Pattern and Paradox: Shock Interactions in the Nonlinear Wave System

July 10, 2003

Barbara Lee Keyfitz^a

Department of Mathematics

University of Houston

Houston, Texas 77204-3008

joint work with Sunčica Čanić and Eun Heui Kim computations: Alexander Kurganov, Maria Lukacova, Manuel Torrilhon student: Tim Morant

^aResearch supported by the Department of Energy, grant DE-FG-03-94-ER25222, and the National Science Foundation, grant 03-06307.

Outline of Program with S. Čanić, E. H. Kim, G. Lieberman

Similarity analysis of 2-D CL ($\xi = \frac{x}{t}$, $\eta = \frac{y}{t}$); piecewise const. data Features:

- 1-D waves in far field
- change of type in (ξ, η) , like steady TS:

$$U_t + F_x + G_y = 0$$
 to $(A - \xi)U_\xi + (B - \eta)U_\eta = 0$

Behavior of characteristics

Causality, determinacy

Acoustic type structure

- Quasi-one-D Riemann Problems:
- 'Shock polars' at $\Xi_0 = (\xi_0, \eta_0)$
- 'Self-similar' solution $U\left(\frac{\xi-\xi_0}{\eta-\eta_0}\right)$
- cf. One-dimensional Riemann problem

Basic Features, continued

ullet Degenerate elliptic or mixed type Degen. const U of Keldysh type:

$$x\phi_{xx} + \phi_{yy}$$
 (cf. $\phi_{xx} + x\phi_{yy}$)
Linear solution $\sqrt{x}w(x,y)$

Fichera condition: data on deg. bdry

• Free boundary problems

RH relation
$$\chi[U]=[F]-\kappa[G]$$
; $[U]=U-U_1$ $\kappa=\frac{d\xi}{d\eta}=$ slope; $\chi=\xi-\eta\kappa=$ position Overdetermined BC for elliptic equation

Related work: Morawetz, Brio-Hunter, Rosales-Tabak, Y. Zheng, K. Song, Chen-Feldman, Serre, Zhang-Zheng, S.-X. Chen et al.

Similarity Analysis of Two-Dimensional Systems: General Data

$$U_t + F(U)_x + G(U)_y = 0, \ U \in \mathbb{R}^n$$

Data:
$$U(x, y, 0) = f\left(\frac{x}{y}\right)$$

Similarity Variables:

$$\xi = \frac{x}{t}, \eta = \frac{y}{t}$$
 $U = U(\xi, \eta)$

Reduced System in Two Variables

$$\partial_{\xi}(F - \xi U) + \partial_{\eta}(G - \eta U)$$
$$\equiv \widetilde{F}_{\xi} + \widetilde{G}_{\eta} = -2U$$

Sectorially Constant Data

Method: resolve 1-D far-field discont.; give data for (IV)-BVP in 2-D Type Changes: hyperbolic in far field; 'subsonic' region near origin Difficulties: hyperbolic Q-1-D problems w/o solution; subsonic FBP

The Search for Prototype Systems: UTSD & NLWS

Comparison of Isentropic Gas Dynamics & NLWS

Isentropic Gas Dynamics: $p = \rho^{\gamma}/\gamma$ Nonlinear Wave System:

$$\rho_t + (\rho u)_x + (\rho v)_y = 0
(\rho u)_t + (\rho u^2 + p)_x + (\rho u v)_y = 0
(\rho v)_t + (\rho u v)_x + (\rho v^2 + p)_y = 0
n_t + p_x = 0
n_t + p_y = 0
n_t + p_y = 0$$

$$m = \rho u
n_t + p_y = 0$$

Self-sim 2nd-order equation for nonlinear characteristic variable (ρ) :

$$\begin{split} & \left((c^2(\rho) - U^2) \rho_{\xi} - UV \rho_{\eta} \right)_{\xi} + \\ & \left((c^2(\rho) - V^2) \rho_{\eta} - UV \rho_{\xi} \right)_{\eta} + \ldots = 0 \\ & \left((c^2(\rho) - V^2) \rho_{\eta} - UV \rho_{\xi} \right)_{\eta} + \ldots = 0 \\ & \left((c^2(\rho) - \xi^2) \rho_{\xi} - \xi \eta \rho_{\eta} \right)_{\xi} \\ & \left((c^2(\rho) - \xi^2) \rho_{\eta} - \xi \eta \rho_{\xi} \right)_{\eta} \\ & \left((c^2(\rho) - \xi^2) \rho_{\xi} - \xi \eta \rho_{\eta} \right)_{\xi} \\ & \left((c^2(\rho) - \xi^2) \rho_{\eta} - \xi \eta \rho_{\eta} \right)_{\xi} \\ & \left((c^2(\rho) - \xi^2) \rho_{\eta} - \xi \eta \rho_{\eta} \right)_{\xi} \end{split}$$

Transport equation for linear characteristic variable:

$$\begin{split} W &= V_{\xi} - U_{\eta} = v_{\xi} - u_{\eta} = \text{vorticity} & w &= n_{\xi} - m_{\eta} & \textcolor{red}{w_t} = 0 \\ UW_{\xi} + VW_{\eta} + (U_{\xi} + V_{\eta} + 1)W &= 0 & (\xi, \eta) \cdot \nabla w + w = 0 \quad \text{Linear} \\ \text{Nonlinear evolution equation} & \text{or:} \quad rm_r = p_{\xi} & rn_r = p_{\eta} \end{split}$$

The Search for Prototype Data Interacting Shocks: A Bifurcation Problem for NLWS

2-state data: U_0 , U_1

Data give 2 shocks

Far field soln: 4 waves

- Symmetric prototype for converging sector boundaries
- 'Weak shock reflection', von Neumann paradox
- Features
 - 1. 2 parameters: $\rho_0/\rho_1 > 1$ and κ_a (Mach # and wedge angle)
 - 2. Incident shocks: $\xi = \kappa_a \eta \chi$, $\xi = -\kappa_a \eta + \chi$
 - 3. Small κ : two local solutions –'weak' and 'strong' regular reflection
 - 4. Large κ : curved shock, weak reflected wave (Čanić talk)
 - 5. Intermediate values of κ : no sol'n from shock polars (Q1D RP)

Theory and Numerical Simulations of the Solution

Region A (Weak Mach Reflection)

Sonic circle

$$C_0 = \{\xi^2 + \eta^2 = c^2(\rho_0)\}\$$

Supersonic soln known U continuous at C_0 $\partial U/\partial r$ singular

Simulation of full field and close-up near (0,0)

Logarithmic singularity in n at (0,0)

Bifurcation Diagram

Region A: Analytic solution for $\kappa > \kappa *$ ('technical' condition in gradient estimate)

Region C: Local solution for weak or strong RR (CKK, UTSD)

Close-up showing apparent triple point

Bifurcation Diagram

Region A^* : Weak reflected shock or reflected shock with zero strength at triple point (conjecture)

Region B: Neither A, A* nor C type solution exists

Possible Behavior at 'Triple Point', Region B

Proposition: NO nontrivial sol'ns to R-H eq'ns for constant states $\{u_0, u_1, u_2\}$ separated by shock lines S_a , S_b , S_c .

Proposition: \exists nontrivial sol'ns to R-H eq'ns for states $\{u_0, u_1, u_2, u_3\}$ separated by shock lines S_a , S_b , S_c + linear wave.

- States u_2 and u_3 must be subsonic (causality)
- Only discont. supp. in sub. reg. is lin. wave
- Only lin. waves are those in data

Supersonic bubble

- Numerical results of Tesdall and Hunter on UTSD eqn
- SIAP, 2003
- Quasi-steady simulation
- Cascade of embedded supersonic regions

ALLEN M. TESDALL AND JOHN K. HUNTER

Scenario for a Triple Point in NLWS: Embedded Supersonic Region

- Construction of states U_M (sonic), U_m (supersonic)
- ullet One parameter family, param. by ξ_M (det. by far field)
- Supersonic bubble not a domain of determinacy (analysis needed)
- Cascade due to singular hyperbolic nature of UTSD?
- Numerical evidence lacking for NLWS

Simulations on NLWS by Kurganov

Angle $\kappa_a = 1$, $\rho_0 = 4$: Region **B**: Apparent Triple Point

Contour Plot of Density p. Data $U_0 = (4,4.7434,4.7434); U_1 = (1,0,0); \kappa_a = Inf; \kappa_b = 0$

