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What Are Conservation Laws?

-express physical basis for equation (+ constit rel) T
-conservation of mass, momentum, etc. U; + F(U), =0
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-express physical basis for equation (+ constit rel) T
-conservation of mass, momentum, etc. U; + F(U), =0
WE: (pus): = (Tug)z, ¢ = T/p (Newton’s law; cons of mom)

U = (é‘:), F(U) = AU = (2 S>U
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What Are Conservation Laws?

-express physical basis for equation (+ constit rel) T
-conservation of mass, momentum, etc. U; + F(U), =0
WE: (pus): = (Tug)z, ¢ = T/p (Newton’s law; cons of mom)

U = (é‘:), F(U) = AU = (2 S>U

-example of a 1-D Conservation Law
Multi-D:

WE:

g — AU =0, uy—V - (C2Vu) =0
A = 07 + 95(+02); membrane, solid
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What Are Conservation Laws?

-express physical basis for equation (+ constit rel) T
-conservation of mass, momentum, etc. U; + F(U), =0

WE: (pus): = (Tug)z, ¢ = T/p (Newton’s law; cons of mom)

U = (é‘:), F(U) = AU = (2 S>U

-example of a 1-D Conservation Law
Multi-D:

WE:

uy — EAu=0, uy—V-(*Vu)=0

A = 07 + 95(+02); membrane, solid
Nonlinear if ¢ = ¢(u) for example.

\— Ut"‘zaxiFi(U):O; U:(ul,...,un)ERn, F, e R" J
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Hyperbolic vs Elliptic: Prototype

 Hyperbolic u; + au, = 0, u(z,0) = ug(x) | ;o
Solution u = ug(x — at)
Features: X7+

o VP well-posed

e characteristics

e finite propagation speed
e N0 smoothness

o -
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Hyperbolic vs Elliptic: Prototype

nyperbollc ut + auy = 0, u(x,0) = ug(x)
Solution u = ug(x — at)
Features:
o VP well-posed
e characteristics
e finite propagation speed
e N0 smoothness

Elliptic v, = 0, u(0) = a, u(l) =b
Solution u(z) =a+ (b—a)x
Features:

e BVP well-posed

e maximum principles

e apriori bounds on derivatives

e NO notion of propagation

.

f N

X
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Notation
~ Operator P(D): P(D)u= Y caD®u -
Multi-index: z € R, «a = (ay,as,...qa,), a; Integers

la| = a1 +as+ ...+ «ap order of multi-index

| o 0 9 ole
p— e Da —
Deriv vector D ( 921 Dy’ a$n> 8%11 853‘22 — 8%;

Principal part of k-th order operator

PL(D) = Z ca D%
la|=k

Example: c?uy,; — uy + mu = 0 (Klein-Gordon equation)
k = 2, variables (z,t); cog = 2, coo = —1, coo = m

Pou = CQUQ;Q; — Ut

o -
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Algebraic Structure & Classification

Dual (symbol) vector ¢ = (&1, &2, ... &) .
Principal symbol (homog polynomial) P.(&) = > c.&°

o -
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Algebraic Structure & Classification

Dual (symbol) vector & = (&1, &2, ...&,) T
Principal symbol (homog polynomial) P.(&) = > c.&°

Elliptic: ¢ e R™", £ £0 = P(&) # 0

Hyperbolic:
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Algebraic Structure & Classification

Dual (symbol) vector & = (&1, &2, ...&,) T
Principal symbol (homog polynomial) P.(&) = > c.&°

Elliptic: £ € R, £ £ 0= P.(§) #0

Hyperbolic: 7. (&) has maximal number of real roots:

Pr(tvy + &) = 0 roots (), V€ € spanyy; vy = time-like

Why should algebraic structure imply analytic properties?
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Dual (symbol) vector & = (&1, &2, ...&,) T
Principal symbol (homog polynomial) P.(&) = > c.&°

Elliptic: £ € R", { £ 0= P(&) # 0

Hyperbolic: 7. (&) has maximal number of real roots:

Pr(tvy + &) = 0 roots (), V€ & spanuyy; vy = time-like

Why should algebraic structure imply analytic properties?

e Elliptic: k even; if k = 2, then Py (&) = ¢7'Q¢ pos def
= No local extrema with 9*u/9% <0 Vi = max princ
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Algebraic Structure & Classification

Dual (symbol) vector & = (&1, &2, ...&,) T
Principal symbol (homog polynomial) P.(&) = > c.&°

Elliptic: £ € R", £ £ 0= P(§) #0

Hyperbolic: 7. (&) has maximal number of real roots:

Pr(tvy + &) = 0 roots (), V€ & spanuyy; vy = time-like

Why should algebraic structure imply analytic properties?

e Elliptic: k even; if k = 2, then Py (&) = ¢7'Q¢ pos def
= No local extrema with 9*u/9% <0 Vi = max princ

e Hyperbolic: 4 plane wave solutions w(& - ) If (&) =0

o -
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Algebraic Structure & Classification

Dual (symbol) vector & = (&1, &2, ...&,) T
Principal symbol (homog polynomial) P.(&) = > c.&°

Elliptic: ¢ e R™", £ £0 = P(&) # 0

Hyperbolic:

Why should algebraic structure imply analytic properties?

e Elliptic: k even; if k = 2, then Py (&) = ¢7'Q¢ pos def
= No local extrema with 9%u/9% <0 Vi = max princ

e Hyperbolic:
First-order systems ) A;0,. U+ BU =0,U € R"
Elliptic or hyperbolic: structure of

P(¢) =det » &A;

o -
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The Paradox of Multidimensional CL

f Systems of Conservation Laws T
up + f(u)e + g(u)y =0,
eg, compressible gas dynamics
u=(p,m,n,...), m=up, N =1p

Important in applications, simulations

o -
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The Paradox of Multidimensional CL

f Systems of Conservation Laws T
up + f(u)e + g(u)y =0,
eg, compressible gas dynamics
u=(p,m,n,...), m=up, N =1p
Important in applications, simulations
e NO existence theory, even for “small data”.
Why?

e smooth data lead to discontinuous solutions (need to
study weak solutions)

e discontinuities in quasilinear equations propagate on
shocks, not on characteristics

L. Characteristics in multiD are complicated (WF sets) J
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Weak Solutions: Linear Equations

fDlvergence form equations (conservation laws): T

_O:>//F VOdr =0, V6O

U € Sobolev space (or in D)
Linear Equations: well- posed in LP or W™P
Existence thms: enlarge class, then prove regularity

o -
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Weak Solutions: Linear Equations

fDivergence form equations (conservation laws): T
V-F(U):O://F-Veda;:o, Vo

U € Sobolev space (or in D)

Linear Equations: well-posed in L? or WP

Existence thms: enlarge class, then prove regularity
t

i

Elliptic equations: weak = strong  Locally snioot
Hyperbolic equations: 4 weak so-
lutions that are not differentiable:
plausible from char structure
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Weak Solutions: Linear Equations

fDivergence form equations (conservation laws): T
V-F(U):O://F-Veda;:o, Vo

U € Sobolev space (or in D)

Linear Equations: well-posed in L? or WP

Existence thms: enlarge class, then prove regularity
t

i

Elliptic equations: weak = strong  Locally snioot
Hyperbolic equations: 4 weak so-
lutions that are not differentiable:
plausible from char structure

/

Higher dimensions: loss of regularity (focussing) when

Lwaves interact; multidim wave propagation subtle J
Hyperbolic vs Elliptic: different properties of wk solns
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Quasilinear Equations/Systems

o .

Y Aj(U)0,,U + B(U) =0
Elliptic equations: Theory based on linear equations

o -
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Quasilinear Equations/Systems
. Y Aj(U)0,,U + B(U) =0 -

Elliptic equations: Theory based on linear equations
Hyperbolic equations: New phenomena appear
Linear u; + au, =0, 74+a£ =0, charA=—-7/(=a
Quasilinear uy + uu, =0, 74+u{=0, charA\=—-7/{=u

ut + (u?/2), =0 (Burgers equation)
Discontinuities become shocks & RH replaces char. egn

2
O[u] — [%] or o= UL‘;UR

o -
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Multidimensional Conservation Laws

f. 1D small data: theory complete (Glimm, Bressan) T
— large data — obstructions
— large data OK in examples (gas dynamics)

o -

Colloquium, McMaster University, January 28, 2005 — p.9/2



Multidimensional Conservation Laws

f. 1D small data: theory complete (Glimm, Bressan) T
— large data — obstructions
— large data OK in examples (gas dynamics)

e Characteristics inadequate
— study Riemann problems (not linearization)

o -

Colloquium, McMaster University, January 28, 2005 — p.9/2



Multidimensional Conservation Laws

f. 1D small data: theory complete (Glimm, Bressan) T
— large data — obstructions
— large data OK in examples (gas dynamics)

e Characteristics inadequate
— study Riemann problems (not linearization)

e Multidimensional linear & semilinear equations
— theory for smooth data (characteristics)

o -

Colloquium, McMaster University, January 28, 2005 — p.9/2



Multidimensional Conservation Laws

f. 1D small data: theory complete (Glimm, Bressan) T
— large data — obstructions
— large data OK in examples (gas dynamics)

e Characteristics inadequate
— study Riemann problems (not linearization)
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Multidimensional Conservation Laws

f. 1D small data: theory complete (Glimm, Bressan) T
— large data — obstructions

— large data OK in examples (gas dynamics)

e Characteristics inadequate
— study Riemann problems (not linearization)

e Multidimensional linear & semilinear equations
— theory for smooth data (characteristics)

e Multidimensional quasilinear systems

— scalar equation (Krushkov, Conway, Wagner et al)
— results on shock stability (Majda, Chen et al)

— axisymmetric geometry (Glimm, Chen)

e Contrast with extensive computational efforts
Incompatible difficulties:

loss of regularity in multidim (linear) wave propagation
nonlinear discontinuities do not propagate along char'cs
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Riemann Problems: Self-Similar Solution

o .

Basic tool in 1-D: us + f(u) =0

ur, x <0
u(x,()){ ur, x>0
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Basic tool in 1-D: us + f(u) =0

ur, <0
u(x,()){ ur, x>0

Solution u = u(§) = u(x/t)
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Riemann Problems: Self-Similar Solution

o .

Basic tool in 1-D: us + f(u) =0

ur, x <0
u(x,O){ ur, x>0

Solution u = u(§) = u(x/t)
1-D analogue of our work: 2-point BVP for ODE for u(&)

—u'+A(w)u’' =0 or (=EI+A)u =0,u(—0) = ur,u(c0) = ug
¢ = Mu), ' = 7(u) Rarefaction if ) increasing

o -
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Riemann Problems: Self-Similar Solution

fBasic: toolin 1-D: u; + f(u) =0 T
u(x,O){uL’ x <0
ur, x>0

Solution u = u(§) = u(x/t)
1-D analogue of our work: 2-point BVP for ODE for u(&)

—u'+A(w)u’' =0 or (=EI+A)u =0,u(—0) = ur,u(c0) = ug

¢ = Mu), ' = 7(u) Rarefaction if ) increasing
ODE holds weakly at £ = s if

(—&+fw] =0 or sfu=[f(u)]

Shock, A decreasing

o -
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Riemann Problems: Self-Similar Solution

fBasic: toolin 1-D: u; + f(u) =0 T
u(x,O){uL’ x <0
ur, x>0

Solution u = u(§) = u(x/t)
1-D analogue of our work: 2-point BVP for ODE for u(&)

—u'+A(w)u’' =0 or (=EI+A)u =0,u(—0) = ur,u(c0) = ug

¢ = Mu), v’ = 7(u) Rarefaction if ) increasing
ODE holds weakly at £ = s if

(—&+fw] =0 or sfu=[f(u)]

Shock, A decreasing
LDO not solve ODE in conventional way J
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Riemann Problems: Self-Similar Solution

o .

Basic tool in 1-D: us + f(u) =0

ur, <0
u(x,O){ ur, x>0

Solution u = u(§) = u(x/t)
1-D analogue of our work: 2-point BVP for ODE for u(¢)
—u'+A(w)u’' =0 or (=EI+A)u =0,u(—0) = ur,u(c0) = ug
¢ = MNu), v = #(u) Rarefaction if X increasing
ODE holds weakly at £ = s if

(—&+ @] =0 or sfu] = [f(u)

Shock, A decreasing

LDO not solve ODE in conventional way J
Our program: formulate and solve in 2D
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Why Study 2-D Riemann Problems?
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e Analogy with 1-D



Why Study 2-D Riemann Problems?

o .

e Analogy with 1-D

e Occurrence in physically interesting problems
Shock reflection by a wedge

A

t<0 t=0 >0

Incident Shock

Wedge

o -

Colloquium, McMaster University, January 28, 2005 — p.11/2



Why Study 2-D Riemann Problems?

o .

e Analogy with 1-D

e Occurrence in physically interesting problems
Shock reflection by a wedge

A

t<0 t=0 >0

Incident Shock

Wedge

e Shock interactions
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Why Study 2-D Riemann Problems?

o .

e Analogy with 1-D

e Occurrence in physically interesting problems
Shock reflection by a wedge

A

t<0 t=0 >0

Incident Shock

Wedge

e Shock interactions
e Numerical simulations

o -
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Similarity Reduction in Two-D Systems

. U+ F(U),+GU), =0, UecR" hyperbolic

y

Riemann Data: U(z, y,0) = f (g)
Similarity Variables:
_ T _Y _

Reduced System in Two Variables
8€(F — fU) + 877(G — 77U) = —2U

Sectorially Const Data

Vlethod: resolve 1-D far-field discont; IV/BVP in 2-D

RPin2+1dim= CPin 2ind. vbles. w. data at oo
Reduced to a previously solved problem

BUT
LType Changes: hyperb in far field; ‘subsonic’ region near 0 J
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Acoustic-type Structure

n—2
. Ui+ AU, +BU, =0; det|It+Ar+ Byu| = ([[ti-0)0" Qno

o= (7, )

CHANGE OF TYPE THEOREM Reduced
equation hyperbolic iff v = (1,&,n) outside
Lacoustic wave cone Cyy = {:ETQ]_le = 0}.
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Prototype Systems: UTSD & NLWS

f Comparison of Isentropic Gas Dynamics & NLWS T

Isentropic Gas Dyn: Nonlinear Wave System:
pr + (pu)s + (pv)y = 0 pt + My +1ny =0

(pu)e + (pu® + p)e + (puv)y =0 My 4 pr =0 m = pu
(pv)i + (puv)e + (pv* +p)y =0 ¢ +py =0 n=pu
Self-sim 2nd-order egn for nonlinear charac vble (p):
((c*(p) = U*)pe = UV py) -+ ((c*(p) = &) pe — Enpy)
((*(p) =V2)py =UVpg), +...=0 +((c*(p) =1%oy — Enpe),
U=u—-¢§ V=uv-—n(y-vel) +&pe +npyp =0

Transport equation for linear characteristic variable:
W =Ve — U, = ve —uy=vorticity w=mng —my  w; =0
UWe + VW) + (Ue +Vy + )W =0 (§,1) - Vw +w = 0 Linear
LNonIinear evolution equation or: rm, = p¢ Ty = Py J
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Prototype Data

f Interacting Shocks: A Bifurcation Problem for NLWS T

T\p/ 2-state data: Uy, U7 |
y Data give 2 shocks

Far field soln: 4 waves

o Symmetrlc prototype for converging sector boundaries
e ‘Weak shock reflection’, von Neumann paradox
e Features
1. 2 parameters: py/p1 > 1 and k, (Mach # & wedge angle)
2. Incident shocks: € = kyn — x, € = —Ken + X
3. Small «: two local solns —‘weak’ & ‘strong’ reg refl
4. Large «: ‘Mach reflection’
\_5- Intermed x: no sol’'n from shock polars (Q1D RP) J
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Bifurcation of Interacting Shocks

o ; m

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

1

L c: Q-1-D RP solvable

=

WA

Region A*

.| Region C

10 20 25

po/p1 15

3 regions: A+A* MR possible

C RR possible
B neither possible J
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Simulation of the Solution: Region A

Sonic circle

.

;
0
& axis

Co=1{&+n*=*(po)}

*(p) =p!
Supersonic soln known

—

Density p. Data U0=(64,O,361 9503), U1=(1,0,0); K = 8 K, = -8

50 ot

40 e

©

20 :

W™

1 axis

0

& axis

Simulation indicates U continuous at Cy, 0U/0r singular J

(not quite the case)
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Subsonic Flow with Mach Stem

fDegenerate Elliptic Free Boundary Problem T
Existence theorem for global problem for NLWS
Q = ((*(p)—E)pe—Enpy) + ((2(p)—1?)py—Enpe) , +Epe +110y
Q(p) = 0 (degenerate elliptic) in
y p=poONno
(degenerate boundary, continuous soln)
pe = 0 (symmetry) on %
Free boundary from RH equations:

v S N(p)=03-Vp=0 (oblique deriv) on
@ N 772 o 52 82 _ M
d§  &n+/s2(E2 4+ n? — 52) 0

p = pmax at X N Xy (part of D. bdry)
Approach: Fixed Point Theorem (CK & Lieberman, CKK)
L. Difficulties: NV not unif oblique; est. at degenerate corner

-
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Free Boundary as a Fixed Point

Formulate as 2nd order PDE for density, p (not potential);
Rewrite RH conditions as (1) evolution egn for shock and

(2) ODBC for o

Problem is quasilinear, degenerate elliptic PDE, mixed BC
Reqgularize PDE (parameter <)

Fix approx n = n(&), defines X € K¢ C Hi1,, (HOIder)

Solve (fixed) mixed BVP for p
Lieberman’s Mixed BVP theory + linearization

+ modifications for loss of obliqueness

Map n — 1 = Jp by other RH cond (shock evolution)

Schauder F. P. Thm: Compactness = fixed pt for J
J K CHiyo, = KN Higq, a>a
Show n and p solve the problem.

-
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Supersonic Patch (Region B)
- -

e Numerical results of Tesdall
and Hunter On UTSD eqn ALLEN M. TESDALL AND JOHN K. HUNTER
e SIAP, 2003

e Quasi-steady simulation ~ "*"f ]
e Cascade of embedded
supersonic regions 0514} '
T / S 0513 {
45

« 0515 l,,"y"‘ 3

0.512 _ y
0.505 1 " M S : L |\ \\ ,5,\ \ N

| A |
X/t 1.005 1.007 1.008 1.009
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Conclusions and Open Problems

o .

e To complete problem, need to find reflected shock (by a
similar fixed-point, free-boundary approach?)

o -
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Conclusions and Open Problems

o .

e To complete problem, need to find reflected shock (by a
similar fixed-point, free-boundary approach?)

e Related work by Morawetz, Brio-Hunter, Rosales-Tabak,
Y. Zheng, K. Song, Chen-Feldman, Serre, Zhang-Zheng,
S.-X. Chen et al.

e Method feasible for simple equation, data
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e Method feasible for simple equation, data
e Other hyperbolic problems (rarefactions)
e Need to analyse triple points

e Extend to other Riemann data

e Extend to gas dynamics

e Study three dimensional problems
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