (47)

(For a nonhyperbolic system in which the classical partition of waves into families
does not apply, such a metric is more useful than the standard metric based on
wave strengths.)

In studying the continuous dependence of Riemann solutions on the Riemann
data, we use a notion of continuous connection based on the metric (47).

Definition 3.1. A Riemann solution {UL, UR} is said to be continuously connected
to {˜UL, ˜UR} if for any ε > 0 there exists a sequence

{UL, UR} = {W 0
L,W

0
R}, {W 1

L,W
1
R}, . . . , {WN

L ,W
N
R } = {˜UL, ˜UR} (48)

such that
|{W j

L,W
j
R} − {W

j−1
L ,W j−1

R }| ≤ ε, j = 1, . . . , N. (49)

We note that this concept is different from the notion of structural stability of Rie-
mann solutions introduced by Schecter, Marchesin and Plohr, [32], which requires
that the entire wave structure, not merely the set of states achieved, be similar.

Theorem 3.1. The Riemann problem is solvable in the class of self-similar solu-
tions containing only admissible waves for any UL, UR in the physical region.

Remark. For fixed UL, the number M in (45) depends on UR. As M is integer-
valued and not constant, it cannot depend continuously on UR.

Proof. The largest possible value of M in (45) is 5, which occurs when both UL
and UR are in the interior of the physical region and vL and vR are nonzero and of
the same sign. The case of positive vL and vR is shown in Figure 3. In this case

U1 = U0(UL) ∈ ∂Q(UL) ∩ {β = ρ2},

and U1 is connected to UL by a singular shock of speed s = λ(U1); U2 = (ρ2, 0)t

is connected to U1 by a rarefaction; U3 = (ρ1, 0)t is connected to U2 by a con-
tact discontinuity; U4 = U1(UR), as shown in Figure 3, is connected to U3 by a
rarefaction, and is such that UR is connected to U4 by a singular shock of speed
s = λ(U4).

For the case vL > 0, vR < 0, M = 3 suffices, with the same point U1; now
U2 = (ρ2, v2)t is connected to U1 by a rarefaction, and v2 < 0 is such that UR is
connected to U2 by a singular shock of speed s = λ(U2).

The case of negative vL is entirely similar.
These solutions can be continuously connected to the cases of vL or vR equal to

zero, and to the cases that UL or UR are on the boundary of the physical region,
(typically with reduced values of M).



16 KEYFITZ, SANDERS AND SEVER

There is no possibility of uniqueness of the solution obtained in Theorem 3.1 for
all UL, UR. Recalling H as shown in Figures 1 and 2, for UL = UR 6∈ H, there is
a constant solution and also a solution with M = 5 as obtained in Theorem 3.1.
However the following holds.

Theorem 3.2. The solution obtained in Theorem 3.1 is unique unless

UR ∈ Q(UL), UL, UR 6∈ H. (50)

Remark. The region Q(UL) is closed, so the case UL = UR is included in (50).

Proof. First we consider the case M > 1 in (45). We claim that necessarily U j ∈ H,
j = 1, . . . ,M − 1. Otherwise, the connections U j−1 to U j and U j to U j+1 are both
singular shocks, which is incompatible with the overcompressibility condition (39).
Now if UL 6∈ H, then necessarily U1 = U0(UL) the point illustrated in Figure 2
and Figure 3, and correspondingly if UR 6∈ H, then UM−1 = U1(UR) as shown in
Figure 3.

Thus we consider the uniqueness of solutions with both UL and UR in H. The
uniqueness of weak solutions (with no singular shocks), including trivial solutions,
follows from the entropy condition for ordinary shocks. Thus suppose that the
solution contains a singular shock connecting U j−1 to U j ,

U j ∈ Q(U j−1), U j−1, U j ∈ H. (51)

Observing that H = {vB1(β) = 0}, from (34) it follows that the speed of such a
singular shock is zero, and thus from the ovcercompressibility condition (39) that
λ(U j) ≤ 0 ≤ λ(U j−1). Thus no connections to such a singular shock are possible,
and the only solutions of the form (51) correspond to M = 1 in (45).

Thus there can be no more than one solution with M > 1, and the only way
uniqueness can fail is that there exists a solution with M > 1 and a solution with
M = 1, necessarily a singular shock. This is the case when (50) holds, but we claim
that only the M = 1 solution exists if either UL or UR is in H. It suffices to show
that there is no solution with M > 1 in the case

UL 6∈ H, UR ∈ Q(UL) ∩H. (52)

Suppose otherwise. Then from (52), U1 = U0(UL) must be connected to UR by an
entropy shock. But the speed of the singular shock connecting UL to U1 is λ(U1),
which exceeds the speed of an entropy shock connecting U1 on the left to UR on
the right.

Next we consider the continuous connection of solutions, say as UR is varied with
UL fixed.

Theorem 3.3. All of the solutions constructed in Theorem 3.1 are continuously
connected in the sense of Definition 3.1.

Proof. Fix U = (ρ2, 0)t; from Theorem 3.2, it follows that {U,U} is the trivial solu-
tion. For any UL and UR in the physical region, it will suffice to show that {UL, U}
is continuously connected to {U,U}, and that {U,U} is continuously connected to
{U,UR}. We prove the second statement, the first being entirely similar. The Rie-
mann solution {U,UR} contains at most three waves, each of which corresponds to
a finite segment within H or to a finite segment of the boundary of Q(U1) for some
point U1 as shown in Figure 3. Connecting these segments, we obtain a continuous,
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piecewise smooth trajectory U(Λ), 0 ≤ Λ ≤ 1, with U(0) = U and U(1) = UR.
Given ε > 0, choose N sufficiently large and in (48) set

W j
L = U, W j

R = U(j/N), j = 0, 1, . . . , N.

Then, as the intermediate states in the solution {W j−1
L ,W j−1

R } coincide with those
of {W j

L,W
j
R}, it follows from (47) that

|{W j
L,W

j
R} − {W

j−1
L ,W j−1

R }| ≤ 2
∣

∣

∣

∣

U

(

j

N

)

− U
(

j − 1
N

)∣

∣

∣

∣

,

so (49) holds.

A stronger condition, of the form

|{UL, UR} − {UL, U ′R}| ≤ c|UR − U ′R|, (53)

does not hold in general. Counterexamples are easily constructed by taking UR ∈ H,
or by taking vR and v′R of opposite sign, or by taking UR close to the boundary of
Q(UL) in the case that (50) holds and choosing the M = 1 solution for {UL, UR}.
However, we have the following stability result.

Theorem 3.4. Assume that neither UR nor U ′R is in H, that vRv′R > 0, and that if
(50) holds, one chooses the M = 5 solution for both {UL, UR} and {UL, U ′R}. Then
(53) holds, with the constant c depending only on an upper bound for |vR|, |v′R|.

Proof. Under these assumptions, the value of M is either 3 or 5, depending only
on the sign of vLvR. For definiteness, we consider the case that vR and v′R are
positive. Then the intermediate states in the two solutions coincide except for the
M−1st states, which are of the form (ρ1, v1), (ρ1, v

′
1) (the states U1(UR) and U1(U ′R)

respectively). Thus from the metric (47),

|{UL, UR} − {UL, U ′R}| ≤ 2
(

|UR − U ′R|+ |v1 − v′1|
)

. (54)

Using (43), the values of v1, v′1 are given explicitly in terms of UR and U ′R:

v1 = vR
1− ρ2/βR
1− ρ2/ρ1

, v′1 = v′R
1− ρ2/β

′
R

1− ρ2/ρ1
, (55)

and (53) follows easily from (54) and (55).

3.4. Alternative Forms of the System. The derivation of (15), (16) in Section 2
tacitly assumes smooth solutions. In particular, weak solutions are not preserved
under the nonlinear operations carried out on the equations in that section. As
our analysis suggests, however, distribution solutions with singular shocks are to
be expected. In this context we ask about alternative formulations.

Equations (4), unlike (5), are in conservation form and unambiguous with regard
to discontinuous solutions. Given the conditions (6), (7), the only independent
affine combinations of equations (4), (5) in conservation or balance form are (4)
and an equation of total momentum balance

∂t(α1ρ1u1 + α2ρ2u2) + ∂x(α1ρ1u
2
1 + α2ρ2u

2
2 + p) = F1 + F2. (56)

Theorem 3.5. There is no pair of conservation laws in the variables β, v, equivalent
for weak solutions to (4), (56) (with F1 + F2 = 0).

Remark. This implies that any adopted model in the variables β, v requires an
exchange of the conserved quantities, with the implied lack of validity for weak or
distribution solutions.
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Proof. Any such conservation laws, of the form

η(β, v)t + ζ(β, v)x = 0, (57)

are necessarily satisfied by smooth solutions of (15), (16), provided that η(β, v),
ζ(β, v) satisfy

ζβ = Kηβ + 2vB2(β)ηβ + v2B2,β(β)ηv (58)

ζv = Kηv +B1(β)ηβ + 2vB2(β)ηv. (59)

The pair (58), (59) is solvable if and only if η satisfies a degenerate elliptic equation
in phase space,

v2ηvv =
β2(β − ρ1)(β − ρ2)

ρ1ρ2
ηββ . (60)

Therefore conservation laws equivalent to (4), (56) for weak solutions correspond
to solutions of (60) with η an affine combination of α1, α2, and α1ρ1u1 + α2ρ2u2.
There is, however, only one independent such solution, given by

η(β, v) = β. (61)

In particular, η given by

α1ρ1u1 + α2ρ2u2 =
v(ρ1 − β)(β − ρ2)

β(ρ1 + ρ2)
−Kβ +K(ρ1 + ρ2) (62)

obviously does not satisfy (60), as it is affine in v but not in β. Since any pair of
conservation laws in β, v must include a second, independent solution of (60), the
proof is complete.

Using (13), (34) we observe that (15) is equivalent to either component of (4)
for weak solutions and for distribution solutions containing singular shocks as de-
scribed above. This equation is an expression of conservation of mass of each phase
separately, presumably a highly desirable feature in an such models.

4. Interpretation of the Riemann Solution. We have presented a solution
to the Riemann problem for the system (19), (20), which is equivalent to (4),
(5) except for three things: we have omitted the balance terms, we have made a
convenient choice of the conserved quantities, and we have written the solution in
scaled variables β and v, and with a spatial scale centered at the center of volume
of the flow (as a result of setting K = 0, see equation (10)) rather than laboratory
coordinates.

It is now straightforward to rewrite the solution in the original variables. We note
first that reintroducing the factor of K replaces the system we have been analysing,
(19) and (20), by (15) and (16), which differs by a scalar term, corresponding
to x 7→ x − Kt. In particular, the Riemann solutions are identical, except that
all velocities (characteristic, shock and rarefaction speeds) are augmented by the
constant amount K.

Next, the volume fractions and flow speeds, in laboratory coordinates, are given
by (13) and (14). We note that at a point (x, t) in the solution where one volume
fraction is zero, the flow speed corresponding to the material which is present is K,
which is consistent with the physical assumptions, while the absent phase is assigned
a mathematical value which seems to have no physical significance. In particular,
in the rarefaction waves, which always correspond to pure single-phase states, the
actual flow is uniform throughout the wave. Contact discontinuities still correspond
to transitions in the flow where the mixture ratios change without a discontinuity in
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Figure 4. Three Views of Stratified Pipe Flow

velocity. Singular shocks, on the other hand, whether between states with different
mixture ratios or between mixed and pure states, are transitions accompanied by
a discontinuity in the velocity.

Three examples of Riemann solutions are illustrated in Figure 4 for the case
of stratified flow in a pipe. The solution on the left contains a composite wave
with two singular shocks, two rarefactions and a contact discontinuity; that in the
middle, two singular shocks separated by a rarefaction; and that on the right a
single overcompressive singular shock separating two regions of mixed flow.

5. Inclusion of Applied Forces. The applied forces F1, F2 in (5) or (8) are an
essential feature of models of either dispersed or stratified flow. Inclusion of these
terms results in a modification of (16) of the form

vt + (v2B2(β) +Kv)x =
F1

α1
− F2

α2
≡ G(β, v). (63)

When F1 and F2 depend only on ρi, αi, ui, i = 1, 2 and not on any derivatives, the
system (15), (63) is a pair of balance laws. Results on the existence of solutions and
well-posedness of the Cauchy problem for such systems have recently been obtained
in [1], albeit under different structural conditions than those encountered here.

In the case of vertical flow one anticipates buoyancy forces of the form

F buoy
2 = −F buoy

1 = α1α2g(ρ1 − ρ2) (64)

with g the gravitational constant. The resulting system (15), (63) with

G(β, v) = −g(ρ1 − ρ2)

obtained from (63), (64) and (6), was employed in [9] to obtain a solution of the
Ransom faucet problem [28].

Making the approximations

α2 � α1, ρ2 � ρ1, u1, u2 uniformly bounded , (65)

models of drag forces for dispersed flow are obtained in [10] and [37], in both cases
of the form

F drag
2 = −F drag

1 = cα2|u2 − u1|(u2 − u1), (66)
with c an effective drag coefficient.

The expression (66) is not in a form suitable for inclusion in the present formu-
lation, as the resulting expression for G is not defined in the limit α1 decreasing to
zero, or in the presence of singular shocks, where u2(., t)−u1(., t) is defined only as
a measure. As both of these conditions contradict the assumptions (65), suitable
modification of the expression (66) is not difficult.

Finally, we cite the study [27], of drag forces depending on the derivatives of u1

and u2, which concludes that such models exhibit mathematical structure similar
to that of (15), (16).
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6. Numerical Approximations. We consider here the numerical approximation
of solutions to the self-similar viscosity equation (25) which was introduced and
studied in Section 3.2. We seek a solution of the form U(x, t) = U(τ), with
τ = (x/t − s)/ε, satisfying the second-order ordinary differential equation (26).
We choose data U± = limτ→±∞ U(τ) which correspond to left and right states of
a singular shock of speed s in the inviscid equation. Needless to say, a grid with
infinite extent is impossible to fully accommodate numerically. Therefore, we re-
strict the problem to a finite domain chosen large enough to contain the solution’s
exponential transition. For ε ∼ 10−2, τ− = −40 < τ < 40 = τ+ has proven to be
much more than adequate.

A variant of the shooting method is applied to solve the self-similar viscos-
ity equation cast as a two point boundary value problem. In order to utilize
a generic fourth-order accurate, adaptive-grid Runge-Kutta integration scheme,
the differential equation (26) must be reduced to first order. We expect its so-
lution to be poorly behaved near τ = 0. Therefore, writing U = (β, v)t and
F (U) = (vB1(β), v2B2(β))t, see Section 3.2, we introduce the auxiliary variable
X = −ετU̇ to find a four-dimensional first-order system equivalent to (26):

U̇ = F (U)− sU +X

Ẋ = −ετ [F (U)− sU +X ] ,
(67)

where again ˙ = d/dτ . We solve (67) on the finite interval (τ−, τ+) and require its
solution to satisfy the boundary condition U(τ±) = U±. This particular form for
the first order system is motivated by our result in Section 3.2 where we found that
X = U̇ −F (U) + sU is expected to be fairly well behaved through a singular shock
profile; see equation (30).

Shooting from one boundary point to the other for (67) is necessarily poorly con-
ditioned even for moderately small ε. This is due to the fact that U(τ) is essentially
constant near the the boundary points but is wildly varying in the singular shock’s
inner layer around τ = 0. For this reason, our numerical procedure shoots from
τ = 0. Let W (W0; τ) = (U(τ), X(τ))t with given initial data W0 = (U(0), X(0))t;
integrate (67) to τ+ to obtain W (W0; τ+), and also integrate backwards to τ− to
obtain W (W0; τ−). This yields U(W0; τ+) and U(W0; τ−). The idea then is to
solve the implicitly defined four-dimensional system

U(W0; τ−) = U−

U(W0; τ+) = U+
(68)

for the unknown W0. So instead of integrating over the hump near τ = 0, which
would be the case by shooting from one boundary point to the other, here we
attempt to integrate down hill only.

We solve (68) by Newton’s linearization. However even for our procedure of
shooting from τ = 0, the Newton domain of attraction can be very small when ε
is small. For this reason, we apply ε-continuation. That is, suppose a sequence
of converged solutions to (68), say W0(ε1), . . . ,W0(εn), is known for decreasing
ε1 > · · · > εn. An approximation to W0(εn+1) is computed by using high order
extrapolation on the previously determined W0(εk), and used as a Newton first
guess to the εn+1 problem. Then, this first guess is updated by Newton’s method
until convergence, thus yielding W0(εn+1). In our results presented below, we use
at most quadratic extrapolation and reduce ε by 2% at every continuation step.
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Figure 5. (a) βε and vε at ε = .05; (b) log(vε(0)) vs. 1/ε

Figure 6. Two Views of βε and vε vs. τ = x/εt; ε = .01

The above algorithm is applied to the problem of resolving the solution to (67)
with densities given by ρ1 = 2 and ρ2 = 1 in the functions B1(β) and B2(β). We
considered far field data U− = (1.9, 1.0)t and U+ = (1.1, 1.1/1.9)t, which, according
to the theory presented earlier, correspond to single overcompressive singular shock
with speed s = 0 in the inviscid problem. The adaptive grid ODE integrator is set
to enforce a maximum local truncation error of 10−12. Newton’s method is said to
be converged when its residual is less than 10−10. Figure 5(a) depicts U = (β, v)t

within the singular layer when ε = 0.05. Note that the spatial domain is given in
units τ = x/(tε). The singular component v is quite evident on inspection. The
β component is well behaved and lies within the invariant region ρ2 ≤ β ≤ ρ1.
Figure 6 depicts the solution when ε = 0.01. The singular component v now has
completely blown off the displayed scale in the left picture. Also note that β
has almost sharpened into a saw-tooth – remarkable considering the spatial x/(tε)
scaling.

In Figure 5(b) we plot log(v(0)) as a function of 1/ε where ε ranges from 0.10
to 0.01; (1/ε ranges from 10 to 100). The asymptotic analysis given in Section 3.2
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(equation (38)) implies this plot should approximate a straight line when ε is suffi-
ciently small. Clearly the analysis is vindicated by the numerical result. Moreover,
the asymptotic analysis tells us the slope of the line should be 1/6 of the v compo-
nent’s Rankine-Hugoniot deficit; 0.05540166 for this example problem. Using the
computed data at 1/ε = 10 and 1/ε = 100, we find the slope of the plot’s secant
line is 0.05489607.
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