Why are Multidimensional Conservation Laws So Difficult?

Barbara Lee Keyfitz
Fields Institute and University of Houston

bkeyfitz@fields.utoronto.ca

joint work with Sunčica Čanić, Eun Heui Kim and Gary Lieberman simulations by Alexander Kurganov

Research supported by the Department of Energy,

National Science Foundation,
and NSERC of Canada.

- -express physical basis for equation (+ constit rel)
- -conservation of mass, momentum, etc. $U_t + F(U)_x = 0$

- -express physical basis for equation (+ constit rel)
- -conservation of mass, momentum, etc. $U_t + F(U)_x = 0$

WE: $(\rho u_t)_t = (Tu_x)_x$, $c^2 = T/\rho$ (Newton's law; cons of mom)

-express physical basis for equation (+ constit rel) -conservation of mass, momentum, etc. $U_t + F(U)_x = 0$ WE: $(\rho u_t)_t = (Tu_x)_x$, $c^2 = T/\rho$ (Newton's law; cons of mom) Define $v = u_t$ and $w = cu_x$

-express physical basis for equation (+ constit rel)

-conservation of mass, momentum, etc. $U_t + F(U)_x = 0$

WE: $(\rho u_t)_t = (Tu_x)_x$, $c^2 = T/\rho$ (Newton's law; cons of mom)

Define $v = u_t$ and $w = cu_x$

WE:

$$U = \begin{pmatrix} u_t \\ cu_x \end{pmatrix}, \qquad F(U) = AU = \begin{pmatrix} 0 & c \\ c & 0 \end{pmatrix} U$$

-example of a 1-D Conservation Law

-express physical basis for equation (+ constit rel)

-conservation of mass, momentum, etc. $U_t + F(U)_x = 0$

WE: $(\rho u_t)_t = (Tu_x)_x$, $c^2 = T/\rho$ (Newton's law; cons of mom)

Define $v = u_t$ and $w = cu_x$

WE:

$$U = \begin{pmatrix} u_t \\ cu_x \end{pmatrix}, \qquad F(U) = AU = \begin{pmatrix} 0 & c \\ c & 0 \end{pmatrix} U$$

-example of a 1-D Conservation Law Multi-D:

$$u_{tt} - c^2 \Delta u = 0, \quad u_{tt} - \nabla \cdot (c^2 \nabla u) = 0$$

 $\Delta = \partial_x^2 + \partial_y^2 (+\partial_z^2)$; membrane, solid

-express physical basis for equation (+ constit rel)

-conservation of mass, momentum, etc. $U_t + F(U)_x = 0$

WE: $(\rho u_t)_t = (Tu_x)_x$, $c^2 = T/\rho$ (Newton's law; cons of mom)

Define $v = u_t$ and $w = cu_x$

WE:

$$U = \begin{pmatrix} u_t \\ cu_x \end{pmatrix}, \qquad F(U) = AU = \begin{pmatrix} 0 & c \\ c & 0 \end{pmatrix} U$$

-example of a 1-D Conservation Law Multi-D:

$$u_{tt} - c^2 \Delta u = 0, \quad u_{tt} - \nabla \cdot (c^2 \nabla u) = 0$$

 $\Delta = \partial_x^2 + \partial_y^2 (+\partial_z^2)$; membrane, solid Nonlinear if c = c(u) for example.

$$U_t + \sum \partial_{x_i} F_i(U) = 0; \quad U = (u_1, \dots, u_n) \in \mathbf{R}^n, \quad F_i \in \mathbf{R}^n$$

Hyperbolic vs Elliptic: Prototype

Hyperbolic $u_t + au_x = 0$, $u(x, 0) = u_0(x)$ Solution $u = u_0(x - at)$

Features:

- IVP well-posed
- characteristics
- finite propagation speed
- no smoothness

Hyperbolic vs Elliptic: Prototype

Hyperbolic $u_t + au_x = 0$, $u(x, 0) = u_0(x)$ Solution $u = u_0(x - at)$

Features:

- IVP well-posed
- characteristics
- finite propagation speed
- no smoothness

Elliptic $u_{xx} = 0$, u(0) = a, u(1) = bSolution u(x) = a + (b - a)x

Features:

- BVP well-posed
- maximum principles
- apriori bounds on derivatives
- no notion of propagation

Notation

Operator
$$P(D)$$
: $P(D)u = \sum c_{\alpha}D^{\alpha}u$

Multi-index: $x \in \mathbf{R}^n$, $\alpha = (\alpha_1, \alpha_2, \dots \alpha_n)$, α_i integers

$$|\alpha| = \alpha_1 + \alpha_2 + \ldots + \alpha_n$$
 order of multi-index

Deriv vector
$$D = \left(\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, \dots \frac{\partial}{\partial x_n}\right)$$
 $D^{\alpha} = \frac{\partial^{|\alpha|}}{\partial_{x_1}^{\alpha_1} \partial_{x_2}^{\alpha_2} \dots \partial_{x_n}^{\alpha_n}}$

Principal part of *k*-th order operator

$$P_k(D) = \sum_{|\alpha|=k} c_{\alpha} D^{\alpha} u$$

Example: $c^2u_{xx} - u_{tt} + mu = 0$ (Klein-Gordon equation)

$$k = 2$$
, variables (x, t) ; $c_{20} = c^2$, $c_{02} = -1$, $c_{00} = m$

$$P_2 u = c^2 u_{xx} - u_{tt}$$

Dual (symbol) vector $\xi = (\xi_1, \xi_2, \dots \xi_n)$ Principal symbol (homog polynomial) $P_k(\xi) = \sum c_{\alpha} \xi^{\alpha}$

```
Dual (symbol) vector \xi = (\xi_1, \xi_2, \dots \xi_n)
Principal symbol (homog polynomial) P_k(\xi) = \sum c_\alpha \xi^\alpha
Elliptic: \xi \in \mathbf{R}^n, \xi \neq 0 \Rightarrow P_k(\xi) \neq 0
```

```
The Dual (symbol) vector \xi = (\xi_1, \xi_2, \dots \xi_n)
Principal symbol (homog polynomial) P_k(\xi) = \sum c_\alpha \xi^\alpha
Elliptic: \xi \in \mathbb{R}^n, \xi \neq 0 \Rightarrow P_k(\xi) \neq 0
Hyperbolic: P_k(\xi) has maximal number of real roots: P_k(\tau \nu_0 + \xi) = 0 roots \tau_i(\xi), \forall \xi \notin \text{span}\nu_0; \nu_0 = \text{time-like}
```

Dual (symbol) vector $\xi = (\xi_1, \xi_2, \dots \xi_n)$ Principal symbol (homog polynomial) $P_k(\xi) = \sum c_\alpha \xi^\alpha$ Elliptic: $\xi \in \mathbb{R}^n$, $\xi \neq 0 \Rightarrow P_k(\xi) \neq 0$

Hyperbolic: $P_k(\xi)$ has maximal number of real roots:

 $P_k(\tau\nu_0+\xi)=0$ roots $\tau_i(\xi)$, $\forall \xi \notin \text{span}\nu_0$; $\nu_0=\text{time-like}$

Why should algebraic structure imply analytic properties?

Dual (symbol) vector $\xi = (\xi_1, \xi_2, \dots \xi_n)$ Principal symbol (homog polynomial) $P_k(\xi) = \sum c_{\alpha} \xi^{\alpha}$

Elliptic: $\xi \in \mathbf{R}^n$, $\xi \neq 0 \Rightarrow P_k(\xi) \neq 0$

Hyperbolic: $P_k(\xi)$ has maximal number of real roots:

 $P_k(\tau\nu_0+\xi)=0$ roots $\tau_i(\xi)$, $\forall \xi \notin \text{span}\nu_0$; $\nu_0=\text{time-like}$

Why should algebraic structure imply analytic properties?

• Elliptic: k even; if k=2, then $P_2(\xi)=\xi^TQ\xi$ pos def \Rightarrow No local extrema with $\partial^2 u/\partial^2_{x_i}<0 \quad \forall i\Rightarrow \max$ princ

Dual (symbol) vector $\xi = (\xi_1, \xi_2, \dots \xi_n)$ Principal symbol (homog polynomial) $P_k(\xi) = \sum c_{\alpha} \xi^{\alpha}$

Elliptic: $\xi \in \mathbf{R}^n$, $\xi \neq 0 \Rightarrow P_k(\xi) \neq 0$

Hyperbolic: $P_k(\xi)$ has maximal number of real roots:

 $P_k(\tau\nu_0+\xi)=0$ roots $\tau_i(\xi)$, $\forall \xi \notin \text{span}\nu_0$; $\nu_0=\text{time-like}$

Why should algebraic structure imply analytic properties?

- Elliptic: k even; if k=2, then $P_2(\xi)=\xi^TQ\xi$ pos def \Rightarrow No local extrema with $\partial^2 u/\partial^2_{x_i}<0 \quad \forall i\Rightarrow$ max princ
- Hyperbolic: \exists plane wave solutions $u(\xi \cdot x)$ if $P_k(\xi) = 0$

Dual (symbol) vector $\xi = (\xi_1, \xi_2, \dots \xi_n)$ Principal symbol (homog polynomial) $P_k(\xi) = \sum c_{\alpha} \xi^{\alpha}$

Elliptic: $\xi \in \mathbf{R}^n$, $\xi \neq 0 \Rightarrow P_k(\xi) \neq 0$

Hyperbolic: $P_k(\xi)$ has maximal number of real roots:

 $P_k(\tau\nu_0+\xi)=0$ roots $\tau_i(\xi)$, $\forall \xi \notin \text{span}\nu_0$; $\nu_0=\text{time-like}$

Why should algebraic structure imply analytic properties?

- Elliptic: k even; if k=2, then $P_2(\xi)=\xi^TQ\xi$ pos def \Rightarrow No local extrema with $\partial^2 u/\partial^2_{x_i}<0 \quad \forall i\Rightarrow$ max princ
- Hyperbolic: \exists plane wave solutions $u(\xi \cdot x)$ if $P_k(\xi) = 0$

First-order systems $\sum A_j \partial_{x_j} U + BU = 0$, $U \in \mathbf{R}^n$ Elliptic or hyperbolic: structure of

$$P(\xi) = \det \sum \xi_j A_j$$

Systems of Conservation Laws

$$u_t + f(u)_x + g(u)_y = 0,$$

eg, compressible gas dynamics

$$u = (\rho, m, n, \ldots), \quad m = u\rho, \quad n = v\rho$$

Important in applications, simulations

Systems of Conservation Laws

$$u_t + f(u)_x + g(u)_y = 0,$$

eg, compressible gas dynamics

$$u = (\rho, m, n, \ldots), \quad m = u\rho, \quad n = v\rho$$

Important in applications, simulations

no existence theory, even for "small data".

Systems of Conservation Laws

$$u_t + f(u)_x + g(u)_y = 0,$$

eg, compressible gas dynamics

$$u = (\rho, m, n, \ldots), \quad m = u\rho, \quad n = v\rho$$

Important in applications, simulations

no existence theory, even for "small data".

Why?

Systems of Conservation Laws

$$u_t + f(u)_x + g(u)_y = 0,$$

eg, compressible gas dynamics

$$u = (\rho, m, n, \ldots), \quad m = u\rho, \quad n = v\rho$$

Important in applications, simulations

no existence theory, even for "small data".

Why?

 smooth data lead to discontinuous solutions (need to study weak solutions)

Systems of Conservation Laws

$$u_t + f(u)_x + g(u)_y = 0,$$

eg, compressible gas dynamics

$$u = (\rho, m, n, \ldots), \quad m = u\rho, \quad n = v\rho$$

Important in applications, simulations

no existence theory, even for "small data".

Why?

- smooth data lead to discontinuous solutions (need to study weak solutions)
- discontinuities in quasilinear equations propagate on shocks, not on characteristics

Systems of Conservation Laws

$$u_t + f(u)_x + g(u)_y = 0,$$

eg, compressible gas dynamics

$$u = (\rho, m, n, \ldots), \quad m = u\rho, \quad n = v\rho$$

Important in applications, simulations

no existence theory, even for "small data".

Why?

- smooth data lead to discontinuous solutions (need to study weak solutions)
- discontinuities in quasilinear equations propagate on shocks, not on characteristics
- Characteristics in multiD are complicated (WF sets)

Weak Solutions: Linear Equations

Divergence form equations (conservation laws):

$$\nabla \cdot F(U) = 0 \Rightarrow \iint F \cdot \nabla \theta \, dx = 0, \quad \forall \theta$$

 $U \in \mathsf{Sobolev} \; \mathsf{space} \; (\mathsf{or} \; \mathsf{in} \; \mathcal{D}')$

Linear Equations: well-posed in L^p or $W^{m,p}$

Existence thms: enlarge class, then prove regularity

Weak Solutions: Linear Equations

Divergence form equations (conservation laws):

$$\nabla \cdot F(U) = 0 \Rightarrow \iint F \cdot \nabla \theta \, dx = 0, \quad \forall \theta$$

 $U \in \mathsf{Sobolev} \; \mathsf{space} \; (\mathsf{or} \; \mathsf{in} \; \mathcal{D}')$

Linear Equations: well-posed in L^p or $W^{m,p}$

Existence thms: enlarge class, then prove regularity

Elliptic equations: weak = strong Hyperbolic equations: \exists weak solutions that are not differentiable: plausible from char structure

Weak Solutions: Linear Equations

Divergence form equations (conservation laws):

$$\nabla \cdot F(U) = 0 \Rightarrow \iint F \cdot \nabla \theta \, dx = 0, \quad \forall \theta$$

 $U \in \mathsf{Sobolev} \; \mathsf{space} \; (\mathsf{or} \; \mathsf{in} \; \mathcal{D}')$

Linear Equations: well-posed in L^p or $W^{m,p}$

Existence thms: enlarge class, then prove regularity

Elliptic equations: weak = strong Hyperbolic equations: \exists weak solutions that are not differentiable: plausible from char structure

Higher dimensions: loss of regularity (focussing) when waves interact; multidim wave propagation subtle Hyperbolic vs Elliptic: different properties of wk solns

Quasilinear Equations/Systems

$$\sum A_j(U)\partial_{x_j}U + B(U) = 0$$

Elliptic equations: Theory based on linear equations

Quasilinear Equations/Systems

$$\sum A_j(U)\partial_{x_j}U + B(U) = 0$$

Elliptic equations: Theory based on linear equations

Hyperbolic equations: New phenomena appear

Linear
$$u_t + au_x = 0$$
, $\tau + a\xi = 0$, char $\lambda = -\tau/\xi = a$

Quasilinear
$$u_t + uu_x = 0$$
, $\tau + u\xi = 0$, char $\lambda = -\tau/\xi = u$

$$u_t + (u^2/2)_x = 0$$
 (Burgers equation)

Discontinuities become shocks & RH replaces char. eqn

$$\sigma[u] = \left\lceil \frac{u^2}{2} \right\rceil$$
 or $\sigma = \frac{u_L + u_R}{2}$

- 1D small data: theory complete (Glimm, Bressan)
- large data obstructions
- large data OK in examples (gas dynamics)

- 1D small data: theory complete (Glimm, Bressan)
- large data obstructions
- large data OK in examples (gas dynamics)
- Characteristics inadequate
- study Riemann problems (not linearization)

- 1D small data: theory complete (Glimm, Bressan)
- large data obstructions
- large data OK in examples (gas dynamics)
- Characteristics inadequate
- study Riemann problems (not linearization)
- Multidimensional linear & semilinear equations
- theory for smooth data (characteristics)

- 1D small data: theory complete (Glimm, Bressan)
- large data obstructions
- large data OK in examples (gas dynamics)
- Characteristics inadequate
- study Riemann problems (not linearization)
- Multidimensional linear & semilinear equations
- theory for smooth data (characteristics)
- Multidimensional quasilinear systems
- scalar equation (Krushkov, Conway, Wagner et al)
- results on shock stability (Majda, Chen et al)
- axisymmetric geometry (Glimm, Chen)

- 1D small data: theory complete (Glimm, Bressan)
- large data obstructions
- large data OK in examples (gas dynamics)
- Characteristics inadequate
- study Riemann problems (not linearization)
- Multidimensional linear & semilinear equations
- theory for smooth data (characteristics)
- Multidimensional quasilinear systems
- scalar equation (Krushkov, Conway, Wagner et al)
- results on shock stability (Majda, Chen et al)
- axisymmetric geometry (Glimm, Chen)
- Contrast with extensive computational efforts

- 1D small data: theory complete (Glimm, Bressan)
- large data obstructions
- large data OK in examples (gas dynamics)
- Characteristics inadequate
- study Riemann problems (not linearization)
- Multidimensional linear & semilinear equations
- theory for smooth data (characteristics)
- Multidimensional quasilinear systems
- scalar equation (Krushkov, Conway, Wagner et al)
- results on shock stability (Majda, Chen et al)
- axisymmetric geometry (Glimm, Chen)
- Contrast with extensive computational efforts
 Incompatible difficulties:
 loss of regularity in multidim (linear) wave propagation nonlinear discontinuities do not propagate along char'cs

Riemann Problems: Self-Similar Solution

Basic tool in 1-D:
$$u_t + f(u) = 0$$

$$u(x,0) = \begin{cases} u_L, & x < 0 \\ u_R, & x > 0 \end{cases}$$

Riemann Problems: Self-Similar Solution

Basic tool in 1-D: $u_t + f(u) = 0$

$$u(x,0) = \begin{cases} u_L, & x < 0 \\ u_R, & x > 0 \end{cases}$$

Solution $u = u(\xi) = u(x/t)$

Basic tool in 1-D: $u_t + f(u) = 0$

$$u(x,0) = \begin{cases} u_L, & x < 0 \\ u_R, & x > 0 \end{cases}$$

Solution $u = u(\xi) = u(x/t)$

1-D analogue of our work: 2-point BVP for ODE for $u(\xi)$

$$-\xi u' + A(u)u' = 0$$
 or $(-\xi I + A)u' = 0, u(-\infty) = u_L, u(\infty) = u_R$

 $\xi = \lambda(u)$, $u' = \vec{r}(u)$ Rarefaction if λ increasing

Basic tool in 1-D: $u_t + f(u) = 0$

$$u(x,0) = \begin{cases} u_L, & x < 0 \\ u_R, & x > 0 \end{cases}$$

Solution $u = u(\xi) = u(x/t)$

1-D analogue of our work: 2-point BVP for ODE for $u(\xi)$

$$-\xi u' + A(u)u' = 0$$
 or $(-\xi I + A)u' = 0, u(-\infty) = u_L, u(\infty) = u_R$

 $\xi = \lambda(u)$, $u' = \vec{r}(u)$ Rarefaction if λ increasing

ODE holds weakly at $\xi = s$ if

$$\left(-\xi+f(u)\right]_{s-}^{s+}=0 \quad \text{or} \quad s[u]=[f(u)]$$

Shock, λ decreasing

Basic tool in 1-D: $u_t + f(u) = 0$

$$u(x,0) = \begin{cases} u_L, & x < 0 \\ u_R, & x > 0 \end{cases}$$

Solution $u = u(\xi) = u(x/t)$

1-D analogue of our work: 2-point BVP for ODE for $u(\xi)$

$$-\xi u' + A(u)u' = 0$$
 or $(-\xi I + A)u' = 0, u(-\infty) = u_L, u(\infty) = u_R$

 $\xi = \lambda(u), u' = \vec{r}(u)$ Rarefaction if λ increasing

ODE holds weakly at $\xi = s$ if

$$(-\xi + f(u)]_{s-}^{s+} = 0$$
 or $s[u] = [f(u)]$

Shock, λ decreasing

Do not solve ODE in conventional way

Basic tool in 1-D: $u_t + f(u) = 0$

$$u(x,0) = \begin{cases} u_L, & x < 0 \\ u_R, & x > 0 \end{cases}$$

Solution $u = u(\xi) = u(x/t)$

1-D analogue of our work: 2-point BVP for ODE for $u(\xi)$

$$-\xi u' + A(u)u' = 0$$
 or $(-\xi I + A)u' = 0, u(-\infty) = u_L, u(\infty) = u_R$

 $\xi = \lambda(u)$, $u' = \vec{r}(u)$ Rarefaction if λ increasing

ODE holds weakly at $\xi = s$ if

$$(-\xi + f(u)]_{s-}^{s+} = 0$$
 or $s[u] = [f(u)]$

Shock, λ decreasing

Do not solve ODE in conventional way

Our program: formulate and solve in 2D

Analogy with 1-D

- Analogy with 1-D
- Occurrence in physically interesting problems
 Shock reflection by a wedge

- Analogy with 1-D
- Occurrence in physically interesting problems
 Shock reflection by a wedge

Shock interactions

- Analogy with 1-D
- Occurrence in physically interesting problems
 Shock reflection by a wedge

- Shock interactions
- Numerical simulations

Similarity Reduction in Two-D Systems

$$U_t + F(U)_x + G(U)_y = 0, \quad U \in \mathbf{R}^n, \quad \text{hyperbolic}$$

Riemann Data: $U(x, y, 0) = f\left(\frac{x}{y}\right)$ Similarity Variables:

$$\xi = \frac{x}{t}, \quad \eta = \frac{y}{t} \qquad U = U(\xi, \eta)$$

Reduced System in Two Variables $\partial_{\xi}(F - \xi U) + \partial_{\eta}(G - \eta U) = -2U$

Sectorially Const Data

Method: resolve 1-D far-field discont; IV/BVP in 2-D RP in 2+1 dim \Rightarrow CP in 2 ind. vbles. w. data at ∞ Reduced to a previously solved problem RLIT

Type Changes: hyperb in far field; 'subsonic' region near 0

Acoustic-type Structure

$$U_t + AU_x + BU_y = 0; \quad \det |I\tau + A\lambda + B\mu| = (\prod_{i=1}^n \ell_i \cdot \sigma) \sigma^T Q_N \sigma^T$$

$$\sigma = (\tau, \lambda, \mu)$$

$$\begin{split} \big((A - \xi I) \partial_{\xi} + (B - \eta I) \partial_{\eta} \big) U &= 0 \\ \Xi &= (\xi, \eta) \\ \text{dual vector } \vec{\alpha} &= (\alpha, \beta) \end{split}$$

$$\prod_{i=1}^{n-2} \ell_i \cdot (-\vec{\alpha} \cdot \Xi, \alpha, \beta) \underbrace{q(\sigma(\vec{\alpha}, \Xi), U)}_{\tilde{q}(\vec{\alpha}, \Xi, U)}$$

CHANGE OF TYPE THEOREM Reduced

equation hyperbolic iff $x = (1, \xi, \eta)$ outside acoustic wave cone $C_W = \{x^T Q_N^{-1} x = 0\}$.

Prototype Systems: UTSD & NLWS

Comparison of Isentropic Gas Dynamics & NLWS

Isentropic Gas Dyn: $p = \rho^{\gamma}/\gamma$ Nonlinear Wave System: $\rho_t + (\rho u)_x + (\rho v)_y = 0$ $\rho_t + m_x + n_y = 0$

Self-sim 2nd-order eqn for nonlinear charac vble (ρ):

$$\begin{aligned} & \left((c^2(\rho) - U^2) \rho_{\xi} - UV \rho_{\eta} \right)_{\xi} + \\ & \left((c^2(\rho) - \xi^2) \rho_{\xi} - \xi \eta \rho_{\eta} \right)_{\xi} \\ & \left((c^2(\rho) - V^2) \rho_{\eta} - UV \rho_{\xi} \right)_{\eta} + \ldots = 0 \right. \\ & \left. + \left((c^2(\rho) - \eta^2) \rho_{\eta} - \xi \eta \rho_{\xi} \right)_{\eta} \\ & U = u - \xi, \quad V = v - \eta \text{ ('ψ-vel.')} \end{aligned} \\ \end{aligned}$$

Transport equation for linear characteristic variable:

$$W=V_{\xi}-U_{\eta}=v_{\xi}-u_{\eta}$$
= vorticity $w=n_{\xi}-m_{\eta}$ $w_{t}=0$ $UW_{\xi}+VW_{\eta}+(U_{\xi}+V_{\eta}+1)W=0$ $(\xi,\eta)\cdot\nabla w+w=0$ Linear Nonlinear evolution equation or: $rm_{r}=p_{\xi}$ $rn_{r}=p_{\eta}$

Prototype Data

Interacting Shocks: A Bifurcation Problem for NLWS

2-state data: U_0 , U_1 Data give 2 shocks Far field soln: 4 waves

- Symmetric prototype for converging sector boundaries
- 'Weak shock reflection', von Neumann paradox
- Features
- 1. 2 parameters: $\rho_0/\rho_1 > 1$ and κ_a (Mach # & wedge angle)
- 2. Incident shocks: $\xi = \kappa_a \eta \chi$, $\xi = -\kappa_a \eta + \chi$
- 3. Small κ : two local solns –'weak' & 'strong' reg refl
- 4. Large κ : 'Mach reflection'
- 5. Intermed κ : no sol'n from shock polars (Q1D RP)

Bifurcation of Interacting Shocks

A+A*: Shock meets C_0

c: Q-1-D $\mathring{R}\mathring{P}$ solvable

3 regions: A+A* MR possible

C RR possible

B neither possible

Simulation of the Solution: Region A

Sonic circle

$$C_0 = \{\xi^2 + \eta^2 = c^2(\rho_0)\}\$$

 $c^2(\rho) = \rho^{\gamma - 1}$

Supersonic soln known

η axis

Simulation indicates U continuous at C_0 , $\partial U/\partial r$ singular (not quite the case)

ξaxis

10

Subsonic Flow with Mach Stem

Degenerate Elliptic Free Boundary Problem Existence theorem for global problem for NLWS

$$Q \equiv \left((c^2(\rho) - \xi^2) \rho_\xi - \xi \eta \rho_\eta \right)_\xi + \left((c^2(\rho) - \eta^2) \rho_\eta - \xi \eta \rho_\xi \right)_\eta + \xi \rho_\xi + \eta \rho_\eta$$

$$\rho = \rho_0$$
 on σ

(degenerate boundary, continuous soln)

$$\rho_{\xi} = 0$$
 (symmetry) on Σ_0

Free boundary from RH equations:

$$N(\rho) \equiv \beta \cdot \nabla \rho = 0$$
 (oblique deriv) on Σ

$$\frac{d\eta}{d\xi} = \frac{\eta^2 - s^2}{\xi \eta + \sqrt{s^2(\xi^2 + \eta^2 - s^2)}} \quad s^2 = \frac{[p]}{[\rho]}$$

 $\rho = \rho_{\text{max}}$ at $\Sigma \cap \Sigma_0$ (part of D. bdry)

Approach: Fixed Point Theorem (CK & Lieberman, CKK)

• Difficulties: N not unif oblique; est. at degenerate corner

Free Boundary as a Fixed Point

```
Formulate as 2nd order PDE for density, \rho (not potential);
 Rewrite RH conditions as (1) evolution eqn for shock and
                                    (2) ODBC for \rho
Problem is quasilinear, degenerate elliptic PDE, mixed BC
Regularize PDE (parameter \varepsilon)
Step 1 Fix approx \eta = \eta(\xi), defines \Sigma \in \mathcal{K}^{\varepsilon} \subset H_{1+\alpha_1} (Hölder)
Step 2 Solve (fixed) mixed BVP for \rho
  Lieberman's Mixed BVP theory + linearization
     + modifications for loss of obliqueness
Step 3 Map \eta \to \tilde{\eta} = J\rho by other RH cond (shock evolution)
  Schauder F. P. Thm: Compactness \Rightarrow fixed pt for J
                  J: \mathcal{K} \subset H_{1+\alpha_1} \to \mathcal{K} \cap H_{1+\alpha}, \ \alpha > \alpha_1
Step 4 Show \eta and \rho solve the problem.
```

Supersonic Patch (Region B)

- Numerical results of Tesdall and Hunter on UTSD eqn
- SIAP, 2003
- Quasi-steady simulation
- Cascade of embedded supersonic regions

ALLEN M. TESDALL AND JOHN K. HUNTER

 To complete problem, need to find reflected shock (by a similar fixed-point, free-boundary approach?)

- To complete problem, need to find reflected shock (by a similar fixed-point, free-boundary approach?)
- Related work by Morawetz, Brio-Hunter, Rosales-Tabak,
 Y. Zheng, K. Song, Chen-Feldman, Serre, Zhang-Zheng,
 S.-X. Chen et al.

- To complete problem, need to find reflected shock (by a similar fixed-point, free-boundary approach?)
- Related work by Morawetz, Brio-Hunter, Rosales-Tabak,
 Y. Zheng, K. Song, Chen-Feldman, Serre, Zhang-Zheng,
 S.-X. Chen et al.
- Method feasible for simple equation, data

- To complete problem, need to find reflected shock (by a similar fixed-point, free-boundary approach?)
- Related work by Morawetz, Brio-Hunter, Rosales-Tabak,
 Y. Zheng, K. Song, Chen-Feldman, Serre, Zhang-Zheng,
 S.-X. Chen et al.
- Method feasible for simple equation, data
- Other hyperbolic problems (rarefactions)

- To complete problem, need to find reflected shock (by a similar fixed-point, free-boundary approach?)
- Related work by Morawetz, Brio-Hunter, Rosales-Tabak,
 Y. Zheng, K. Song, Chen-Feldman, Serre, Zhang-Zheng,
 S.-X. Chen et al.
- Method feasible for simple equation, data
- Other hyperbolic problems (rarefactions)
- Need to analyse triple points

- To complete problem, need to find reflected shock (by a similar fixed-point, free-boundary approach?)
- Related work by Morawetz, Brio-Hunter, Rosales-Tabak,
 Y. Zheng, K. Song, Chen-Feldman, Serre, Zhang-Zheng,
 S.-X. Chen et al.
- Method feasible for simple equation, data
- Other hyperbolic problems (rarefactions)
- Need to analyse triple points
- Extend to other Riemann data

- To complete problem, need to find reflected shock (by a similar fixed-point, free-boundary approach?)
- Related work by Morawetz, Brio-Hunter, Rosales-Tabak,
 Y. Zheng, K. Song, Chen-Feldman, Serre, Zhang-Zheng,
 S.-X. Chen et al.
- Method feasible for simple equation, data
- Other hyperbolic problems (rarefactions)
- Need to analyse triple points
- Extend to other Riemann data
- Extend to gas dynamics

- To complete problem, need to find reflected shock (by a similar fixed-point, free-boundary approach?)
- Related work by Morawetz, Brio-Hunter, Rosales-Tabak,
 Y. Zheng, K. Song, Chen-Feldman, Serre, Zhang-Zheng,
 S.-X. Chen et al.
- Method feasible for simple equation, data
- Other hyperbolic problems (rarefactions)
- Need to analyse triple points
- Extend to other Riemann data
- Extend to gas dynamics
- Study three dimensional problems