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What Are Conservation Laws?
-express physical basis for equation (+ constit rel)
-conservation of mass, momentum, etc. Ut + F (U)x = 0

WE: (ρut)t = (Tux)x, c2 = T/ρ (Newton’s law; cons of mom)
Define v = ut and w = cux

WE:

U =

(

ut

cux

)

, F (U) = AU =

(

0 c

c 0

)

U

-example of a 1-D Conservation Law
Multi-D:

utt − c2∆u = 0, utt −∇ · (c2∇u) = 0

∆ = ∂2
x + ∂2

y(+∂2
z ); membrane, solid

Nonlinear if c = c(u) for example.

Ut +
∑

∂xi
Fi(U) = 0; U = (u1, . . . , un) ∈ R

n, Fi ∈ R
n
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Hyperbolic vs Elliptic: Prototype
Hyperbolic ut + aux = 0, u(x, 0) = u0(x)
Solution u = u0(x− at)
Features:
• IVP well-posed
• characteristics
• finite propagation speed
• no smoothness x

t

x0

x=at+x0

Elliptic uxx = 0, u(0) = a, u(1) = b
Solution u(x) = a+ (b− a)x
Features:
• BVP well-posed
• maximum principles
• apriori bounds on derivatives
• no notion of propagation x

u

a

b
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Notation
Operator P (D): P (D)u =

∑

cαD
αu

Multi-index: x ∈ R
n, α = (α1, α2, . . . αn), αi integers

|α| = α1 + α2 + . . . + αn order of multi-index

Deriv vector D =

(
∂

∂x1
,
∂

∂x2
, . . .

∂

∂xn

)

Dα =
∂|α|

∂α1

x1
∂α2

x2
. . . ∂αn

xn

Principal part of k-th order operator

Pk(D) =
∑

|α|=k

cαD
αu

Example: c2uxx − utt +mu = 0 (Klein-Gordon equation)
k = 2, variables (x, t); c20 = c2, c02 = −1, c00 = m

P2u = c2uxx − utt
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Algebraic Structure & Classification
Dual (symbol) vector ξ = (ξ1, ξ2, . . . ξn)
Principal symbol (homog polynomial) Pk(ξ) =

∑
cαξ

α

Elliptic: ξ ∈ R
n, ξ 6= 0 ⇒ Pk(ξ) 6= 0

Hyperbolic: Pk(ξ) has maximal number of real roots:
Pk(τν0 + ξ) = 0 roots τi(ξ), ∀ξ 6∈ spanν0; ν0 = time-like

Why should algebraic structure imply analytic properties?

• Elliptic: k even; if k = 2, then P2(ξ) = ξTQξ pos def
⇒ No local extrema with ∂2u/∂2

xi
< 0 ∀i ⇒ max princ

• Hyperbolic: ∃ plane wave solutions u(ξ · x) if Pk(ξ) = 0

First-order systems
∑
Aj∂xj

U +BU = 0, U ∈ R
n

Elliptic or hyperbolic: structure of

P (ξ) = det
∑

ξjAj
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The Paradox of Multidimensional CL
Systems of Conservation Laws

ut + f(u)x + g(u)y = 0,

eg, compressible gas dynamics

u = (ρ,m, n, . . .), m = uρ, n = vρ

Important in applications, simulations

• no existence theory, even for “small data”.

Why?
• smooth data lead to discontinuous solutions (need to

study weak solutions)

• discontinuities in quasilinear equations propagate on
shocks, not on characteristics

• Characteristics in multiD are complicated (WF sets)
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Weak Solutions: Linear Equations
Divergence form equations (conservation laws):

∇ · F (U) = 0 ⇒

∫∫

F · ∇θ dx = 0, ∀θ

U ∈ Sobolev space (or in D′)
Linear Equations: well-posed in Lp or Wm,p

Existence thms: enlarge class, then prove regularity

Elliptic equations: weak = strong
Hyperbolic equations: ∃ weak so-
lutions that are not differentiable:
plausible from char structure

Discontinuous
across

characteristics

Locally smooth
solution

x

t

Higher dimensions: loss of regularity (focussing) when
waves interact; multidim wave propagation subtle
Hyperbolic vs Elliptic: different properties of wk solns
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Quasilinear Equations/Systems
∑

Aj(U)∂xj
U + B(U) = 0

Elliptic equations: Theory based on linear equations

Hyperbolic equations: New phenomena appear

Linear ut + aux = 0, τ + aξ = 0, char λ = −τ/ξ = a

Quasilinear ut + uux = 0, τ + uξ = 0, char λ = −τ/ξ = u

ut + (u2/2)x = 0 (Burgers equation)

Discontinuities become shocks & RH replaces char. eqn

σ[u] =

[
u2

2

]

or σ =
uL + uR

2
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Multidimensional Conservation Laws
• 1D small data: theory complete (Glimm, Bressan)
– large data – obstructions
– large data OK in examples (gas dynamics)

• Characteristics inadequate
– study Riemann problems (not linearization)
• Multidimensional linear & semilinear equations
– theory for smooth data (characteristics)
• Multidimensional quasilinear systems
– scalar equation (Krushkov, Conway, Wagner et al)
– results on shock stability (Majda, Chen et al)
– axisymmetric geometry (Glimm, Chen)
• Contrast with extensive computational efforts
Incompatible difficulties:
loss of regularity in multidim (linear) wave propagation
nonlinear discontinuities do not propagate along char’cs
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Riemann Problems: Self-Similar Solutions

Basic tool in 1-D: ut + f(u) = 0

u(x, 0) =

{

uL, x < 0

uR, x > 0

Solution u = u(ξ) = u(x/t)
1-D analogue of our work: 2-point BVP for ODE for u(ξ)

−ξu′+A(u)u′ = 0 or (−ξI+A)u′ = 0, u(−∞) = uL, u(∞) = uR

ξ = λ(u), u′ = ~r(u) Rarefaction if λ increasing
ODE holds weakly at ξ = s if

(
− ξ + f(u)

]s+

s−
= 0 or s[u] = [f(u)]

Shock, λ decreasing
Do not solve ODE in conventional way
Our program: formulate and solve in 2D

Colloquium, McMaster University , January 28, 2005 – p.10/21



Riemann Problems: Self-Similar Solutions

Basic tool in 1-D: ut + f(u) = 0

u(x, 0) =

{

uL, x < 0

uR, x > 0

Solution u = u(ξ) = u(x/t)

1-D analogue of our work: 2-point BVP for ODE for u(ξ)

−ξu′+A(u)u′ = 0 or (−ξI+A)u′ = 0, u(−∞) = uL, u(∞) = uR

ξ = λ(u), u′ = ~r(u) Rarefaction if λ increasing
ODE holds weakly at ξ = s if
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Why Study 2-D Riemann Problems?

• Analogy with 1-D

• Occurrence in physically interesting problems
Shock reflection by a wedge

X=    tΞ

S=    tΣFlow Wedge
Incident Shock

Reflected
Shock

t<0 t=0 t>0

• Shock interactions

• Numerical simulations
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Similarity Reduction in Two-D Systems
Ut + F (U)x +G(U)y = 0, U ∈ R

n, hyperbolic

Riemann Data: U(x, y, 0) = f
(

x
y

)

Similarity Variables:

ξ =
x

t
, η =

y

t
U = U(ξ, η)

Reduced System in Two Variables
∂ξ(F − ξU) + ∂η(G− ηU) = −2U

x

y

Sectorially Const Data
Method: resolve 1-D far-field discont; IV/BVP in 2-D

RP in 2 + 1 dim ⇒ CP in 2 ind. vbles. w. data at ∞
Reduced to a previously solved problem

BUT
Type Changes: hyperb in far field; ‘subsonic’ region near 0
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Acoustic-type Structure
Ut +AUx +BUy = 0; det |Iτ +Aλ+Bµ| =

(
n−2∏

i=1

`i · σ
)
σTQNσ

−2
0

2

−2

0

2
−6

−4

−2

0

2

4

6

Shear

µ

Acoustic

Characteristic Normals

σ=(µ,ν,τ)

ν

τ

−2 0 2 4
−2

0
2

4

−3

−2

−1

0

1

2

3

x

Envelopes in Physical Space

Shear
Acoustic

y

t

σ = (τ, λ, µ)

(
(A− ξI)∂ξ + (B− ηI)∂η

)
U = 0

Ξ = (ξ, η)
dual vector ~α = (α, β)

n−2∏

i=1

`i ·(−~α ·Ξ, α, β) q(σ(~α,Ξ), U)
︸ ︷︷ ︸

q̃(~α,Ξ,U)

CHANGE OF TYPE THEOREM Reduced
equation hyperbolic iff x = (1, ξ, η) outside
acoustic wave cone CW = {xTQ−1

N x = 0}.

NONDEGENERATE

CHARACTERISTICS

  Ξ
0DEGENERATE CHARACTERISTICS

SUBSONIC REGION:
ELLIPTIC OR MIXED

SUPERSONIC REGION: HYPERBOLIC

τ
−

τ
+

L

S
P

A
C

E
LIK

E
 

 C
U

R
V

E

ξ

η
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Prototype Systems: UTSD & NLWS
Comparison of Isentropic Gas Dynamics & NLWS

Isentropic Gas Dyn: p = ργ/γ
ρt + (ρu)x + (ρv)y = 0
(ρu)t + (ρu2 + p)x + (ρuv)y = 0
(ρv)t + (ρuv)x + (ρv2 + p)y = 0

Nonlinear Wave System:
ρt +mx + ny = 0
mt + px = 0 m = ρu
nt + py = 0 n = ρv

Self-sim 2nd-order eqn for nonlinear charac vble (ρ):
(
(c2(ρ) − U2)ρξ − UV ρη

)

ξ
+

(
(c2(ρ)−V 2)ρη −UV ρξ

)

η
+ . . . = 0

U = u− ξ, V = v − η (‘ψ-vel.’)

(
(c2(ρ) − ξ2)ρξ − ξηρη

)

ξ

+
(
(c2(ρ) − η2)ρη − ξηρξ

)

η

+ξρξ + ηρη = 0

Transport equation for linear characteristic variable:
W = Vξ − Uη = vξ − uη= vorticity
UWξ + VWη + (Uξ + Vη + 1)W = 0
Nonlinear evolution equation

w = nξ −mη wt = 0
(ξ, η) · ∇w + w = 0 Linear
or: rmr = pξ rnr = pη
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Prototype Data

Interacting Shocks: A Bifurcation Problem for NLWS

U
1
=(ρ

1
,m

1
,n

1
)

U
0
=(ρ

0
,m

0
,n

0
)

x →

y
↑

x=κ a
 yx=−κ

a  y

2-state data: U0, U1

Data give 2 shocks
Far field soln: 4 waves

U
1

U
0

U
1a

U
1b

ξ  →

η
↑

Linear WaveLinear Wave

ShockShock

• Symmetric prototype for converging sector boundaries
• ‘Weak shock reflection’, von Neumann paradox
• Features
1. 2 parameters: ρ0/ρ1 > 1 and κa (Mach # & wedge angle)
2. Incident shocks: ξ = κaη − χ, ξ = −κaη + χ

3. Small κ: two local solns –‘weak’ & ‘strong’ reg refl
4. Large κ: ‘Mach reflection’
5. Intermed κ: no sol’n from shock polars (Q1D RP)
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Bifurcation of Interacting Shocks

U1=(ρ
1
,0,0)

U0=(ρ
0
,0,n

0
)

y

xx=κ a
 yx=−κ

a  y

Data
U

1

U
0 C

0

C
1

 U
1a

U
1b

 

η

ξ
 l a

: ξ=κ a
η l

b : ξ=−κ
a η

S a
− : ξ=κ a

η+χ a
−

S
b

+
: ξ=−κ

a η−χ
a

−

A+A*: Shock meets C0

U
1

U
0 C

0

C
1

 U
1a

U
1b

 

η

ξ

 l a
: ξ

=κ a
η

 lb : ξ=−κ
a η

S a
− : ξ

=κ a
η+

χ a
−S

b
+

: ξ=−κ
a η−χ

a
−

Q−1−D RP

C: Q-1-D RP solvable

5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

10

ρ
0
/ρ

1

κ a 

Region  A

Region  A*

 Region  C
Region  B

  κ
*

3 regions: A+A* MR possible
C RR possible
B neither possible
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Simulation of the Solution: Region A

−15 −10 −5 0 5 10 15

−10

−5

0

5

10

Contour Plot of Density ρ.  Data U
0
 = (64,0,361.9503); U

1
 = (1,0,0);  κ

a
 = 8;  κ

b
 = −8

ξ axis

η 
ax

is

Sonic circle

C0 = {ξ2 + η2 = c2(ρ0)}

c2(ρ) = ργ−1

Supersonic soln known

Simulation indicates U continuous at C0, ∂U/∂r singular
(not quite the case)
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Subsonic Flow with Mach Stem
Degenerate Elliptic Free Boundary Problem
Existence theorem for global problem for NLWS
Q ≡

(
(c2(ρ)−ξ2)ρξ−ξηρη

)

ξ
+
(
(c2(ρ)−η2)ρη−ξηρξ

)

η
+ξρξ+ηρη

Ω σΣ

Σ

0

Q(ρ) = 0 (degenerate elliptic) in Ω
ρ = ρ0 on σ
(degenerate boundary, continuous soln)
ρξ = 0 (symmetry) on Σ0

Free boundary from RH equations:
N(ρ) ≡ β · ∇ρ = 0 (oblique deriv) on Σ

dη

dξ
=

η2 − s2

ξη +
√

s2(ξ2 + η2 − s2)
s2 =

[p]

[ρ]

ρ = ρmax at Σ ∩ Σ0 (part of D. bdry)
Approach: Fixed Point Theorem (CK & Lieberman, CKK)
• Difficulties: N not unif oblique; est. at degenerate corner
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Free Boundary as a Fixed Point
Formulate as 2nd order PDE for density, ρ (not potential);
Rewrite RH conditions as (1) evolution eqn for shock and

(2) ODBC for ρ
Problem is quasilinear, degenerate elliptic PDE, mixed BC
Regularize PDE (parameter ε)

Step 1 Fix approx η = η(ξ), defines Σ ∈ Kε ⊂ H1+α1
(Hölder)

Step 2 Solve (fixed) mixed BVP for ρ
Lieberman’s Mixed BVP theory + linearization

+ modifications for loss of obliqueness
Step 3 Map η → η̃ = Jρ by other RH cond (shock evolution)

Schauder F. P. Thm: Compactness ⇒ fixed pt for J
J : K ⊂ H1+α1

→ K ∩H1+α, α > α1

Step 4 Show η and ρ solve the problem.
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Supersonic Patch (Region B)

• Numerical results of Tesdall
and Hunter on UTSD eqn

• SIAP, 2003
• Quasi-steady simulation
• Cascade of embedded

supersonic regionsSELF-SIMILAR SOLUTIONS FOR WEAK SHOCK REFLECTION 53
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Fig. 5. A detailed contour plot of (a) u and (b) v near the triple point for a = 0.5. The u-
contour spacing is 0.0005 and the v-contour spacing is 0.001. The sonic line is plotted in Figure 3(b)
and Figure 6. The figure shows a sequence of shock and expansion waves. Each expansion wave
is centered at a triple shock intersection and reflects off the sonic line into a compression wave.
The compression wave forms a shock wave that intersects the Mach shock, resulting in a sequence
of triple points. Three shock-expansion wave pairs and triple points are visible in the plots, with
indications of a fourth. The region shown contains the refined uniform grid, which has 768 × 608
grid points.

behind the shock is sonic. This point is very close to the corresponding triple point
on the Mach shock, as shown in Figure 6. It is not possible, however, to determine
from the numerical solution whether or not this sonic point coincides exactly with
the triple point, as argued by Guderley [9] in the case of steady weak shock Mach
reflections.

Three shocks and an expansion fan appear to connect four states at the leading
triple point. We label these states 1–4 in Figure 6. Table 4.2 gives values of u and v
for each of the states, computed from the numerical solution. For states 2–4, these
values were computed at the locations indicated in the figure. The values of (u, v)
for state 3 behind the reflected shock were computed close to the point where the
flow behind the shock is sonic. This ensures that states 2 and 3 are connected by the
reflected shock and not by any part of the expansion fan, which connects states 3 and
4. For state 1, the values for (u, v) were computed at a location sufficiently far ahead
of the incident shock so that they were not influenced by the effects of numerical
diffusion near the shock.

The velocity components (ū, v̄) in a reference frame moving with the triple point
are given by [12] as

ū = u−
(
ξ∗ +

1

4
η2
∗

)
, v̄ = v −

1

2
η∗u,(4.1)

where (ξ∗, η∗) are the (ξ, η)-coordinates of the triple point. From the numerical solu-
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Fig. 6. An enlargement of the solution in Figure 5 near the leading triple point, showing (a)
u-contours and (b) v-contours. The u-contour spacing is 0.005, and the v-contour spacing is 0.001.
The dashed line in the plots is the sonic line. Table 4.2 gives the values of u and v from the numerical
solution for the states labeled 1–4 in the plots.

tion shown in Figure 6, we obtain ξ∗ = 1.008, η∗ = 0.5128. We show the corresponding
values of (ū, v̄) in Table 4.2. In Figure 7(a), we plot the shock and rarefaction curves
for the steady transonic small disturbance equation [12] through each of the four states
for (ū, v̄). The plot in Figure 7(b) is an enlarged view of the shock and rarefaction
curves for the states 2, 3, and 4. The curves coincide almost exactly with those of
a triple point with an expansion fan. We show similar curves through the numerical
values of the analogous states at the second triple point in Figure 7(c)–(d). These
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Conclusions and Open Problems

• To complete problem, need to find reflected shock (by a
similar fixed-point, free-boundary approach?)

• Related work by Morawetz, Brio-Hunter, Rosales-Tabak,
Y. Zheng, K. Song, Chen-Feldman, Serre, Zhang-Zheng,
S.-X. Chen et al.

• Method feasible for simple equation, data

• Other hyperbolic problems (rarefactions)

• Need to analyse triple points

• Extend to other Riemann data

• Extend to gas dynamics

• Study three dimensional problems
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