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Abstract. Self-similar reduction of an important class of two-dimensional
conservation laws leads to boundary value problems for equations which change
type. We have established a method for solving free boundary problems for
quasilinear degenerate elliptic equations which arise when shocks interact with
the subsonic (nonhyperbolic) part of the solution. This paper summarizes the
principal features of the method.

A preliminary version of these notes formed the basis of a series of three
lectures at the Newton Institute in April, 2003. They are a report of research
carried out jointly with Sunčica Čanić, Eun Heui Kim and Gary Lieberman.
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1 Introduction

Little has been proved about systems of conservation laws in more than two vari-
ables. About ten years ago, Sunčica Čanić, David Wagner and I [15] began to
analyse some simple problems by assuming symmetry, or self-similarity, in the
solutions and reducing systems in two space variables and time to systems in two
variables. This approach has the potential to demonstrate what sorts of singulari-
ties may occur in solutions. Interesting problems in two-dimensional conservation
laws which are naturally self-similar include the von Neumann paradox of regular
and irregular reflection.

We began by analysing the unsteady transonic small disturbance (UTSD)
equation, Example 4.4, following work of Brio and Hunter [2] and of Tabak and
Rosales [47] which developed this equation as an asymptotic reduction of the com-
pressible gas dynamics equations in the case of weak shocks and small deviation
from one-dimensional flow. (In particular, the system (4.4) described in Example
4.4 is irrotational and the spatial symmetry has been broken). Morawetz [43] has
shown how this system arises in the reflection of a shock by a wedge.

Earlier work of Zhang and Zheng [49] had already provided a framework
for self-similar reduction of the gas dynamics equations; Serre [45] has found
that some a priori estimates for the reduced equations. An important point
made in this pioneering research is that the self-similar system changes type; our
contribution was to recognize that the equations which characterize the subsonic
flow exhibit a novel type of elliptic degeneracy, and to begin an analysis of it.
The first result was an existence theorem by Choi, Lazer and McKenna [23]
for a quaasilinear degenerate elliptic equation, motivated by the problem we
consider here. Čanić and I first showed the existence of weak solutions (in Sobolev
spaces) to the elliptic equation arising in the UTSD system [3, 5], and showed
how this might apply to self-similar problems for the UTSD equation [4, 8]. We
then began developing the general framework we report on here [6, 7]. At the
same time, Zheng and co-workers began a similar program, which also involves
free boundary problems for a degenerate elliptic equation closely related to ours,
[35, 46, 50, 51, 52]. Shuxing Chen and co-workers are championing a different
approach to free boundary problems arising in shock perturbation, using a partial
hodograph transformation, see for example [20, 21].

There is a tension between the goals of developing a general theory and gain-
ing experience by solving prototype problems. We have chosen the latter course.
In suggesting broader motivation, we recognize that two-dimensional Riemann
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Two-Dimensional Conservation Laws

problems may not play the same key role in multidimensional conservation laws
that the one-dimensional Riemann problem has served for problems in a single
space variable. One-dimensional Riemann problems give both the short-time, lo-
cal behavior and the asymptotic global behavior of one dimensional systems; they
are the building blocks of powerful existence theorems; they are the basis of cer-
tain computational methods, in both one and several space dimensions; and they
provide a set of benchmark problems for evaluating the accuracy of numerically
computed solutions. Except for the last, multidimensional Riemann problems
are not expected to do any of those things. (One can imagine a two-dimensional
Glimm scheme based on rectangles or hexagons, or possibly on a nonstructured
grid which uses the most important wave directions, but it is not at all clear how
to make this work.) Indeed, while one-dimensional Riemann problems simply
express the way the standard diagonalization of a one-dimensional hyperbolic
system via characteristic coordinates and characteristic speeds can be adapted
to quasilinear systems, solving two-dimensional problems involves the much less
transparent character of two-dimensional nonlinear wave propagation. One of
our goals is to analyse this: to show that solutions of certain kinds exist, and to
develop a criterion for deciding between different solutions when the self-similar
solution is not unique. This is not the same as determining whether numeri-
cal simulations match experiments, although definitive analytical results may be
helpful there, too. The numerical literature is too rich to survey here, but we
mention recent work of Alexander Kurganov and co-workers [37], which underlies
the simulations reproduced in Figures 5.2 and 7.3.

The salient fact about the self-similar problems discussed in these notes is
that they lead to free boundary problems for quasilinear elliptic equations with
novel types of degeneracies. Working with Gary Lieberman, we developed an
approach to these problems, initially applied to a steady transonic equation [14].
Lieberman’s theory of oblique derivative boundary value problems in Lipschitz
domains forms the technical infrastructure for our approach. After Eun Heui
Kim, who had studied degenerate elliptic equations with Choi [22, 33] joined our
group as a postdoctoral visitor, we carried out the analysis for some weak shock
reflection configurations for the UTSD equation [9, 10, 12]. Most recently, we
have realized that self-similar reduction of the gas dynamics equations leads to
systems which are of mixed type, not merely degenerate elliptic, in the subsonic
region [11], and we have completed our first analysis of such a case [13]. This
paper gives an outline of our approach and examples of our results.

2 Two-Dimensional Conservation Laws with Acoustic Structure

A system of conservation laws in two space variables and time,

Ut + F (U)x +G(U)y = 0, U, F, G ∈ R
n, (2.1)
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has the quasilinear form

P (∂, U)U ≡
(
∂t + A(U)∂x +B(U)∂y

)
U = 0.

Solutions which are functions of the variables ξ = x/t and η = y/t satisfy the
reduced equation

−ξUξ − ηUη + F (U)ξ +G(U)η = 0,

which can be written in conservation form (Ξ = (ξ, η)):

F̃ (U,Ξ)ξ + G̃(U,Ξ)η ≡ (F (U) − ξU)ξ + (G(U) − ηU)η = −2U,

or as a quasilinear system

P̃ (∂,Ξ, U)U ≡ ÃUξ + B̃Uη ≡ (A(U) − ξ)Uξ + (B(U) − η)Uη = 0. (2.2)

Here A = dF and B = dG are the Jacobian matrices of F and G.
The sort of Cauchy problem for (2.1) which gives rise to self-similar solutions

is data of the form

U(x, y, 0) = U0(θ), where x = r cos θ, y = r sin θ,

since the scaling U(x, y, t) 7→ U(λx, λy, λt) leaves the solution invariant. Thus, in
principle, a ‘two-dimensional Riemann problem’ is any Cauchy problem for (2.1)
in which the initial data are constant on rays through the origin1. However, our
approach requires that the solution be known at a finite distance from the origin,
and hence we typically consider sectorially constant data: U 0 takes constant
values in a finite number of wedges, separated by lines of discontinuity, as in
Figure 3.1. We have found a complete solution to this problem in only a single
case, so far, and only for a simple problem with two distinct constant values [13].
Nonetheless, it is useful to think about more general problems that might be
treated this way. In particular, with shock reflection problems in mind, we do
not restrict consideration to problems where the data are constant in orthogonal
quadrants; nor do we focus only on those where each sector boundary propagates
as a single wave. Work of Zhang and Zheng [49], and others [17], has classified
data with these two properties for the gas dynamics equations.

Before examining the Riemann problem for (2.1), we recall that the character-
istics in a system like (2.1) differ both from characteristics in one space dimension
and from characteristics in a scalar multidimensional equation. In either of those
contexts, characteristics can be described by ordinary differential equations, and
the nature of wave propagation in the equation is ‘along the characteristics’.
(Strictly speaking, signals propagate along bicharacteristic strips; however, char-
acteristic surfaces are easily identified with bicharacteristics for a single equation
or in the case of two independent variables.)

1I am indebted to Martin Kruskal for this observation.
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For a linear first-order system in R
d, with principal part

P (∂,x) =
d∑

1

Ai(x)∂xi

acting on a state variable U ∈ R
n, a characteristic surface is defined by means

of its characteristic normal , ν, in a dual space Rd, which satisfies

p(ν,x) ≡ detP (ν,x) = det

( d∑

1

Ai(x)νi

)
= 0. (2.3)

The operator is said to be hyperbolic if (2.3) has a maximal set of real roots
and corresponding null vectors. To make this precise, fix a normal direction
ν0 ∈ Rd; then ν0 is a timelike normal and the operator P is hyperbolic with
respect to that normal if p(ν0,x) 6= 0, if the roots λ(ν) of

p(λν0 + ν,x) = 0

are real, and if the null vectors form a basis for R
n for all ν 6∈ span{ν0}.

For each x ∈ R
d, the set of characteristic normals forms a cone, the character-

istic cone or normal cone, CN(x), which lies in the dual space, Rd. Characteristic
hyperplanes are subsets of physical space, R

d, whose tangent plane at x is nor-
mal to a vector in CN (x). At x, the equation PU = 0 expresses a constraint
on the function U restricted to the characteristic surface. Specifically, suppose
that a function U 0(x) is given on a surface in a neighborhood of a point x0, and
hence that all tangential derivatives of U 0 along the surface at x0 are known.
Then the equation P (∂,x)U = 0 can be solved to determine the derivative of
U normal to the surface, ∂νU , precisely when p(ν,x) 6= 0. This idea dates back
to the Cauchy-Kowalevski theorem, and the definition above applies also to a
quasilinear equation, in which the matrices Ai depend on U ; the direction of the
characteristic normals then depends on the value of U 0 at x. The definition is
local unless the Ai are constant. A characteristic surface is a surface in R

d whose
normal is characteristic at every point.

The dimension associated with a characteristic surface is d−1. It is convenient
to define a particular, singular characteristic surface, the wave cone at x, by
taking the envelope of all the characteristic hyperplanes through a point x. For
a hyperbolic operator, this surface bounds the domain of influence of data at the
point x.

The general definition given above is useful when we look at self-similar re-
ductions like (2.2), but for the most part one deals with equations in which the
time variable has been specified, (my convention is to make it the nth coordinate,
consistent with the usual way axes are pictured), and hyperbolicity is measured
with respect to the normal (0, 0, . . . , 1). When applied to a system in a single
space variable,

Ut + F (U)x ≡ Ut + A(U)Ux = 0,

5



Keyfitz

this means that ν0 = (0, 1) and we can take ν = (−1, 0) without loss of generality.
Then we have the familiar condition det(λI−A(U)) = 0 for the ‘characteristics’,
λ. However, strictly speaking, ‘characteristics’ are vectors, (−1, λ), in a space
of characteristic normals (which is seldom invoked in one-dimensional problems),
and the corresponding ‘characteristic surfaces’, now curves, in physical space, are
curves with normal (−1, λ) or tangent (λ, 1) in (x, t)-space; that is, the integral
curves of

dx

dt
= λ(U(x, t)).

The D’Alembert solution for the wave equation expresses the way the solution
‘propagates along characteristics’ in one space dimension, and also shows that
the domain of dependence includes the entire interior of the wave cone.

A single equation in R
d is always hyperbolic; any variable whose coefficient

Ai in P is nonzero is timelike. Now the differential operator itself is a directional
derivative, P = A·∇, along a characteristic surface, which is therefore foliated by
bicharacteristic curves: the integral curves of this operator. But if we are dealing
with systems of first-order equations or with second-order equations like the wave
equation, this is no longer the case: although the influence of information at a
point is confined to the domain of dependence, which is the convex hull of the wave
cone, it is not accurate to say that solutions ‘propagate along characteristics’.

In general, the characteristic structure for a hyperbolic system may be quite
complicated. The point of departure for our analysis is an observation about
the characteristics of the compressible gas dynamics equations in two or three
space dimensions. In three space dimensions, the quasilinear Eulerian system for
isentropic gas dynamics is

ρt + (ρu)x + (ρv)y + (ρw)z = 0

(ρu)t + (ρu2 + p)x + (ρuv)y + (ρuw)z = 0

(ρv)t + (ρuv)x + (ρv2 + p)y + (ρvw)z = 0

(ρw)t + (ρuw)x + (ρvw)y + (ρw2 + p)z = 0.

(2.4)

Writing (2.4) in the quasilinear form Ut +
∑
Ai(U)Uxi

= 0, where U may be the
vector of conserved quantities or any other convenient set of state variables (since
this does not affect the hyperbolic structure), taking t as the timelike direction
and introducing the dual vector (µ, τ), one finds that

p = λ2(λ2 − c2|µ|2),

where λ = τ + µ · u and u = (u, v, w) ∈ R
3 is the velocity vector. That is, the

system is hyperbolic with respect to t, and the characteristic polynomial p can
be factored into two linear factors and one nondegenerate quadratic one. The
quadratic factor generates the acoustic wave cone which typifies the behavior of
this system, as well as that of the linear wave equation. This structure is not the

6



Two-Dimensional Conservation Laws

only one which can arise in physical problems: in the equations of magnetohy-
drodynamics, CN contains several separate nondegenerate cones, while in other
systems, such as zero-pressure gas dynamics, p is a product of linear factors.
However, a certain structure, which we term ‘acoustic’, seems to characterize
many important systems, such as compressible gas dynamics. It is defined as
follows, where we now specialize to two space dimensions.

Definition 2.1 ([7], Assumption 1) A quasilinear hyperbolic system

P (∂, U)U = Ut + AUx +BUy = 0,

for U ∈ R
n, is of acoustic type if the characteristic determinant factors into

linear and quadratic parts,

detP (σ, U) =

( n−2∏

1

`i · σ
)
q(σ, U),

where σ = (µ, ν, τ) is the dual vector to (x, y, t), and q is a quadratic form.

If q is quadratic and the system is hyperbolic, then one can further write q(σ, U) =
σTQN (U)σ, where QN is a 3× 3 symmetric matrix with eigenvalues λ1, λ2 > 0 >
λ3. The nondegenerate part of the normal cone is

CV (U) = {σ | σTQN(U)σ = 0}

and its dual, the nondegenerate wave cone, is

CW (U) = {x | xTQW (U)x = 0}

with QW = Q−1
N . It is convenient to assume, in addition, that the degenerate

normal directions, the planes `i ·σ = 0, lie outside CV . In this case, the directions
inside CV are timelike normals and their duals in R

3 are spacelike planes. Systems
of acoustic type behave predictably under the self-similar reduction introduced
at the beginning of this section.

Proposition 2.2 ([7], Theorem 2.1) For a quasi-linear system in two space
variables and time, at any fixed state U , the reduced system (2.2) is hyperbolic at
precisely the points Ξ = (ξ, η) such that x = (ξ, η, 1) is outside the conic CW . The
nondegenerate characteristics at a hyperbolic point Ξ are tangent to the conic.

Definition 2.3 ([7]) The sonic line or sonic circle BU ∈ R
2 is the locus of

points where the reduced equation changes type from hyperbolic to nonhyperbolic.
This curve is the conic section

BU = CW ∩ {t = 1} = {(ξ, η) | (ξ, η, 1)QW (ξ, η, 1)T = 0}.

Its interior is the subsonic region.
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If the original operator is hyperbolic with respect to the time variable, then BU

is a circle or an ellipse. For the reduced system, hyperbolicity depends both on
Ξ and on U .

Definition 2.4 ([7]) Define (Ξ, U) ∈ R
2 × R

n to be a hyperbolic pair if the

operator P̃ (∂,Ξ, U) is hyperbolic.

Change of type occurs in a neighborhood of the set

B ≡ {(Ξ, U) | (ξ, η, 1)QW (U)(ξ. η, 1)T = 0} ⊂ R
2 × R

n.

The sonic line is the projection of B into physical space; we introduce the term
sonic locus for its projection into state space. The shape of the sonic locus is
determined by the nonlinear structure of the flux functions.

Steady ‘transonic’ equations, obtained from (2.1) by looking for solutions
independent of t, can also be considered as a type of reduced system; in this
case Ã = A, B̃ = B and the position of sonic points is independent of Ξ. The
term ‘quasi-steady’ is often used to refer to the self-similar flows discussed in
this paper, and some analogies with steady transonic flow are helpful. However,
in developing a mathematical theory, the fact that the quasi-steady equations
are hyperbolic far from the origin in all directions is a great simplification over
steady transonic flow, and suggests that well-posed problems can be formulated
for (2.2).

Example 2.5 It is instructive to apply this approach to the linear wave equation,
utt = c2∆u, in two space dimensions. This was done by Keller and Blank [31].
With any sectorially constant self-similar data, the one-dimensional solutions
(plane waves viewed in the self-similar physical plane) propagate on lines tangent
to the sonic circle ξ2+η2 = c2, interacting with each other by linear superposition
to produce new, ever piecewise constant, states; the characteristic lines do not
change. The complete solution in the hyperbolic region terminates at the sonic
line with a set of data consisting of a finite number of piecewise constant states
on the sonic circle. The linear degenerate elliptic equation with these data, which
must be solved inside the circle, was transformed by Keller and Blank to Laplace’s
equation by a ‘Busemann transform’. They found that the solution displayed a
square-root singularity as it approached the parts of the boundary where the
data were constant. At discontinuities, the solution was smoothed out in the
interior of the circle, but approached every intermediate value as the boundary
was approached from different directions.

This example illustrates some of the features of quasilinear self-similar problems:
wave interactions in the hyperbolic region and degenerate elliptic equations in the
subsonic region. The missing ingredient, which we find in quasilinear problems,
is the necessity of solving free boundary problems for the position of the sonic
line and for transonic shocks, coupled with the subsonic flow.
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3 Quasi-One-Dimensional Riemann Problems: Hyperbolic Region

We now regard (2.2) as the basic equation, and replace the sectorially constant
Riemann data, with which we suppose it to have been furnished, by the collection
of one-dimensional Riemann solutions at infinity. It should be clear that t → 0
corresponds to ξ2+η2 → ∞ for all (x, y) 6= (0, 0). For states UL and UR separated
by a discontinuity on the line x = κy, one-dimensional Riemann problems are of
the form

U(x, y, 0) =

{
UL, x < κy
UR, x > κy

. (3.1)

Their solutions are (self-similar) functions of x − κy and t; U = V (x − κy, t),
and V (z, t) is a solution depending on z/t of the one-dimensional system Vt +
(F (V ) − κG(V ))z = 0. Let us suppose that all the one-dimensional Riemann
problems corresponding to the discontinuities of the initial data can be solved
(for example, we could assume data of small oscillation, although that is not in
the spirit of this work). In particular, admissibility conditions must typically be
imposed on the shocks that arise; again, assume this has been done.

Our notation is awkward in some respects: in the one-dimensional problems
(3.1), horizontal lines correspond to κ = ∞, the terms ‘left’ and ‘right’ do not
make sense and the solution formulas are slightly different from classical one-
dimensional theory. We made this choice rather than use a more cumbersome
notation throughout.

With respect to data given at a large distance from the origin, the forward
wave cone of P̃ at a hyperbolic point Ξ ∈ R

2 is bounded by the extreme char-
acteristics directed towards the origin. (Lines through Ξ that do not intersect
the cone are spacelike.) Thus, the one-dimensional Riemann solutions may be
regarded as waves propagating inward from infinity. Naively, one might suppose
that they define the solution until the intersection of local solutions coming from
one-dimensional waves with different slopes. However, this may not always be
the case. Locally, at a point Ξ, one has a concept of domain of determinacy given
by the extreme characteristics corresponding to the solution U at Ξ; however,
Ξ is also downstream from (that is, in the domain of influence of) a half-space
worth of data. Since there is no maximum principle for the system, there is
no a priori bound on how far from the origin Ξ must be to guarantee that the
one-dimensional solution described above is found there. For specific problems,
this difficulty can be handled; we await further experience before formulating any
general principles.

Adopting the naive point of view, we visualize the existence of a circle ξ2+η2 =
C2 which is large enough that the known one-dimensional solutions are valid
there. We may now think of these solutions as giving rise to Cauchy data (and
relatively straightforward Cauchy data, consisting of constant states, shocks, rar-
efaction waves and linear discontinuities) on the circle, and, again a bit naively,
one might visualize solving the problem in the forward time-like direction using
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Figure 3.1: Sectorial Data and Quasi-One-Dimensional Riemann Problems

the hyperbolicity of the problem to construct the solution locally. The inter-
section of lines of discontinuity gives rise to what we have termed ‘quasi-one-
dimensional Riemann problems’, see Figure 3.1.

Definition 3.1 ([7], Definition 4.1) A quasi-one-dimensional Riemann prob-

lem for the self-similar equation P̃U = 0 consists of the data triple (Ξ0, UL, UR)
given on a line ` through Ξ0 which is spacelike with respect to both states. The
subscripts refer to left and right of an observer at Ξ0 facing toward forward time.

Although the system (2.2) is not of conventional one-dimensional form (since the
fluxes depend on Ξ), quasi-one-dimensional Riemann problems admit solutions
with the same structure as classical one-dimensional Riemann problems — that
is, solutions consisting of a sequence of n shocks, rarefaction waves centered at Ξ0,
and linear waves, with angles decreasing as one goes clockwise from UL, separated
by constant states. The discontinuities are simply planar shocks and linear waves
which pass through Ξ0. Admissibility conditions for shocks can be formulated as
in any one-dimensional problem, and are the standard admissibility conditions
for one-dimensional systems Vt + (F − κG)z = 0. Rarefactions are solutions of
the form U = V ((ξ − ξ0)/(η − η0)). This structure follows from

Proposition 3.2 ([7], Proposition 3.1) Let U = V (h(ξ, η)) be a simple wave

solution of P̃U = 0. Then V ′ is an eigenvector of P̃ ((hξ, hη),Ξ, U) and the cor-
responding characteristic family forms straight lines.

Thus, a quasi-one-dimensional Riemann solution looks just like a one-dimensional
solution, suitably translated and rotated. Quasi-one-dimensional Riemann prob-
lems do not always have solutions, and the solutions are not necessarily unique.
First, it is clearly necessary that the pairs (Ξ, UL) and (Ξ, UR) both be hyperbolic,
in order for the curve ` to be spacelike. In addition, the loci of points in state
space that can be connected to a state U0 by an admissible quasi-one-dimensional
shock through the point Ξ0 may not be curves extending to infinity but instead
may form a loop, like the shock polar of steady flow, [7]. See Figure 3.2. We have
not tried to formulate an existence theory for these problems, except locally near
the sonic line [7].
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Figure 3.2: The Shock Polar and Variation of the Shock Angle

Following local Riemann solutions in the forward timelike direction is what
is done in front-tracking, and, as in front-tracking, the intersection of rarefaction
waves is more complicated to track since the interaction is not localized at a point
in physical space and it does not result in piecewise constant solutions nor in cen-
tered rarefactions. As in one-dimensional problems, we expect the interactions
to result in outgoing waves of about the same strength and composition as the
incoming waves, with some perturbations added. We have not tackled this ques-
tion, but note that the key thing to prove is the existence of outgoing perturbed
rarefactions up to the points where the solution becomes sonic. Since a rarefac-
tion is composed of straight line characteristics, by Proposition 3.2, each ray in
a rarefaction is tangent to a sonic line; after the ray has touched the sonic line,
it can be continued, but this would correspond to moving backward in time and
is not a valid solution. Figure 3.3 shows a typical configuration when a centered
rarefaction ends at a sonic line.

We now look more closely at shock admissibility conditions for the acoustic
waves. In the case of the gas dynamics equations, the extreme characteristics are
the nondegenerate characteristics corresponding to the acoustic speeds. Further-
more, these characteristics are also genuinely nonlinear in the sense of nonlinear
conservation laws. We recall the definitions:

Definition 3.3 A characteristic speed τ(µ, ν, U) of P (∂, U)U = 0 is genuinely
nonlinear in the direction of a characteristic normal σ if

Rσ · ∇Uτ 6= 0

for a characteristic vector Rσ with P (σ, U)Rσ = 0.

The concept of genuine nonlinearity in higher dimensions generalizes and extends
the one-dimensional notion. When restricted to plane waves — one-dimensional
waves in higher dimensions — this reduces to the one-dimensional definition, and
means that nonconstant waves are either compression or rarefaction waves. At
a point in physical space, the normal direction of the wave, σ, may determine
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Figure 3.3: A Simple Wave Ending at the Sonic Line

whether it is genuinely nonlinear or not, and in which directions it is a compres-
sion. The acoustic waves in the gas dynamics equations (always a useful point
of reference) are uniformly genuinely nonlinear in all directions as a consequence
of the equivariance of the system under Euclidean coordinate changes, while the
other characteristic families are not only degenerate in the sense of contributing
linear factors to the characteristic polynomial but are also linearly degenerate in
the classical, conservation laws sense.

In devising prototype systems to study, it is useful to keep these properties
in mind. We recall in passing the well-known fact that a scalar conservation law
in two or more space dimensions cannot be genuinely nonlinear in every direc-
tion. Furthermore, at least in two-dimensional systems which respect Euclidean
symmetries, the possibility of genuinely nonlinear characteristic fields seems to
be connected to the existence of both invariant and equivariant components of
U . Three equations and a characteristic structure including one co-existing linear
family seems to be the smallest size for a system with acoustic behavior which
models compressible gas dynamics [32]. This has motivated our study of the
nonlinear wave system, Example 4.6, as a prototype.

If one assumes that the acoustic waves form the extreme characteristics, and
that they are genuinely nonlinear, then it can be shown that for pairs (Ξ0, U0)
that are close to sonic, the curve of states that can be connected to U0 via an
admissible shock passing through the point Ξ0 is indeed a loop, the shock polar,
[7, Theorem 3.1]. As U traverses the loop, the shock angle κ varies from the
larger to the smaller of the two acoustic characteristic angles of U0(Ξ0); we might
use the terms ‘−’ and ‘+’ or ‘left’ and ‘right’ to designate the two families of
shocks (the terms ‘slow’ and ‘fast’ do not seem appropriate). Figure 3.2 gives a
sketch of a typical shock polar in phase space and shows how the angle κ varies
along the shock polar.

Another way of viewing a quasi-one-dimensional shock is to compare a uni-
form, straight-line shock between two states U0 and U1 in (ξ, η)-space with the
corresponding planar shock in (x, y, t)-space. As a consequence of genuine non-
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Figure 3.4: A Uniform Planar Shock and its Self-Similar Projection

linearity, in (x, y, t)-space the planar shock intersects the broader acoustic cone,
but not the smaller one, as in the first picture in Figure 3.4. Thus, the shock sur-
face is spacelike with respect to one of the two states. If the shock is admissible,
then that state is ‘upstream’: for points near the shock on that side, every ray
in the forward wave cone crosses the shock surface. (This means that the state
influences the shock position, but no information about the shock influences the
state.) When the same planar shock is viewed as a straight line shock in (ξ, η)-
space, as in the second picture in Figure 3.4, the sonic curves of the two states
are two circles or ellipses, and the shock intersects one and not the other. Since
the smaller sonic circle lies across the shock from its corresponding state, that
state is supersonic in the entire half-plane, while on the other side of the shock,
the flow is subsonic inside the sonic line. Where the shock is supersonic, one
can verify that the Lax geometric admissibility condition holds; the shock is a
‘plus’ or ‘right’ shock at one end and a ‘minus’ or ‘left’ shock when viewed from
the other. In the transonic portion, the shock is supersonic with respect to the
upstream state, just as in steady flow. The shock is normal somewhere in the
middle of the transonic portion, and might be called a ‘left’ or ‘right’ shock on
either side, but it is not clear that these terms make sense for a transonic shock.

In the same way, as one traverses in phase space the shock polar of a pair
(Ξ0, U0), the polar will cross the sonic locus twice, as the configuration goes from
a ‘left’ to a transonic to a ‘right’ shock, as in the first picture of Figure 3.2.

4 Quasilinear Degenerate Elliptic Equations of Keldysh Type

Before looking at the transition between super- and subsonic states, we examine
the system in the subsonic region. When the equations are linearized about a
constant state, we find degenerate elliptic equations of a particular type.

Proposition 4.1 ([7],Proposition 5.1) If n ≥ 2, the operator P̃ , linearized
at a constant state, can be written as a second-order operator which changes type,
coupled through lower-order terms to a first-order hyperbolic system of order n−2.
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The form of the second-order equation near the sonic line is

xφxx + φyy + g(x, y,∇φ, ψ) = 0 . (4.1)

Here the variables (∇φ, ψ), ψ ∈ R
n−2 can be obtained from U by a linear co-

ordinate change, and (x, y) is a coordinate system such that the sonic line is
{x = 0}.

We note that only for linear systems might we expect to be able to decouple
the elliptic subsystem from the rest of the problem; for nonlinear systems novel
types of mixed problems may occur. Motivated by shock reflection problems, we
are particularly interested in the case that U is constant along the degenerate
boundary, as this situation arises when U is constant outside the sonic line. It is
useful to be able to write a second-order equation for one variable, to represent
the ‘elliptic’ part of the system. Some examples suggest the range of situations
which can occur.

Example 4.2 Isentropic compressible gas dynamics. A second-order equation
in similarity variables (ξ, η) can be written for the density, ρ. The original system
is

ρt + (ρu)x + (ρv)y = 0

(ρu)t + (ρu2 + p)x + (ρuv)y = 0

(ρv)t + (ρuv)x + (ρv2 + p)y = 0;

(4.2)

The self-similar equations, ignoring conservation form, are

(u− ξ)ρξ + ρuξ + (v − η)ρη + ρvη = Uρξ + ρuξ + V ρη + ρvη = 0

(u− ξ)uξ + pξ/ρ + (v − η)uη = Uuξ + pξ/ρ+ V uη = 0

(u− ξ)vξ + (v − η)vη + pη/ρ = Uvξ + V vη + pη/ρ = 0;

U = u− ξ, V = v − η are the components of the ‘pseudovelocity’. We see that,
unlike steady transonic flow, Example 4.5, and like the nonlinear wave system,
Example 4.6, the distinction between supersonic and subsonic regions depends
on position in space as well as on the states. A version that refers only to the
pseudovelocity is [11, 45]

Uρξ + ρUξ + V ρη + ρVη + 2ρ = 0

UUξ + pξ/ρ+ V Uη + U = 0

UVξ + V Vη + pη/ρ+ V = 0.

The second-order equation for ρ is

∂ξ

(
(U2 − c2)ρξ + UV ρη

)
+ ∂η

(
(V 2 − c2)ρη + UV ρξ

)
+ (ρU)ξ + (ρV )η

+ (UVη − V Uη)ρξ + (V Uξ − UVξ)ρη + 2(UξVη − VξUη)ρ = 0. (4.3)
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The sonic line is the circle U 2+V 2 = c2(ρ) in (ξ, η)-space. A framework for solving
this system is to regard (4.3) in the subsonic region as an equation for ρ whose
coefficients evolve according to transport equations along pseudo-streamlines:

(U, V ) · ∇u = −pξ/ρ

(U, V ) · ∇v = −pη/ρ.

There is an analogy with the simpler nonlinear wave system, described below,
but we have not yet extended our method to the gas dynamics equation.

Example 4.3 The adiabatic Euler equations can be put in a form like this,
with a second-order equation for the pressure, coupled now with three evolution
equations for u, v and the density along streamlines, [11, 45].

Example 4.4 The unsteady transonic small disturbance (UTSD) equation is
used to model the transition between regular and irregular reflection for weak
shocks [2, 29]. It takes the form

ut + uux + vy = 0

vx − uy = 0,
(4.4)

and yields the reduced system

(u− ξ)uξ − ηuη + vη = 0

vξ − uη = 0.
(4.5)

This system has only two equations, and no linear waves; in the subsonic region
the self-similar equation is elliptic. A disadvantage is that t, which does not rep-
resent time but instead distance along rays, is not a timelike variable. Although
this equation has a nondegenerate wave cone structure, the characteristic nor-
mal cone contains the direction (0, 0, 1) as a generator, and the (x, y)-plane is a
characteristic surface. A second-order equation for u in self-similar variables is

(
(u− ξ)uξ − ηuη

)
ξ
+ uηη = 0. (4.6)

Alternatively, introducing a velocity potential φ, with ∇φ = (u, v), one obtains

φxt + φxφxx + φyy = 0.

The sonic line for this system is the parabola ξ + η2/4 = u; replacing ξ in (4.6)
with the variable ρ = ξ + η2/4 results in a system with diagonal principal part:

(
(u− ρ)uρ +

u

2

)

ρ
+ uηη = 0. (4.7)

The noncompactness of the sonic line for the linearized system is a consequence
of the fact that the (x, y)-plane in the space-time system is characteristic. For
either the space-time system (4.4) or its self-similar reduction, a complete char-
acterization of well-posed problems is still an open problem.
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Example 4.5 The full potential equation of transonic gas dynamics. The orig-
inal system is [43]

ρt + ∇ · (ρ∇Φ) = 0

Φt +
1

2
|∇Φ|2 + i(ρ) = const

for density ρ and a velocity potential Φ. Introducing similarity variables and the
reduced potential, with Φ = tφ(ξ, η), ϕ = φ− 1

2
(ξ2 + η2), yields

∇ · (ρ∇ϕ) + 2ρ = 0

1

2
|∇ϕ|2 + ϕ +

c2(ρ)

γ − 1
= const.

(4.8)

The second equation is solved for ρ and this solution is then used in the first. The
result is again a second order equation which changes type when |∇ϕ|2 = c2(ρ).
Our method does not work on this problem, since the coefficients in the second-
order operator in (4.8) depend on the gradient of the variable ϕ as well as on
ϕ itself. Chen and Feldman [18, 19], using a different fixed point procedure,
have solved free boundary problems connected with shock perturbation for this
equation.

Example 4.6 The nonlinear wave system (NLWS). This system is obtained ei-
ther from the isentropic gas dynamics system by neglecting terms which are
quadratic in the velocity, or by writing the nonlinear wave equation as a first-
order system. In terms of the conserved quantities (density and momenta) the
system is

ρt +mx + ny = 0

mt + px = 0

nt + py = 0;

(4.9)

here p = p(ρ) represents pressure, with p′ = c2(ρ), and (m,n) = (uρ, vρ) is the
momentum vector.

The system in self-similar coordinates reads

−ξρξ − ηρη +mξ + nη = 0

−ξmξ − ηmη + pξ = 0

−ξnξ − ηnη + pη = 0.

(4.10)

The density satisfies a second-order equation:

ρtt = −(mx + ny)t = −(mt)x − (nt)y = pxx + pyy = ∇ · (c2(ρ)∇ρ).
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In self-similar coordinates, we have
(
(c2 − ξ2)ρξ − ξηρη

)
ξ
+

(
(c2 − η2)ρη − ξηρξ

)
η
+ ξρξ + ηρη = 0. (4.11)

The important simplification over Example 4.2 is the decoupling of the nonlinear
variable ρ from the other components of the state variable.

Example 4.7 The pressure-gradient system has been studied by Yuxi Zheng
and others [46, 50]. This system can be derived from the adiabatic gas dynamics
equations, and has the form

ut + px = 0

vt + py = 0

Et + (up)x + (vp)y = 0;

(4.12)

with E = 1
2
(u2 + v2) + p. There is a close mathematical correspondence with the

NLWS, as the nonlinear variable p in this system is exactly c2(ρ) in NLWS, if the
gas law in Example 4.6 is taken to be p(ρ) = eρ. Equation (4.11), when written
in terms of c2(ρ) = p, becomes Zheng’s governing equation

(p− ξ2)pξξ − 2ξηpξη + (p− η2)pηη +
1

p

(
ξpξ + ηpη

)2 − 2(ξpξ + ηpη) = 0. (4.13)

Zheng proved existence of solutions in domains with fixed, smooth, degenerate
boundaries [50] and Song generalized the result to nonsmooth boundaries con-
taining the origin [46]. The pressure-density relation in the pressure-gradient
system is not the same as that in NLWS, so p = 0, the vacuum state, although
degenerate, is physically admissible.

Example 4.8 The linear wave equation ftt = c2∆f can be written as a system
in several ways: if either (u, v, w) = (ft,−c2fx,−c2fy) or (u, vx, wy) = (f, ft, ft)
the system

ut + vx + wy = 0

vt + c2ux = 0

wt + c2uy = 0

(4.14)

results. It can also be written as a system of two equations,
(
u
v

)

t

=

(
c 0
0 −c

) (
u
v

)

x

+

(
0 c
c 0

) (
u
v

)

y

by a change of variables which does not preserve the Euclidean symmetry and
which does not extend to nonlinear equations. If we take p = c2ρ in (4.9),
we obtain (4.14). However, self-similar data for Example 4.6 would satisfy a
compatibility condition if they came from the second-order wave equation.
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Following the derivation in Section 2, one can write the nondegenerate normal
cone of the reduced problem as CR(~α; Ξ, U), where ~α = (α, β) is the vector dual
to (ξ, η) = Ξ. From the characterization of the normal cone, we find CR = {~α |
~αTQR~α = 0}, where

QR =

(
−ξ 1 0
−η 0 1

)
QN(U)




−ξ −η

1 0
0 1





can be derived from the original partial differential operator P . See [7] for more
details. From Proposition 2.2 and Definition 2.3, the sonic line is characterized
by detQR = 0 and the nonhyperbolic states by detQR > 0. As the examples in
this section show, one can often obtain a second order equation for one variable
(possibly coupled to other variables) which is elliptic in the subsonic region. We
recall the following definition.

Definition 4.9 For a second order elliptic operator in two variables with prin-
cipal part given by a matrix (aij), with aij = aij(Ξ, U), the ellipticity ratio
λ = λ(Ξ, U) is the ratio of the smaller to the larger eigenvalue of (aij).

The ellipticity ratio depends on the state U and on the position Ξ in similarity
space, and can be computed by finding the eigenvalues of QR.

Example 4.10 For the UTSD equation, (4.7), λ = u − ρ = u− (ξ + η2/4). In
the NLWS, (4.11), or linear wave equation, Example 4.8, λ = 1 − (ξ2 + η2)/c2.

Returning to (4.1), the linearization at a constant state, we note that its
principal part has a degeneracy near x = 0 which is attached to the x derivatives
of φ rather than to the y derivatives. This operator is different from the Tricomi
operator, which is of the form φxx + xφyy. The difference has been known, since
work of Kohn and Nirenberg [36] and Baouendi [1], to lead to loss of regularity
in (4.1). Linear equations of the type (4.1) were studied by Keldysh [30], who
showed that solutions are typically Hölder continuous but not differentiable at
the degenerate boundary. When we first uncovered an equation of this form, ten
years ago, in analysing the self-similar reduction of the UTSD equation, there was
no literature on nonlinear versions of it. For a linear operator L = aij∂i∂j + bi∂i,
boundary conditions at a degenerate boundary with normal ν are governed by
the Fichera function, (see [44] for background on this definition)

b ≡ (bi − aij
xj

)νi.

Depending on the sign of b, boundary conditions may be assigned at the degen-
erate boundary, or that part of the boundary must be left without conditions.
For equations in divergence form, the Fichera condition becomes a condition on
coefficients of the first order derivative terms, and extending it to a nonlinear
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equation seems impossible. Needless to say, in a nonlinear equation in which the
condition for the boundary to be degenerate depends on the value of the solution
there, one needs to be able to prescribe the solution at this part of the boundary.
The existence theorems in [3, 5, 16] provide a partial resolution of this question.

4.1 Linear and Nonlinear Behavior at the Sonic Line

Consider a boundary value problem for the quasilinear second-order equation
arising in the UTSD system, (4.6), with part of the boundary degenerate and
with u constant there. There exist weak solutions of two types: they may exhibit
a square root singularity, or the solution may be Lipschitz up to the boundary,
depending on what boundary conditions are prescribed on the regular parts of
the boundary, [3, 5].

The linear wave equation, Example 4.8, is the linear model for the acoustic
waves for all the systems studied here, and to the extent that vorticity waves
do not play a dominant role (which is probably the case at the sonic line), its
solutions at the sonic line are a guide. The self-similar solution of the linear wave
equation is

u = a1 log

(
c+

√
c2 − r2

r

)
+ a2,

with r =
√
ξ2 + η2. This has a square-root singularity at r = c, the sonic line:

the canonical linear behavior, in agreement with the fundamental solution of the
wave equation in two space dimensions. (See also the discussion in Example 2.5.)
For the nonlinear wave equation, utt = ∇ · (c2(u)∇u), a calculation suggests that
solutions of this form exist, but that there is also a solution which looks like

u = u0 −
c(u0)

p′′(u0)

(
c(u0) − r

)

in the neighborhood of the sonic line r = c(u0). That is, near a sonic line where
u = u0 is constant (so the line is a segment of the circle r = c(u0)), then we also
expect to see a solution which is Lipschitz up to the boundary, with a fixed slope
depending on the nonlinear pressure-density relation.

Example 4.11 An example using the UTSD equation illustrates this dichotomy.
The second order equation, (4.7), derived in Example 4.4, admits solutions de-
pending on the single variable ρ, which can be found by integrating the equation.
Since ρ measures distance from the sonic line, these solutions describe, to first or-
der, the different kinds of qualitative behavior of solutions which are constant at
the sonic line. Figure 4.1 illustrates the solutions. The sonic point has been cho-
sen, without loss of generality, as ρ = 0. The subsonic solutions, with u− ρ > 0,
comprise a one-parameter family of singular solutions, of the form u = D

√−ρ,
D > 0, and a one-parameter family of Lipschitz solutions, u = ρ/(1 +

√
1 − Cρ),
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Figure 4.1: Singular and Regular Solutions, Example 4.11

all of which have slope 1/2 at the origin. As the position of the arbitrary constant
indicates, the first family is linear, the second nonlinear.

4.2 Transport Equations and Vorticity

Examples 4.2, 4.3, 4.4, 4.6 and 4.7 show that, in contrast to the linear problem
analysed in Proposition 4.1, the reduction of nonlinear systems typically yields
a second order equation for one variable (density or pressure) coupled to n −
1 transport equations from which the other variables can be recovered. For
example, the second and third equations in (4.10) in Example 4.4 and the first and
second equations in the self-similar version of (4.12) in Example 4.7, represent
transport in the radial direction. In principle, using Proposition 4.1, we should
integrate one of these equations and recover the other variable via a compatibility
condition. In practice, it seems easier to integrate both and verify compatibility,
as we do in Proposition 9.1 for the nonlinear wave system. There, whether the
first component ρ is the singular or the Lipschitz solution of the NLWS near the
sonic line, we calculate the functions m and n near r = c(u0) by integration.

By contrast, the UTSD equation illustrates the case n = 2 of Proposition
4.1. When n = 2, there are no transport equations. The variable v can be
recovered by integrating the second equation of (4.4) (or its self-similar version),
but this differs from the NLWS case. To detail the difference, we note that the
theorems in [3, 5] determined only the first component, u, of solutions to the
UTSD system, (4.6); the second component, v, is then determined by integrating
one of the first-order equations in (4.5), and its boundary values on the degenerate
boundary typically cannot be prescribed arbitrarily. This poses a difficulty when
examining shock reflections modeled by this equation. Recall that, as illustrated
in Example 4.11, there are singular and Lipschitz families of solutions u at the
sonic line. When u is a member of the first family, it is not possible to find a
solution for the second component v which approaches a constant value along the
sonic line. (This can be done for the second family.) Hence weak reflected shocks,
as in Example 6.1, do not exist for the UTSD system. Since neither the linear
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wave equation (written as a system) nor the nonlinear wave system displays this
paradoxical behavior, it is tempting to dismiss it as an anomaly of the UTSD
system. However, this has not been resolved.

While we do not have proofs, we speculate that boundary behavior in the
examples may be connected to vorticity in the self-similar problems we examine.
Both the full potential equation and the UTSD equation assume an irrotational
flow: uy = vx. By contrast, the full gas dynamics equations, either isentropic
or adiabatic, make no such assumption. In fact, vorticity is generated in the
solution by shocks, even if it is not present initially. The nonlinear wave system,
which has been the focus of our recent research, is an uneasy compromise. Unlike
the full potential or UTSD equations it does not contain an equation to enforce
irrotationality. On the other hand, the quantity w = my − nx satisfies wt = 0,
and so the support of my −nx, which is a sort of ‘specific vorticity’, is confined to
its initial set. For weak shocks, vorticity, which is third order in shock strength,
is not sufficient to resolve the triple point paradox, the gas dynamics analog of
Example 5.3. In this respect, the NLWS and UTSD equations are of a kind, and
model the von Neumann paradox.

The UTSD problems we solved in [3, 5] did not use boundary conditions taken
from actual self-similar problems. Even in a simple example like the interaction
of a rarefaction wave with the sonic line, as in Figure 3.3, there are portions of
the sonic line where u is constant, and also portions where u is not constant. At
least in examples such as Figure 3.3, the linearized equation is of Tricomi type at
a sonic boundary where u is not constant. Furthermore, there is an interaction
of the subsonic region with the hyperbolic region, which will typically change the
location of the sonic line, as in Example 5.1. This remains an open problem.

We next examine the boundary value problems that arise at the sonic line.

5 A Catalog of Free Boundary Problems

We return to the quasi-one-dimensional front-tracking scenario of Section 3.
Eventually, as the solution is built up in the forward timelike direction, ei-

ther as a limit of front-tracking approximations or directly by solving a finite
number of quasi-one-dimensional Riemann problems exactly, one ends up at a
sonic boundary. For the moment we omit consideration of cases where solving
quasi-one-dimensional problems breaks down because a solution to the quasi-one-
dimensional Riemann problem does not exist.

If we suppose that the subsonic region is connected, or examine a single com-
ponent of it, then at points on the boundary three phenomena are possible:

1. The solution is continuous as the sonic line is approached, and U is constant
on the hyperbolic side.

2. A shock of finite strength becomes transonic on one side and bends; the
transonic shock becomes part of the boundary of the sonic region.
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3. The solution is continuous up to the sonic line from both sides, but is
not constant; rather, it consists of a simple wave (rarefaction) or a more
complicated continuous hyperbolic solution.

In the first case, where the solution is constant on the hyperbolic side of the
sonic line, then the acoustic characteristics become collinear there, and tangent
to the boundary. The hyperbolic region is still upstream from the subsonic zone,
even if only weakly so: we may assume that the solution is determined in the
hyperbolic region (that is, the constant value determined from front-tracking is
the solution), and proceed to seek a solution in the subsonic region.

In the second case, as stated earlier, the hyperbolic part of a transonic shock is
strictly upstream from the shock: the nonlinear characteristics (and if we assume
these are the extreme ones, the linear characteristics also) enter the shock from
the hyperbolic side. Thus the flow is completely determined on the hyperbolic
side. (In the unsteady cases we have considered up to now, it is also constant, but,
as in steady transonic shock perturbation, [14], nonconstant hyperbolic flows can
arise and could in principle be handled.) The shock is treated as a free boundary,
which is coupled with the subsonic flow. In the problems we have solved, the
subsonic flow can be found by solving a degenerate elliptic equation which is not
coupled to the other variables. Other cases, such as the gas dynamics equations,
in which the linear and nonlinear parts of the subsonic flow are strongly coupled,
are ripe for attack.

The third type of behavior is more difficult to analyse than the first two. If
a nonconstant hyperbolic solution (a rarefaction wave, for example) is extended
to sonic points, then typically the characteristics become tangent to each other
but not to the boundary. By looking at points in the hyperbolic region near the
sonic line, one sees that the directions of forward time are opposite along the
two parallel characteristics. That is to say, one characteristic flows into the sub-
sonic region, and the other out of it. (The dashed curves in Figure 3.3 represent
the characteristics flowing into the hyperbolic region.) In particular, the entire
subsonic region influences every point reached by the ourward moving character-
istics. In this case, it appears on the basis of careful numerical simulations that
the extended hyperbolic solution is not actually the solution of the problem up
to the sonic line. Instead, the sonic line itself becomes a free boundary, coupled
both to the hyperbolic flow outside the subsonic region and to the mixed type
equation inside. This leads to new types of hyperbolic free boundary problems,
which we have not yet solved.

5.1 Hyperbolic Free Boundary Problems

We give two examples of how such problems may arise. The first is straightfor-
ward, and has been observed by Zheng and others, [51]. The second occurs in a
prototype for Mach reflection and for the resolution of the ‘triple-point paradox’.
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Figure 5.1: Rarefaction Waves in Example 5.1 and Domain of Determinacy

Example 5.1 The equation is the nonlinear wave system, and the data consist
of two states, U1 above and U0 below the lines x = ±κy, for y ≥ 0. The
states are chosen so that in the far field, each one-dimensional solution consists
of a downward-moving rarefaction and a linear wave through the origin. Each
straight-line characteristic in a rarefaction can persist until it reaches a sonic
point; thus the rarefaction is defined on a half-strip, whose finite end is a straight
line segment orthogonal to both the smaller (C1) and larger (C0) sonic circles.
However, this sonic boundary is not a spacelike curve and so it is not in the
domain of determinacy of the hyperbolic part of the problem. Instead, there is a
curve Γ in the hyperbolic region which bounds the domain of determinacy of the
supersonic flow. Within that curve, the flow no longer consists of rarefactions and
constant states, and the sonic line (across which the solution may be continuous)
is a free boundary. Furthermore, compression waves may form, and shocks may
be generated; numerical calculations suggest that this is the case. See Figure 5.2,
based on simulations by Alex Kurganov, where there appears to be a shock above
the smaller sonic circle. Although this problem is still open, we mention that early
work of Morawetz [42] on nonexistence of supersonic shock-free profiles suggests
an approach to constructing continuous solutions if they exist.

Example 5.2 In one case, the problem described in Example 5.1 has been
solved. Dai and Zhang, [25], consider the self-similar equation arising from the
pressure-gradient system, (4.13), with initial conditions corresponding to constant
pressure p > 0 in one quadrant and vacuum in the other three. The solution has
no subsonic region and no free boundary, as in this case the inner circle C1 in
Figure 5.1 shrinks to a point and the wedge in which U = U1 (where p = 0)
has opening angle 3π/2 > π. The nonconstant region expands all the way to
the Goursat boundary, Γ. The absence of a subsonic region occurs only in the
case of a vacuum state. An interesting special feature of the self-similar pressure-
gradient equation (4.13) contributed to the proof given by Dai and Zhang: The
nonlinear equation, in polar coordinates, can be factored in an elegant way. The
pressure-gradient equation, which we pointed out in Example 4.7 corresponds to
an exponential gas law, is the only nonlinear wave equation with this property,
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Figure 5.2: Contour Plot and Density Profile (Kurganov), Example 5.1

as was proved by Ferapontov and Khusnutdinova [26]. This property is related
to integrability and to existence of Riemann invariants.

Example 5.3 The free boundary problem described in Example 5.1 seems com-
plicated. However, understanding it may help to explain one aspect of the ‘von
Neumann paradox’: how a Mach stem with reflected wave can form in a system
which does not permit triple points. A scenario can be given for the nonlinear
wave system, as pictured in Figure 5.3; a similar picture can be drawn for the
UTSD system. The picture involves a sonic state UM interacting with the in-
cident shock as a quasi-one-dimensional Riemann problem, resulting in a Mach
stem (shock) and a small rarefaction wave. Our conjecture is that at a point
ΞM outside the circle C0 (which may or may not intersect the incident shock
S+

a ), a sonic state UM is formed; the quasi-one-dimensional Riemann problem
for (U1, UM) at ΞM has a solution consisting of a shock (the Mach stem), inter-
mediate supersonic state Um and rarefaction (the curvilinear part of the shaded
region in Figure 5.3). Between U0, the state across the incident shock from U1,
and UM is a reflected shock. Since UM is exactly sonic, this shock must in fact
bend immediately to become transonic. Thus it forms a free boundary (as does,
separately, the Mach stem). The shaded region in Figure 5.3 is not a domain
of determinacy, so its boundary is also free, as in Example 5.1. Note that U0

is on the shock locus of U1 and UM on the shock locus of U0, at the sonic line;
UM is the intersection of the rarefaction locus through UM and the shock locus
of U1. We have ρ1 < ρ0 < ρm < ρM . There is a one-parameter family (pa-
rameterized by ΞM , with ΞM on S+

a ) of states satisfying these conditions. We
conjecture that the location of ΞM depends on the remaining Riemann data. In
this scenario, no linear waves appear (that is, no vorticity is generated), and a
small hyperbolic patch is embedded in the subsonic region. The embedded hy-
perbolic patch is influenced by the subsonic flow, and hence the actual sonic line
is contained somewhere within the region sketched here. Numerical evidence for
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a phenomenon like this in the UTSD equation has been obtained by Tesdall and
Hunter [48].

6 A Fixed Point Approach to the Existence of Transonic Shocks

We have devised an approach to solving free boundary problems of the type that
arise in calculating the position of transonic shocks and the flow on the subsonic
side. We have implemented this approach in several examples: perturbation of
a steady shock in the steady transonic small disturbance equation; weak and
strong regular reflection in the UTSD equation; and a type of Mach reflection in
the NLWS in which the reflected wave is continuous (a compression wave). The
following features characterise our approach:

1. The subsonic flow can be expressed via a second-order equation in a single
variable (for example the density), in divergence form, which is quasilinear,
degenerate elliptic, and whose coefficients depend on that variable, but not
on its gradient. In particular, we do not use a velocity potential, even if one
exists. The elliptic operator turns out to be uniformly elliptic on compact
subsets of the subsonic region.

2. It is not necessary that the flow be irrotational. We note that allowing vor-
ticity is important for projected application to the gas dynamics equations.

3. The conditions at the free boundary can be expressed as a pair of equations,
one for the evolution of the boundary, which depends on the variable (but
again not on its gradient) and one a quasilinear condition on the gradient of
the variable, a so-called oblique derivative boundary condition. The oblique
derivative operator must satisfy a uniform obliqueness condition, although
we can handle some isolated degeneracies.

4. Standard boundary conditions (Dirichlet or Neumann) are applied on the
fixed part of the boundary.
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5. A priori conditions enable one to prove that the boundary is Lipschitz and
piecewise C1+α, for some α > 0, and that the corner angles are (approxi-
mately) known.

6. The free boundary can be written as a function with a fixed domain.

Before giving an outline of the method, we give as an example a problem we have
successfully solved by this method.

Example 6.1 The equation is the nonlinear wave system, and the Riemann data
consist of two states, U1 and U0, above and below the lines x = ±κay, for y ≥ 0,
with data chosen so that the one-dimensional Riemann problems in the far field
are resolved by shocks moving upward and linear waves, which remain on the
initial discontinuities. See Figure 6.1. In addition, κa is large enough that the
incoming shocks become transonic before they intersect the symmetry axis (the
η axis). (See Example 7.2 for a more complete analysis of the dependence of the
solution of κa.) This is a prototype for Mach reflection by a wedge when the
wedge angle is small. The second-order equation governing the subsonic flow is
(4.11), which is of the form (6.5). Note, however, that we are using the nonlinear
wave system, so that, although we expect similarities with the actual phenomena
of weak shock reflection, we are not solving the gas dynamics equations. For
sufficiently large κa (a bound comes from Lemma 8.5), a possible form of the
solution is that the incoming shocks curve to form a Mach stem, and the flow is
continuous everywhere else, but is not constant inside the sonic circle, the region
Ω in Figure 6.1. We have proved that a solution of this form exists. In this
case, the hyperbolic part of the solution contains four waves (two linear, two
nonlinear) separated by constant states. The nonhyperbolic, subsonic part is the
flow U inside the region bounded by the sonic circle of the state U0 and the Mach
stem, which is a free boundary, unknown a priori.

A simple example shows how to replace the standard Rankine-Hugoniot condi-
tions at a shock by a derivative boundary condition for one of the variables and
an evolution equation for the shock.

Example 6.2 The transonic small disturbance equation is

uux + vy = 0

vx − uy = 0
. (6.1)

This can be written as a second-order equation in u: (uux)x + uyy = 0, and so
we want to convert the Rankine-Hugoniot conditions, which relate (u, v) in the
subsonic region to a state (u0, v0) in the supersonic region on the other side of
the shock, to conditions involving u and the shock angle alone. That is, with the
shock angle given by x = s(y), we want to eliminate v from the Rankine-Hugoniot
equations

ds

dy
=

1
2
(u2 − u2

0)

v − v0
= − v − v0

u− u0
. (6.2)
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The linearity of the equations in v, which was a key to eliminating v from the
system and obtaining a second-order equation, also allows us to solve for v − v0

and obtain
ds

dy
= ±

√
−u + u0

2
. (6.3)

The ambiguity in sign comes from the nonlinearity of the boundary condition,
and some care, in the form of a priori bounds, must be taken to resolve it. In
fact, it appears that losing single-valuedness of this solution corresponds to losing
obliqueness of the derivative boundary condition. This may be not so much a
limitation of the method as it is evidence that one needs additional conditions
to get a well-posed problem. To treat the problem, we make one choice, say ‘−’,
consistent with considering small perturbations of a ‘−’ shock.

To get a second boundary condition, which involves u and ∇u but not v, we
solve the Rankine-Hugoniot equation (6.2) for v:

v = v0 + (u− u0)

√
−u+ u0

2
,

and differentiate this expression along Σ (letting ′ = s′∂x + ∂y = d/dy along Σ):

v′ = v′0 + (u′ − u′0)

√
−u+ u0

2
− (u− u0)

(u′ + u′0)

4
√
−u+u0

2

.

We express u′ as uxs
′ + uy and use the differential equation (6.1) to write

v′ = vxs
′ + vy = uys

′ − uux ;

substituting this for v′ and collecting terms in ux and uy, we obtain

Mu ≡ β1(u; u0, s
′)ux + β2(u; u0, s

′)uy = χ(u; u0, U
′
0), (6.4)

where

β1(u; u0, s
′) = u+ s′




√

−u+ u0

2
− u− u0

4
√

−u+u0

2



 ,

β2(u; u0, s
′) = −s′ +

√
−u+ u0

2
− u− u0

4
√
−u+u0

2

,

χ(u; u0, U
′
0) = −v′0 + u′0




√
−u+ u0

2
− u− u0

4
√
−u+u0

2


 .

(In some problems, we have found it advantageous to eliminate s′ from (6.4)
using (6.3).) Now (6.3) and (6.4) are the shock evolution equation and derivative
boundary condition respectively.
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Here is how we proceed in general. We wish to solve a quasilinear equation

Qu ≡ ∂i

(
aij(u)∂ju

)
+ bi∂iu = 0 (6.5)

in a region Ω which is not known a priori. The boundary of Ω has components
of up to four types:

1. the free boundary, Σ, given by an equation η(ξ), say, for ξ ∈ [a, b]; the
function η satisfies

dη

dξ
= f(ξ, η, u), (6.6)

for a Lipschitz function f , and an initial condition, η(a) = η0, say, (thus,
one end of the free boundary is known); in addition, on Σ u satisfies an
oblique derivative boundary condition

Mu ≡ β · ∇u = βi∂iu = g(ξ, η, u, η′) (6.7)

where the coefficients βi are functions of ξ, η, u and η′ and M is uniformly
oblique;

2. the degenerate boundary, σ, on which the minimum eigenvalue of aij is
zero, and on which u takes the constant value u0, say,

u|σ = u0; (6.8)

3. the fixed nondegenerate boundary which may contain a component σ0 on
which Dirichlet data is given and a component Σ0 on which Neumann data
is given:

u
∣∣
σ0

= φ,
∂u

∂ν

∣∣∣∣
Σ0

= ψ. (6.9)

We assume that the boundary components meet at corners. One corner may not
be known a priori — that corresponding to η(b) — and hence one of the other
curves is also not known completely. Rather than giving a formal definition which
will include all cases, we assume that that curve can be extended. In fact, almost
the first task is to impose a priori bounds on the function η which gives the
position of the free boundary.

Example 6.3 Let us see how this applies to Example 6.1 for the case of weak
Mach reflection, with large κa. The degenerate boundary is the segment of the
sonic circle which lies below the incident shocks in Figure 6.1. The free boundary
is the Mach stem. The endpoints are known, as they are the points where the
incident shock meets the sonic circle. The evolution equation for the shock is

dη

dξ
=

−ξη +
√
s2(ξ2 + η2 − s2)

s2 − ξ2
=

η2 − s2

ξη +
√
s2(ξ2 + η2 − s2)

. (6.10)
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Figure 6.1: Data and the Subsonic Region for Weak Mach Reflection

Here s = s(ρ, ρ1) =
√

(p(ρ) − p(ρ1))/(ρ− ρ1); see Example 4.6 for the original
equations. The oblique derivative boundary condition is

Mu ≡ β · ∇u = 0 (6.11)

on Σ, with

β1 = (ξ2 + η2)(−η′ξ + η)(c2(ρ) + s2(ρ, ρ1))

− 2s2
{
−η′ξ(c2 + η2) + (1 − (η′)2)η(c2 − ξ2) + η′ξ(−c2 + ξ2)

}
, (6.12)

and

β2 = η′(ξ2 + η2)(−η′ξ + η)(c2(ρ) + s2(ρ, ρ1))

− 2s2
{
η′η(c2 − η2) + (1 − (η′)2)ξ(c2 − η2) + η′η(c2 + ξ2)

}
. (6.13)

The boundary operator M is not oblique at the symmetry axis Ξs. Rather than
deal with a problem where obliqueness fails at an interior point, we have solved
the problem on the half domain Ω ∩ {ξ > 0} and used the symmetry of the
problem to impose the boundary condition ρξ = 0 on the vertical axis. Hence the
Neumann boundary is Σ0 = {ξ = 0, η ≥ −c0}. The upper end of this boundary
is the Mach stem, unknown a priori; however it is clear that the boundary Σ0

and the boundary condition there can be extended along the positive η axis. The
Dirichlet boundary in this example consists of a single point, the intersection of
Σ and Σ0. This is a little surprising, but is a classic property of mixed boundary
conditions of the type we have here.

Example 6.4 In [52], Zheng considers data for the pressure-gradient system,
(4.12), introduced in Example 4.7, with data constant in four sectors, as shown
in Figure 6.2. The data is chosen so that the only nonlinear waves are two shocks
moving downward, as sketched on the right side of the figure. By contrast with
Example 6.3, the curved shock in this problem decays in strength between the
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Figure 6.2: Symmetric Shock Interaction in the Pressure-Gradient System

formation point Ξ0 and the symmetry point Ξs, and it is probable that for κa

sufficiently small the shock becomes a weak (linear) wave before it reaches the
symmetry axis. Zheng shows that for sufficiently large κa a solution exists. He
uses a somewhat different technique from ours. By taking the symmetry point Ξs

and hence pm, the value of p at the axis, as given, with p2 < pm < p1, he shows
that a subsonic solution exists, solving the free boundary problem from the axis
to the sonic circle, and then determines κa from the slope of Σ at Ξ0.

Example 6.5 Another problem on which we have made some progress concerns
regular reflection patterns in the UTSD equation. One expects regular reflection
to appear for large values of the parameter a (the slope of the incident shock
x = ay in Figure 6.3; note that the wall is horizontal in this problem, whereas
it was vertical in the nonlinear wave system example). There are two types of
regular reflection: ‘weak’, where a supersonic region appears just beyond the
shock reflection, and ‘strong’, with the region right beyond the reflection point
already subsonic. In the case of strong reflection, the equation is strictly elliptic
in the closure of the subsonic region. In either case, because the subsonic region is
unbounded, we impose an artificial cutoff, a curve σ0 on which we place a Dirichlet
condition. Figure 6.3 illustrates the ‘weak’ case. The ξ axis is a symmetry axis,
on which a homogeneous Neumann condition is posed. The shock is again a
free boundary. In the strong reflection case, the free boundary begins right at
the known reflection point, so again the initial position is known. Again in
this case a one-point Dirichlet condition must be imposed in order to obtain a
nontrivial solution. The condition is given at the known reflection point Ξa and
consists of the value of the solution just beyond the reflection point, known from
the shock polar. Thus, the Dirichlet boundary has two components in ‘strong’
regular reflection. In ‘weak’ reflection, Figure 6.3, there is in addition a sonic
boundary along which the solution is continuous, since the constant reflected
state changes from supersonic to sonic as one travels away from the reflection
point. The intersection Ξ0 of the reflected shock with this boundary marks the
beginning of the free boundary, and serves as the initial condition for the free
boundary position. The Dirichlet and Neumann boundaries are the same as in
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‘strong’ reflection. We were unable to solve this problem completely, for the
following reason. As the reflected shock moves away from the reflection point, it
loses strength. In fact, it is not clear whether it becomes sonic at a finite distance
from the reflection point, or is asymptotic to the sonic line. We handled this
by imposing a cutoff in the function f in the shock evolution equation (equation
(6.6), which has the form (6.3) in this case), which served to keep the shock
a small distance from the sonic line. We can prove that the shock equation
is correct for some distance, but cannot determine whether the actual solution
becomes sonic at finite distance or not. A similar difficulty arises in examining
regular reflection for the nonlinear wave system, Example 7.7. Without some a
priori knowledge of the length of the free boundary, we cannot employ the fixed
point method.

The procedure is to seek the position of the free boundary as the fixed point
of a mapping, defined by fixing an approximate position, solving the partial dif-
ferential equation with that fixed boundary and the oblique derivative boundary
condition imposed on it (along with all the other boundary conditions), and then
using the shock evolution equation to get an updated approximation. That is, a
mapping

J : η 7→ η̃ (6.14)

is defined by

η̃(ξ) = η0 +

∫ ξ

a

f(x, η(x), u(x, η(x)) dx, (6.15)

where u is the solution in Ω of (6.5), (6.7), (6.8), (6.9):

Qu = 0, Mu|Σ = g, u|σ = u0, u|σ0
= φ, uν|Σ0

= ψ, (6.16)

and in this problem the oblique derivative boundary Σ is defined by η = η(ξ). We
assume, for concreteness, that the fixed end of the free boundary is at ξ = ξ0 = a.
In principle one could replace (6.15) by

dη̃

dξ
= f(ξ, η̃, u(ξ, η(ξ))), η(a) = η0,
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noting that u still needs to be evaluated on the old boundary Σ in order for the
function f to be well-defined.

The fact that the mapping is defined by an integral motivates the use of
Hölder spaces and the following version of the Schauder Fixed Point Theorem:

Theorem 6.6 ([28, Corollary 10.2]) Let K be a closed, convex subset of a Banach
space B and let J be a continuous mapping from K into itself such that the image
JK is precompact. Then J has a fixed point.

To apply this theorem, we proceed as follows. First, we note that there are
two levels of difficulty, depending on whether the problem contains a degenerate
boundary or not. We recall that, even though the basic equation changes type,
it may happen that this change of type occurs only across shocks (as in strong
transonic regular reflection, or steady transonic shock perturbation, for example)
and that the elliptic equation is uniformly elliptic (or rather, can be modified to
be so, using realistic cutoff functions). In this case, we solve the free boundary
problem in four steps:

Step 1: Fix an approximate position for the free boundary, Σ, given by η = η(ξ),
which defines Σ ∈ K, a subset of a Hölder space H1+αΣ

. Here αΣ denotes
the Hölder exponent of Σ. We identify a suitable value for αΣ in Section
7.2, equation (7.4).

Step 2: Solve a (fixed) mixed boundary value problem for the key variable,
u, using Lieberman’s theory for mixed boundary value problems in Lip-
schitz domains. This step typically involves solving the quasilinear problem
through linearization, and another application of a fixed point theorem. It
may also be necessary to introduce modifications for loss of obliqueness in
the derivative boundary condition.

Step 3: Map η → η̃ = Jη by the shock evolution condition (the other Rankine-
Hugoniot condition); show that the image JK is precompact and invoke
Theorem 6.6. Specifically, we show that J maps K ⊂ H1+αΣ

to K ∩H1+α,
for some α > αΣ.

Step 4: Show that the fixed point η and the corresponding solution u solve the
problem (typically straightforward).

However, in many interesting problems one expects the equation to be degenerate
elliptic on a portion of the boundary, as in Example 6.3. (It is also possible to
pose problems in which the entire boundary is degenerate. A problem of this
type with a fixed boundary was first solved by Zheng, [50]. Example 5.1 poses a
problem with a degenerate boundary which is also a free boundary.) In this case,
we have made progress by applying an elliptic regularization to the operator Q,
and using the four-step process above on Qε. Additional estimates are required
to take the limit ε→ 0. The overall process consists of four parts.
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Part 1: Prove existence, as above, for the free boundary problem with Q re-
placed by Qε; derive a priori bounds, uniform in ε, on uε and ηε(ξ).

Part 2: Obtain local lower barriers for uε, which are independent of ε and imply
uniform local ellipticity. The key point here (first recognized by Zheng [50]
in this context) is that the actual solution to the degenerate problem is
strictly elliptic away from the boundary.

Part 3: Obtain convergent subsequences {uεi} and {ηεi} making use of regular-
ity, compactness (from the local ellipticity) and a diagonalization.

Part 4: Show that the limit u solves the problem. This part may require sig-
nificant work. In passing to a subsequence in the previous part, important
information about a priori estimates is lost.

For B in Theorem 6.6, we choose a Hölder space H1+αΣ
[a, b], and the closed set

K is specified, as in Definition 7.6, by η(a) = η0 and by fm ≤ η′ ≤ fM . Working
in Hölder spaces is also compatible with existing theories for oblique derivative
boundary conditions, and for ‘mixed’ problems of the type we solve here, with
different boundary conditions on different parts of the boundary.

Now, the existence of corners appears to be a basic property of the subsonic
domain Ω, with a consequent loss of regularity of solutions there. One of the
mechanisms for obtaining compactness of the mapping J is the knowledge that u
in the integrand of equation (6.15) is the value on Σ of a function defined there by
its derivative; and we use in an essential way the improvement in regularity that
one gets in solving elliptic problems with derivative type boundary conditions. It
is also standard, following the work of Lieberman and others [39, 41], that this
improvement in regularity (known as Schauder or boundary gradient estimates)
persists even when corners are present, as they typically are with mixed type
boundary conditions. This is dealt with by the use of weighted Hölder spaces,
defined following Lieberman [39, 41].

We recall the definitions of Hölder norms. Let X = (ξ, η); let D = (D1, D2)
denote partial derivatives, andDku the set of k-th order derivatives. For functions
defined on an open set Ω in R

n, the supremum norm and Hölder semi-norms are

|u|0;Ω = sup
X∈Ω

|u(X)| and [u]α;Ω = sup
X,Y ∈Ω

|u(X) − u(Y )|
|X − Y |α

for 0 < α ≤ 1. Hölder norms of any order are defined by

|u|α;Ω = |u|0;Ω + [u]α;Ω for 0 < α ≤ 1 ,

and, for a = k + α where k is an integer and 0 < α ≤ 1,

|u|a;Ω =
∑

j<k

|Dju|0;Ω + |Dku|α;Ω .
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The space of functions whose (k + α)-Hölder norm is finite is denoted Hk+α.
For Σ = {(ξ, η(ξ)) | a < ξ < b}, we say Σ ∈ H1+α if η ∈ H1+α(a, b). We let
V = {V1, . . . , Vj} denote the set of corners of Ω. Weighted or partially interior
seminorms are defined as follows. For a subset S (which is often V in our case)
of ∂Ω, define

Ωδ;S = {X ∈ Ω | dist(X,S) > δ} .

Definition 6.7 For any a > 0 and a+b ≥ 0, the weighted Hölder norm of u on
a domain Ω with respect to boundary component S, with complement Sc in ∂Ω,
is

|u|(b)a;Ω∪Sc = sup
δ>0

δa+b|u|a;Ωδ;S
. (6.17)

The set of functions on Ω with finite norm |u|(b)a;Ω∪Sc is denoted H
(b)
a;Ω∪Sc.

With S = V, we have Sc = Σ∪Σ0∪σ∪σ0 = ∂Ω\V and we define H
(b)
a = H

(b)

a;Ω\V
.

(By convention, each boundary component is relatively open.) These spaces
measure the loss of regularity we expect to find at corners. For example, the
function rγ, with r measuring distance from a corner, is in H

(−γ)
a for a ≥ γ.

These spaces have a compactness property: for 0 < b′ < b, 0 < a′ < a, a ≥ b

and a′ ≥ b′, a bounded sequence in H
(−b)
a is precompact in H

(−b′)
a′ [27, Lemma

4.2].
There are two parts to the program: first, constructing a fixed point of a

mapping, assuming we are dealing with a uniformly elliptic equation, Steps 1–4,
and then obtaining a solution of the problem by letting the regularizing parameter
tend to zero, Parts 1–4. We consider these in turn. In Section 7, we suppose that
the operator Q is uniformly elliptic.

7 Existence of a Subsonic Solution: the Uniformly Elliptic Case

In this section, we outline how Steps 1–4 are handled. We use the notation
established in equations (6.5), (6.8), (6.6), (6.7) and (6.9). The method for
solving the boundary value problem posed in these equations depends on the
Schauder theory which provides interior and boundary estimates on solutions of
linear elliptic equations.

One way in which elliptic estimates differ from the types of bounds one obtains
in hyperbolic equations is that linear estimates are the key; once an estimate is
obtained for a linearized equation, existence for the nonlinear equation usually
follows from a compactness argument. In particular, this means that there is
typically no restriction to data of small oscillation. A second important property
is that regularity of solutions and bounds on solutions tend to be independent
of bounds on and regularity of the coefficients of the equation; this is the key to
obtaining compactness when solving a nonlinear problem as a sequence of linear
ones.
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The Schauder theory is expounded in detail in Gilbarg and Trudinger’s mono-
graph [28, Chapters 6 and 10]; for extensions to oblique derivative problems, the
reference is papers of Lieberman, for example [39, 41].

7.1 L∞ Bounds and Monotonicity

In the problems we have succeeded in solving, there are natural bounds on the
position of the free boundary, and with those bounds come natural upper and
lower bounds on the nonlinear variable u.

Example 7.1 In Example 6.5, regular reflection in the UTSD equation, the
free boundary Σ lies between two parabolas, P1 through (1, 0) and a translated
parabola Pa through Ξa, pictured in Figure 6.3. We have Dirichlet data on σ and
σ0, and homogeneous oblique derivative boundary conditions on Σ and Σ0, which
bound u between minσ0

u and u|σ. In Example 6.1 for the nonlinear wave system,
the curve Σ lies between the straight line continuation of the incident shock
and the horizontal line through Ξ0, Figure 6.1. Again, we have homogeneous
boundary conditions on Σ and Σ0. This time, the lower bound is u = u0 on σ while
the upper bound, u(Ξs) is bounded below and above by the limiting conditions,
u(Ξc) = u0 (corresponding to the unphysical case of a constant subsonic state),
and a maximum determined from the Rankine-Hugoniot condition for a horizontal
shock through Ξ0.

Example 7.2 We describe a situation in which bounds are less tractable. In
setting up the conditions for weak Mach reflection in Example 6.1, we required κa

to be large enough that the incident shock S intersected the sonic circle ξ2 +η2 =
c20 at a point (ξ0, η0) with ξ0 > 0. The values of κa for which this occurs depend
on the ratio ρ0/ρ1. In examining the types of shock interaction which may occur,
there appear to be three possibilities. First, the incident shock S1 and its mirror
image S2 in Figure 6.1 may intersect C0 before they intersect each other (large
κa). (This geometric condition defines Region A∗ in Figure 7.1.) At the other
extreme, they may intersect each other high enough on the η axis that the quasi-
one-dimensional Riemann problem so formed has a solution (small κa; Region C
in Figure 7.1). There is a region between these two cases, Region B, where neither
alternative holds. We discuss Region C in Example 7.7, below. A conjecture for
the solution in Region B was discussed in Example 5.3. Figure 7.1 gives two
views of the regions: the first is a bifurcation diagram parameterized by the
quantities κa, ρ0 and ρ1 which define the Riemann data for this problem. On
the right, we present the same regions, parameterized by the angle the incident
shock makes with the vertical rather than by κa. To the extent that the NLWS
provides a model for gas dynamics, this parameter represents the angle of the
wedge in the problem of shock reflection by a wedge, while ρ0/ρ1 is proportional
to the Mach number. This diagram represents the familiar transition between
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Figure 7.1: Shock Reflection in the NLWS: Bifurcation Diagram

regular and Mach reflection. That there is a region in which no solution of either
kind appears to exist is an example of the von Neumann paradox.

In fact, as will be described in Section 8, we actually require κ > κ∗, a
value whose existence is stated as Lemma 8.5. The estimate we found in [13] in
proving Lemma 8.5 is not sharp; however, numerical simulations indicate that the
solution described in Example 6.3 and illustrated in Figure 6.1 does not persist
up to the curve separating Region A∗ from Region B. A second type of solution,
which appears in simulations, contains a reflected shock which forms with zero
strength at the point Ξ0, and then grows to a shock of finite strength and either
decays again to zero strength, at or before the bottom of the sonic circle, or forms
a roughly circular reflected shock. In this case, we have not yet found bounds
for the position or maximum strength of the reflected shock. The next example
formulates a problem for a more symmetric version of this kind of reflection,
where bounds could be established.

Example 7.3 The equation is again the nonlinear wave system; the data are
chosen with ρ0 = ρ1 = ρ2 and so that shocks of identical strength move away
from the initial discontinuities, both up and down. See Figure 7.2. (There is a
two-parameter family of data that leads to this symmetric configuration.) The
conjectured solution contains three Mach stems, with positions and maximum
values of ρ as in Example 7.1, and three reflected shocks. This problem contains
six free boundary segments of two types, but each can be handled independently
of the others. The solution is still sonic — degenerate elliptic — at Ξ0 and at the
five images of this point under reflection and rotation. In this case, we conjecture
that the maximum value of u along the reflected shock occurs at the mid-point,
Ξm in Figure 7.2, which is also the point at which the derivative condition is not
oblique. In solving this problem by the fixed point method, this point is part
of the Dirichlet boundary, as in equation (6.9). In fact, the initial angle of the
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Figure 7.2: A Symmetric Mach Reflection Problem

reflected shock is known (tangent to the sonic circle), and if we suppose that the
reflected shock is convex, then this gives an outer bound for the point Ξm, and
hence, using the Rankine-Hugoniot conditions and knowing the shock angle by
symmetry, an upper bound for ρ. Based on numerical evidence that the reflected
shock is close to the sonic circle, these bounds are not very sharp, and it is not
clear that they will be sufficient to prove a theorem in this case.

It is often not difficult to show that a Mach stem or reflected shock is a convex
curve, and that the significant variable, u, is monotonic along the shock. This
can be seen, much of the time, from the Rankine-Hugoniot conditions. However,
our approach requires us to solve fixed boundary problems in which only part
of the Rankine-Hugoniot relation holds, and also to update the shock position
by invoking the complementary Rankine-Hugoniot relations, thereby producing
a region in which the partial differential equation does not hold. Specifically,
the fixed mixed boundary value problem has the form (6.16). It turns out that
one can often infer both L∞ bounds on the solution and monotonicity along the
approximate shock boundary even without having a complete solution. One form
of the result is

Proposition 7.4 Consider a solution u ∈ C1(Ω ∪ Σ ∪ Σ0) ∩ C(Ω) of the fixed
mixed boundary value problem (6.16). Suppose that u is elliptic in Ω, that g =
0 = ψ and that φ is constant. Assume further that each component of both Σ and
Σ0 terminates at points which are in the closure of σ ∪ σ0. Then, the maximum
of u in Ω is achieved on σ0 and u is monotonic on Σ and on Σ0.

Proof: We sketch the proof; a complete proof in a particular case is given in [13,
Proposition 2.4]. The regular and Hopf maximum principles apply to an operator
of the form Q. If the extrema of u are attained at points on the boundary other
than in σ0 ∪ σ, then the tangential derivatives of u along ∂Ω are zero there. By
the homogeneous boundary conditions, then, the gradient of u is zero at such a
point, and this contradicts the Hopf maximum principle. Thus the extrema of u
in Ω are attained on σ ∪ σ0.
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Monotonicity requires a more subtle argument. We note first that if u is not
monotonic on either curve then u, restricted to that curve, has both a local max-
imum and a local minimum along that curve. By the Hopf maximum principle,
neither of the extrema along the curve is a local extremum in Ω. Hence one can
find a curve in Ω which leaves the maximum, along which u is increasing, and a
curve from the minimum along which u decreases. Following these curves results
in a contradiction.

One can consider extensions of this principle to non-homogeneous derivative
boundary conditions and non-constant Dirichlet conditions. For some problems,
convexity of the shock curve can also be seen easily.

Example 7.5 Consider the Mach stem in the nonlinear wave system, Example
6.1 and 6.3. The shock position satisfies

η′ = f(ξ, η(ξ), ρ(ξ, η(ξ))),

and so
η′′ = fξ + fηη

′ + fρρ
′.

However, fξ + fηη
′ = 0 (since constant ρ leads to a straight line shock). A calcu-

lation shows that fρ ≤ 0, while monotonicity of ρ along the shock, Proposition
7.4, gives ρ′ ≤ 0, whence η′′ ≥ 0.

The reflected shock in the UTSD equation, Example 6.5, is convex by the
same argument. To apply Proposition 7.4 here, we must take the Dirichlet data
to be constant on the cutoff boundary σ0. Then u(η) is monotonic along the
shock ξ(η). From the shock equation

dξ

dη
= f(ξ(η), η, u(ξ(η), η)) = −η

2
−

√
ξ +

η2

4
− u+ 1

2
, (7.1)

we obtain fu ≥ 0 and ξ′′ ≤ 0. Hence the shock is convex.

7.2 The Fixed Point of the Mapping

The basic mapping is (6.14), (6.15). We define a bounded convex set K using
bounds like those in Example 7.1.

Definition 7.6 The set K is defined by two sorts of conditions:

(K1) Analytic: K ⊂ H1+αΣ
(a, b);

(K2) Geometric: η(a) = η0; fm ≤ η′ ≤ fM .

Here fm and fM are lower and upper bounds on f(ξ, η, u) (which may in turn
depend on a priori bounds on u). In addition, it may be convenient to impose
other geometric constraints; this has been the case in the examples we have solved.
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Figure 7.3: Regular Reflection: Sketch and Simulation (Kurganov)

We note a recurring difficulty: The equation for the shock angle is nonlinear; see
(6.3), (6.10) or (7.1) for example. Hence the function f is typically defined only
for some values of u. One resolution of this difficulty is to modify f with a cutoff
function, and then to attempt to remove the cutoff. For the UTSD equation,
Example 6.5, we were unable to remove the cutoff completely, and thus we found
only a local solution. In the special case of the Mach stem problem we solved
for the NLWS, Example 6.3, we were able to show a priori that f was defined
for all functions used in the mapping. In the slightly different shock interaction
problem for the NLWS (or pressure-gradient system), described in Example 6.4,
Zheng [52] encountered the same difficulty as in the UTSD equation; the difficulty
also arises in studying regular reflection for the NLWS.

Example 7.7 Consider regular reflection in the nonlinear wave system for the
data of Example 6.1, this time with κa chosen small enough (Region C of Fig-
ure 7.1) that the incident shocks meet above the sonic circle and that the quasi-
one-dimensional Riemann problem at the intersection point Ξc has a solution.
There are two solutions, corresponding to weak and strong regular reflection. In
either case, after the reflected shock becomes transonic, the shock, now repre-
sented by ξ(η), satisfies an equation like (6.10):

dξ

dη
=
ξη ±

√
s2(ξ2 + η2 − s2)

η2 − s2
. (7.2)

The reflected shock may terminate at a point Ξt where ρ = ρ0, s = c(ρ0) and
ξ2+η2 = c2(ρ0), on the sonic circle C0. (See Figure 7.3 for a sketch and numerical
simulation by Kurganov of this problem.) At this point, the quantity under the
square root sign in (7.2) is zero. However, the corresponding fixed boundary
value problem, (6.16), for a given Σ, will have a solution ρ(ξ, η) which does not,
of course, satisfy (7.2). There seems to be no a priori way of ensuring that
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ξ2 + η2 − s2(ρ, ρ0) will be positive (or nonnegative) for this problem. Thus, the
mapping J must be replaced by an equation of the form

dξ̃

dη
=
ξη ±

√
gδ

(
s2(ξ2 + η2 − s2)

)

η2 − s2
,

where gδ(X) = X for X ≥ δ > 0, gδ(X) = δ otherwise. This type of cutoff
function was introduced in the regular reflection problem for the UTSD equation,
Example 6.5, and we were not able to remove it in [9, 10]. It is even possible, in
this problem, the the reflected shock does not terminate but extends completely
around the circle.

For the remainder of this exposition, we shall assume that f is defined for
all functions in the range we consider. In particular, we may take f to be an
analytic function of its arguments.

Following the program outlined in Steps 1–4 of Section 6, we note that check-
ing the hypotheses of Theorem 6.6 involves two parts. First we must establish
that any solution of (6.15) satisfies the geometric bounds, (K2). This result is
problem-dependent.

Example 7.8 For the Mach stem for the NLWS, Example 6.3, a satisfactory set
of geometric conditions is given by

η(ξ0) = η0, η′(ξ0) = 1/κa, ηc ≤ η(ξ) ≤ η0, 0 ≤ η′ ≤
√
c20/s

2
0 − 1, (7.3)

and in [13] we verified that provided η is monotone and ρ along the curve Σ is
monotonic and satisfies ρ(ξ0) = ρ0, and s(ρ(ξ0), ρ(0)) = η(0), then η̃ also satisfies
(7.3).

On the other hand, establishing that the Hölder class of Jη is H1+α for some
α > αΣ is the source of the compactness of the mapping, and is the unifying
principle of our method. Since Jη is found by integration, the Hölder class of
Jη is 1 + αΩ, where αΩ is the Hölder class of the solution u of the fixed mixed
boundary value problem (6.16) which we now discuss.

The existence of a solution of this problem, and a priori estimates for it,
form the backbone of our approach. The critical step is to obtain bounds on the
solution at Σ which are independent of the exponent αΣ. The estimates for this
are derived from basic Schauder theory [28], from Lieberman’s work [39, 41], and
from estimates due to Gilbarg and Hörmander [27]. We prove

Theorem 7.9 ([9], Theorem 4.1; [13], Theorem 3.7) Suppose that any so-
lution u of (6.16) satisfies a priori bounds u ∈ I and that Q is uniformly elliptic
and M uniformly oblique for u ∈ I. Suppose that Σ, Σ0, σ and σ0 are all in
H1+αΣ

and that the corner angles all lie in a range (θ0, θ1). Then (6.16) has a

solution u ∈ H
(−γ)
1+α for all α ≤ αΣ and all γ ≤ γV , where γV depends on θ0 and

θ1, the ellipticity ratio and the obliqueness ratio.
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For this result, we choose the weighted space to have weights at the set of corners
V, and note that the solution lies in Cγ(Ω).

This theorem is proved by linearizing, replacing Q and M by linearized oper-
ators L and N :

Lu = Di(aij(Ξ, w)Dju) + bi(Ξ)Diu, Nu = βi(Ξ, w)Diu,

for w ∈ W ⊂ H
(−γ1)
1+ε , where W includes the L∞ a priori bounds established for

u. The important point is that estimates can be obtained for the linear problem
which do not depend on the H

(b)
a norm of w. Then existence can be proved using

the Schauder fixed point theorem on the linearized problem. The linear estimates
are based on results of Lieberman, for example [39, Lemma 1], [40, Lemma 1],
and [41, Theorem 1]. The important corner estimates are derived in [39, Lemma
2] and [41, Theorem 2].

Now, from Theorem 7.9 we have u ∈ H1+αΣ
except at the corners, where

u ∈ HγV
. Provided f is smooth, we then have η̃ ∈ H1+α for any α ≤ γV . Thus if

αΣ = γV /2 (7.4)

we have a compact mapping and Theorem 6.6 gives the fixed point.
At this point, we discuss the possible failure of obliqueness. In some of the

problems we have studied, the derivative operator, M = β · ∇ loses obliqueness
at points where f = 0. These correspond to symmetry points, for example where
a shock hits the wall, or where it changes from a ‘+’ to a ‘−’ shock. It seems
likely that this loss of obliqueness is generic, and will occur at isolated points on
most transonic shocks. Since all the estimates used in Theorem 7.9 depend on
the obliqueness ratio, loss of obliqueness is a serious difficulty. The linearization
procedure can be carried out; in fact, it is typically not difficult to modify the
derivative operator to make it uniformly oblique, and to obtain a convergent
sequence which solves the linear problem. However, obtaining linear estimates,
needed to solve the nonlinear problem, is more difficult. This was handled in [13]
by modifying the procedure outlined above.

1. We replaced the weights at corners by a weight along Σ; thus the set S in
the definition of the norm of u, equation (6.17), is now Σ ∪ V.

2. We found a solution to the nonlinear problem in H
(−γ)
2+α (Ω) which satisfied

an additional bound, |ρ|γ;Σ(d0) ≤ K1, where Σ(d0) is a neighborhood of Σ
and K1, like γ, is independent of αΣ. This, as in Theorem 7.9, was enough
to give a fixed point.

In [34], Kim has shown that the procedure in [13] works quite generally when
obliqueness fails.

Another feature of our approach is that the regularity which we assume for
Σ, which is less than 2 + α, is lower than the boundary regularity assumed in
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the results quoted above. Following Lieberman [38], we introduced a regularized
distance function (or regularized domain). For all the estimates we need, this has
proved adequate.

Once a fixed point of J has been found, the pair (u, η) gives a solution to the
free boundary problem.

8 The Degenerate Elliptic Free Boundary Problem

We now summarize how we handle the case that there is a component of the
boundary, σ, on which Q is degenerate elliptic and u is constant. We follow the
four parts outlined in Section 6.

The first part is to replace Q by Qε = Q + ε∆. The problem can now be
handled by the method of Section 7. We obtain a solution (uε, ηε) for each ε > 0
which lies in

C2+α(Ω
ε\Sε) ∩ Cα(Ω

ε
) × C2+α(a, b),

where α = α(ε) and Sε = V or Σε ∪ V.
We see immediately that the sequence {ηε} is uniformly bounded and equicon-

tinuous, from the geometric bounds (K2) on the set K, which are independent
of ε. Hence the Arzelà-Ascoli theorem implies existence of a convergent subse-
quence ηi → η. We now restrict attention to that sequence. The limit, η is in
Cγ([a, b]) for all γ ∈ (0, 1), and the sequence of domains Ωi has a limit Ω.

8.1 Local Lower Barriers and Convergence

Now the critical issue is that of uniform ellipticity of the operators Qε in compact
subsets of Ω.

Example 8.1 In the interacting shock problem for the nonlinear wave system,
we have ρε(ξ, η) > ρ0 for all (ξ, η) ∈ Ωε, where ρ0 is the constant boundary value
on the degenerate boundary σ. Since the ellipticity ratio is 1 − (ξ2 + η2)/c2(ρ),
(Example 4.10) and c2 is monotone in ρ, while c2(ρ0) = ξ2 + η2 on σ (where, in
turn, ξ2 + η2 has its maximum value in Ω), we clearly have

1 − ξ2 + η2

c2(ρ)
≥ δ > 0

on compact subsets of Ω. In fact, the uniform bound holds on any closed subset
of Ω\σ.

The analysis in this example is simpler than the typical case, but illustrates the
general idea. The objective is to find a lower barrier φ, independent of ε, such
that we have uε ≥ φ for all ε and such that λ(u) ≥ λ(φ) ≥ δ > 0, where λ is the
ellipticity ratio of the principal part of Qu, Definition 4.9. In fact, it is sufficient
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to do this locally: Show that on each closed set B in Ω\σ there is a φ = φB with
this property. This was done by Čanić and Kim for a general class of quasilinear
degenerate elliptic equations satisfying a structure condition, [16, Lemma 2.4].
The technique in [16] generalizes an approach found independently by Zheng [50,
page 1860, equation (3.7)] and by Choi and McKenna [24, Theorem 3].

Then the following Lemma gives a limit solution u:

Lemma 8.2 Suppose that {ui} is a sequence such that Qui is uniformly elliptic
on each closed subset of Ω\σ, with ellipticity ratio independent of i. There there
is a subsequence which converges to a limit u which is in C2+α(Ω) for some α.

This is proved by compactness and diagonalization arguments. The proof was
carried out in detail as Lemma 4.2 of [10].

8.2 Verification of the Solution

The compactness argument also shows that the limit function satisfies the equa-
tion Qu = 0, as was shown by Choi and McKenna [24]. Convergence and con-
tinuity up to the Dirichlet and Neumann boundaries is also standard. Uniform
ellipticity up to the free boundary Σ also allows us to verify the free boundary
conditions.

Lemma 8.3 ([10], Lemma 4.3) The limits u and η satisfy Mu = 0 on Σ and
η′ = f(ξ, η(ξ), u(ξ, η(ξ))).

The convergence in Lemma 8.2 and the proof of Lemma 8.3 use uniform oblique-
ness. At the point where obliqueness failed in the Mach stem problem for the
NLWS, we were able to prove this result [13, Lemma 4.4] by observing that the
condition f = 0, which corresponds to η′ = 0, at the point where obliqueness
fails, is satisfied precisely when the one-point Dirichlet condition holds. Kim has
shown that whenever the tangential derivative implies a Dirichlet condition then
this procedure works [34, Condition C and Lemma 3.9].

8.3 Convergence at the Degenerate Boundary

When the subsonic region contains a degenerate boundary and a free boundary
which meet at a corner, we have been able to get results only on a case-by-case
basis.

In general, as described in Section 4.1, we conjecture that solutions at the
degenerate boundary σ will display either linear (square root singularity) or non-
linear behavior (Lipschitz continuous with fixed Lipschitz constant). Specifically,
for the examples we have studied and more generally under the structure condi-
tions established in [16], when u|σ is a (local) minimum of u in Ω, we see linear
behavior; when u is a (local) maximum, the solution is nonlinear. Physically,
this may correspond to formation of a weak compression wave on the sonic line
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in the linear case, or to a nonlinear perturbation of a subsonic solution. Again,
physically, this seems to be determined by the nature of the phenomenon. In the
case of interacting shocks, Examples 6.1 and 6.3, the incident shocks interact with
each other in the subsonic region, beginning at the sonic line, to produce a Mach
stem and a reflected shock. By contrast, in weak regular reflection, Example 6.5,
the reflected shock merely crosses the sonic line in the course of becoming tran-
sonic, and does not interact with another wave. We classify the former behavior
as linear, the latter as nonlinear.

This division is incomplete, at present. In Zheng’s example, Example 6.4, the
sonic line is a maximum for ρ and we expect nonlinear (Lipschitz) behavior there.
(This has not yet been proved.) A physical explanation for why these shocks
interact only nonlinearly might involve the fact that the shocks are diverging and
hence there is no compression.

In the case of nonlinear behavior, estimates at σ are straightforward.

Example 8.4 Consider behavior at σ in the weak regular reflection problem for
the UTSDE. The approximate solutions {uε} are bounded above by the constant
reflected state, uM , and below by the requirement that the solution be subsonic,
so u(ξ, η) > ξ + η2/4. Since uM = ξ + η2/4 on σ, we see that u is continuous on
σ.

In the linear case, when the set {uε} is not uniformly Lipschitz, there is more
to prove. For a general class of degenerate equations, including all the examples
considered in this paper, Čanić and Kim established that the approximate solu-
tions converge at σ to a continuous function [16]. Lemma 3.2 of [16] constructs
a (singular) upper barrier function locally at each point in the interior of σ,
again following the technique originally developed by Choi, Lazer and McKenna
[23, 24]. However, obtaining continuity at the corner Ξ0 between the degener-
ate boundary and the free boundary requires an additional hypothesis. For the
interacting shock problem for the NLWS, Example 6.3, we were able to prove

Lemma 8.5 There is a function κ∗(ρ1, ρ0) of the Riemann data such that for any
κa > κ∗ the limit ρ is continuous on Ω.

This lemma was proved using a modification of the singular barrier construction
developed in [16], and uses the particular structure of the characteristic and shock
speeds in the NLWS. The curve κ∗ is sketched in Figure 7.1 for a particular choice
of gas law relation. While it is plausible that similar structure relations would
allow a version of this result for a wider class of problems, the result is neither
general nor sharp, and many open problems remain here.

9 The Solution of the Self-Similar System

At the beginning of Section 6, we outlined the features of self-similar systems
that appear to make them amenable to our approach. At this point, we have
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outlined how we can set up and under certain conditions solve the free boundary
problems for second-order quasilinear elliptic equations which arise. In certain
cases, it is then possible to complete the problem by solving for the remaining
variables in the original self-similar system. In particular, for the nonlinear wave
system, Example 4.6, the second and third equations in the system (4.10) are
simply transport equations for the momentum components m and n along radial
lines through the origin, and once ρ is known then m and n can be found by
integration. Introducing a radial variable r =

√
ξ2 + η2 gives

∂m

∂r
=

1

r
p(ρ)ξ,

∂n

∂r
=

1

r
p(ρ)η. (9.1)

Carrying out the integration from points near infinity (in the hyperbolic region),
which is consistent with the time-evolution of (4.10), one obtains a solution in the
punctured plane. At the origin, there may be logarithmic singularities in (m,n).
In addition, since at σ we proved only that ρ is continuous, we obtain only weak
solutions to (9.1) there, in the sense of distributions. However, irrespective of
singularities, we have

Proposition 9.1 For the nonlinear wave system, the function U = (ρ,m, n)
found by solving the free boundary problem for ρ and (9.1) for m and n satisfies
the system (4.10).

Proof: We need only verify the first equation of (4.10). For this we note that
the second order equation for ρ, (4.11), can be written

(
p(ρ)ξ − ξ2ρξ − ξηρη

)
ξ
+

(
p(ρ)η − η2ρη − ξηρξ

)
η
+ ξρξ + ηρη = 0.

Using (9.1), pξ = rmr = ξmξ + ηmη and pη = rnr = ξnξ + ηnη, we have

(
ξmξ + ηmη − ξ2ρξ − ξηρη

)
ξ
+

(
ξnξ + ηnη − η2ρη − ξηρξ

)
η
+ ξρξ + ηρη = 0. (9.2)

Define R = ξρξ + ηρη − mξ − nη. Then, after manipulating derivatives, (9.2)
becomes

∇ ·R +R = 0. (9.3)

That is to say, R is transported on radial lines following (9.3). But now R = 0
for sufficiently large (ξ, η), where the hyperbolic system is satisfied. Hence R ≡ 0
and (4.10) is satisfied.

Similarly, in the pressure-gradient system, Example 6.4, the first two equations in
the system (4.12), written in self-similar coordinates, are transport equations for
u and v. We note that such is not the case for the UTSD equation, Example 4.4.
Here the self-similar system (4.5) does contain a second equation for v, but it is
not a transport equation, for the reasons discussed in Section 4.2. In particular,
a solution analogous to the reflected weak compression wave of Example 6.3 does
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not exist for the UTSD system, as the solution which could be constructed for
u cannot be extended to v without creating a singularity in v along the entire
negative ξ axis. It is conjectured that for this equation the reflected shock is
always a genuine shock. That is, no weak compression waves exist for the UTSD
system. Whether there might exist a solution in which the reflected shock has
strength zero at the formation point, as in Example 7.2, or if all solutions contain
embedded supersonic regions, as in Example 5.3, remains an open question.
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Note added in Proof:

The condition that the solutions of the second-order equation Qu=0 of equation
(6.5) in the subsonic region give rise to a weak solution in an open set containing
the sonic line is that a characteristic form involving the first derivatives of u
vanish at the sonic line. This condition holds if the solution is Lipschitz or if the
equation is linear, but fails for the singular solution of a quasilinear equation, like
the solution illustrated in Example 4.11. In particular, in Examples 7.2 and 7.7,
we conclude that for the subsonic flow to be part of a weak solution, the shock
does not terminate. On the other hand, in Example 6.1 and 6.3, the degenerate
boundary cannot consist of more than a single point (the formation point of the
Mach stem), and we conjecture that the full solution requires a second, reflected
shock, as in Example 7.3, although numerical simulations appear to give the
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solution described in Example 6.1. This phenomenon may be connection to the
discussion of vorticity given in Section 4.2. A revision of our work [13] on Example
6.1 to include the correct reflected shock is in progress.
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[3] S. Čanić and B. L. Keyfitz. An elliptic problem arising from the un-
steady transonic small disturbance equation. Journal of Differential Equa-
tions, 125:548–574, 1996.
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vation laws. In K. Kirchgässner, O. Mahrenholtz, and R. Mennicken, (eds),
Proceedings of ICIAM 95: Supplement 2: Applied Analysis; Mathematical
Research, Vol. 87, pages 133–136. Akademie Verlag, Berlin, 1996.
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[45] D. Serre. Écoulements de fluides parfaits en deux variables indépendentes
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