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Outline of Program with S. Čanić, E. H. Kim, G. Lieberman

Similarity analysis of 2-D CL (ξ = x
t , η = y

t ); piecewise const. data

Features:

• 1-D waves in far field

• change of type in (ξ, η), like steady TS:

Ut+Fx+Gy = 0 to (A−ξ)Uξ+(B−η)Uη = 0;

Behavior of characteristics

Causality, determinacy

Acoustic type structure NONDEGENERATE

CHARACTERISTICS

  Ξ
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SUBSONIC REGION:
ELLIPTIC OR MIXED
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Q−1−D SOLUTION

• Quasi-one-D Riemann Problems:

‘Shock polars’ at Ξ0 = (ξ0, η0)

‘Self-similar’ solution U
(

ξ−ξ0
η−η0

)

cf. One-dimensional Riemann problem
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Basic Features, continued

• Degenerate elliptic or mixed type

Degen. const U of Keldysh type:

xφxx + φyy (cf. φxx + xφyy)

Linear solution
√
xw(x, y)

Fichera condition: data on deg. bdry
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Free Boundary

• Free boundary problems

RH relation χ[U ] = [F ]− κ[G]; [U ] = U − U1

κ = dξ
dη = slope; χ = ξ − ηκ = position

Overdetermined BC for elliptic equation

Related work: Morawetz, Brio-Hunter, Rosales-Tabak, Y. Zheng,

K. Song, Chen-Feldman, Serre, Zhang-Zheng, S.-X. Chen et al.
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Similarity Analysis of Two-Dimensional Systems: General Data

Ut+F (U)x+G(U)y = 0, U ∈ Rn

Data: U(x, y, 0) = f
(

x
y

)

Similarity Variables:

ξ = x
t , η = y

t U = U(ξ, η)
Reduced System in Two Variables

∂ξ(F − ξU) + ∂η(G− ηU)

≡ ˜Fξ + ˜Gη = −2U

x

y

Sectorially Constant Data

Method: resolve 1-D far-field discont.; give data for (IV)-BVP in 2-D

Type Changes: hyperbolic in far field; ‘subsonic’ region near origin

Difficulties: hyperbolic Q-1-D problems w/o solution; subsonic FBP
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The Search for Prototype Systems: UTSD & NLWS

Comparison of Isentropic Gas Dynamics & NLWS

Isentropic Gas Dynamics: p = ργ/γ

ρt + (ρu)x + (ρv)y = 0
(ρu)t + (ρu2 + p)x + (ρuv)y = 0
(ρv)t + (ρuv)x + (ρv2 + p)y = 0

Nonlinear Wave System:

ρt +mx + ny = 0
mt + px = 0 m = ρu

nt + py = 0 n = ρv

Self-sim 2nd-order equation for nonlinear characteristic variable (ρ):
(

(c2(ρ)− U2)ρξ − UV ρη
)

ξ
+

(

(c2(ρ)− V 2)ρη − UV ρξ
)

η
+ . . . = 0

U = u− ξ, V = v− η (‘pseudo-vel.’)

(

(c2(ρ)− ξ2)ρξ − ξηρη
)

ξ

+
(

(c2(ρ)− η2)ρη − ξηρξ
)

η

+ξρξ + ηρη = 0

Transport equation for linear characteristic variable:

W = Vξ − Uη = vξ − uη= vorticity

UWξ + VWη + (Uξ + Vη + 1)W = 0
Nonlinear evolution equation

w = nξ −mη wt = 0
(ξ, η) · ∇w + w = 0 Linear

or: rmr = pξ rnr = pη
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The Search for Prototype Data

Interacting Shocks: A Bifurcation Problem for NLWS

U
1

U
0

x →

y

↑
x=κ a

 yx=−κ
a  y

2-state data: U0, U1

Data give 2 shocks

Far field soln: 4 waves

U
1

U
0

U
1a

U
1b

ξ  →

η
↑

Linear WaveLinear Wave

ShockShock

• Symmetric prototype for converging sector boundaries

• ‘Weak shock reflection’, von Neumann paradox

• Features

1. 2 parameters: ρ0/ρ1 > 1 and κa (Mach # and wedge angle)

2. Incident shocks: ξ = κaη − χ, ξ = −κaη + χ

3. Small κ: two local solutions –‘weak’ and ‘strong’ regular reflection

4. Large κ: curved shock, weak reflected wave (Čanić talk)

5. Intermediate values of κ: no sol’n from shock polars (Q1D RP)
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Interacting Shock Problem for the Nonlinear Wave System
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C: Q-1-D RP solvable
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C RR possible

B neither possible
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Theory and Numerical Simulations of the Solution

Region A (Weak Mach Reflection)

−15 −10 −5 0 5 10 15

−10

−5

0

5

10

Contour Plot of Density ρ.  Data U
0
 = (64,0,361.9503); U

1
 = (1,0,0);  κ

a
 = 8;  κ

b
 = −8

ξ axis

η 
ax

is

Sonic circle

C0 = {ξ2 + η2 = c2(ρ0)}

Supersonic soln known

U continuous at C0

∂U/∂r singular



ICIAM03 Minisymposium, Sydney, Australia, July 10, 2003 9

Same Case: κa = 8, ρ0 = 64, Momentum Component n

Simulation of full field and close-up near (0, 0)

Logarithmic singularity in n at (0, 0)
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Regular Reflection, κa = 0.5: Simulation of WRR
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Bifurcation Diagram

Region A: Analytic solution for κ > κ∗
(‘technical’ condition in gradient estimate)

Region C: Local solution for weak or strong RR (CKK, UTSD)
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Maybe Not Just Technical

Angle κa = 2, Region A*: Apparent Reflected Shock
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Same Case, κa = 2, ρ0 = 64, Close-up of ‘triple point’
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Simulations in Region B: κa = 1, ρ0 = 64: von Neumann Paradox
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Same Case, κa = 1, ρ0 = 64, Different Orientation
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Same Case, κa = 1, ρ0 = 64, Momentum Components

Close-up showing apparent triple point
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Bifurcation Diagram

Region A*: Weak reflected shock or reflected shock

with zero strength at triple point (conjecture)

Region B: Neither A, A* nor C type solution exists
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Possible Behavior at ‘Triple Point’, Region B

•

 ξ
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Proposition: NO nontrivial sol’ns to R-H eq’ns

for constant states {u0, u1, u2} separated by

shock lines Sa, Sb, Sc.
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Proposition: ∃ nontrivial sol’ns to R-H eq’ns for

states {u0, u1, u2, u3} separated by shock lines

Sa, Sb, Sc + linear wave.

- States u2 and u3 must be subsonic (causality)

- Only discont. supp. in sub. reg. is lin. wave

- Only lin. waves are those in data
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Supersonic bubble

• Numerical results of Tesdall

and Hunter on UTSD eqn

• SIAP, 2003

• Quasi-steady simulation

• Cascade of embedded

supersonic regionsSELF-SIMILAR SOLUTIONS FOR WEAK SHOCK REFLECTION 53
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Fig. 5. A detailed contour plot of (a) u and (b) v near the triple point for a = 0.5. The u-
contour spacing is 0.0005 and the v-contour spacing is 0.001. The sonic line is plotted in Figure 3(b)
and Figure 6. The figure shows a sequence of shock and expansion waves. Each expansion wave
is centered at a triple shock intersection and reflects off the sonic line into a compression wave.
The compression wave forms a shock wave that intersects the Mach shock, resulting in a sequence
of triple points. Three shock-expansion wave pairs and triple points are visible in the plots, with
indications of a fourth. The region shown contains the refined uniform grid, which has 768 × 608
grid points.

behind the shock is sonic. This point is very close to the corresponding triple point
on the Mach shock, as shown in Figure 6. It is not possible, however, to determine
from the numerical solution whether or not this sonic point coincides exactly with
the triple point, as argued by Guderley [9] in the case of steady weak shock Mach
reflections.

Three shocks and an expansion fan appear to connect four states at the leading
triple point. We label these states 1–4 in Figure 6. Table 4.2 gives values of u and v
for each of the states, computed from the numerical solution. For states 2–4, these
values were computed at the locations indicated in the figure. The values of (u, v)
for state 3 behind the reflected shock were computed close to the point where the
flow behind the shock is sonic. This ensures that states 2 and 3 are connected by the
reflected shock and not by any part of the expansion fan, which connects states 3 and
4. For state 1, the values for (u, v) were computed at a location sufficiently far ahead
of the incident shock so that they were not influenced by the effects of numerical
diffusion near the shock.

The velocity components (ū, v̄) in a reference frame moving with the triple point
are given by [12] as

ū = u−
(
ξ∗ +

1

4
η2
∗

)
, v̄ = v − 1

2
η∗u,(4.1)

where (ξ∗, η∗) are the (ξ, η)-coordinates of the triple point. From the numerical solu-

54 ALLEN M. TESDALL AND JOHN K. HUNTER
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Fig. 6. An enlargement of the solution in Figure 5 near the leading triple point, showing (a)
u-contours and (b) v-contours. The u-contour spacing is 0.005, and the v-contour spacing is 0.001.
The dashed line in the plots is the sonic line. Table 4.2 gives the values of u and v from the numerical
solution for the states labeled 1–4 in the plots.

tion shown in Figure 6, we obtain ξ∗ = 1.008, η∗ = 0.5128. We show the corresponding
values of (ū, v̄) in Table 4.2. In Figure 7(a), we plot the shock and rarefaction curves
for the steady transonic small disturbance equation [12] through each of the four states
for (ū, v̄). The plot in Figure 7(b) is an enlarged view of the shock and rarefaction
curves for the states 2, 3, and 4. The curves coincide almost exactly with those of
a triple point with an expansion fan. We show similar curves through the numerical
values of the analogous states at the second triple point in Figure 7(c)–(d). These
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Scenario for a Triple Point in NLWS: Embedded Supersonic Region
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• Construction of states UM (sonic), Um (supersonic)

• One parameter family, param. by ξM (det. by far field)

• Supersonic bubble not a domain of determinacy (analysis needed)

• Cascade due to singular hyperbolic nature of UTSD?

• Numerical evidence lacking for NLWS
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Simulations on NLWS by Kurganov

Angle κa = 1, ρ0 = 4: Region B: Apparent Triple Point

−2 −1 0 1 2 3

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Contour Plot of Density ρ.  Data U
0
 = (4,4.7434,4.7434); U

1
 = (1,0,0);  κ

a
 = Inf;  κ

b
 = 0

ξ axis

η 
ax

is



ICIAM03 Minisymposium, Sydney, Australia, July 10, 2003 22

Same Case, κa = 1, ρ0 = 4, Close-up of ‘triple point’
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