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Similarity Analysis of Two-Dimensional Systems

Yy
U+FU),+GU), =0, UeR"

Data: U(z,y,0) = f (%)
Similarity Variables:

E=on=75  U=U&n)

t

Reduced System in Two Variables
Oc (' — EU) + 0y (G —nU)
= ﬁg + én = —2U

Sectorially Constant Data

Method: resolve 1-D far-field discontinuities; solve as IV/BVP in 2-D
Type Changes: hyperbolic in far field; ‘subsonic’ region near origin
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Acoustic-type Structure: Degenerate/Non-degenerate Characteristics
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CHANGE OF TYPE THEOREM Reduced
equation hyperbolic iff x = (1,£,n) outside SUSOC%GO

- - - IHAIOVILS- -

acoustic wave cone Cyy = {27 Q 'z = 0}.
RP in 2+ 1 dim = CP w. data at o

SUPERSONIC REGION: HYPERBOLIC
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Far Field Solution and Wave Interactions

e ‘Quasi-One-Dimensional’ Riemann Problems in Hyperbollc Region
e Shock-shock \

Rarefaction-rarefaction
Rarefaction-shock

e No Q-1-D solns for some probs

Mach stems

e Sonic lines e

1
4

Sonic bdry not det. a priori

e Current effort: examine simplified ‘Nonlinear Wave System’ —
Nonlinear and Linear parts decouple & Linear waves stationary
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Comparison: Isentropic Gas Dynamics & NLWS

Isentropic Gas Dynamics: p = p7 /v Nonlinear Wave System:
pr + (pu)e + (pv)y =0 P+ Mg +1ny =0
(pu)s + (pu® + p)a + (puv)y =0 My + pr =0

(pv)e + (puv)z + (pv° + p)y =0 ne+py =0

Second-order equation for nonlinear char. variable (p):
((*(p) = U*)pe = UV py), ((c*(p) — &)pe — Enpy)
+((2(p) = V?)py = UVp¢), +((E(p) = 0*)py — Enpe),
+(Vuy — Uvy)pe + (Uvg — Vug)py +Epe +npy =0
F2(veu,, — ugvy)p = 0
U=u—-¢& V =v—n(‘pseudo-vel.")

Transport equation for linear char. variable:

W:%—Un:’(]g—un w:ng_mn
UWe + VW, + (Us +V, + )W =0 (&) - Vw +w =0

or M, = p¢ My = Pp




Multiphase Fluid Flows and Multi-Dimensional Hyperbolic Problems, Newton Institute, March 31-April 4, 2003

Converging Shocks: A Bifurcation Problem for NLWS

2-state data: Uy, Uy
Data give 2 shocks
Far field soln: 4 waves

e Symmetric prototype for converging sector boundaries
e 'Weak shock reflection’, von Neumann paradox

Parameterized by po/p1 > 1 and by &,

Incident shocks: £ = kn —x, £ = —kn+ X

Linear waves: angle of incidence = angle of reflection

Small k: two local solutions —‘weak’ and ‘strong’ regular reflection
Large k: curved shock, weak reflected wave (cf. kK = 00)

Intermediate values of k: no solution from shock polar analysis
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Converging Shock Data for the Nonlinear Wave System

A

Regions of Different Qualitative Behavior; y=2

Region B: MR

Region C: RR
2 4

6 10

/Py
Three regions: A Weak MR possible

C RR possible
B neither possible
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Some Numerical Simulations of the Problem

Alex Kurganov, Tulane University

Godunov-type central scheme, ‘central-upwind scheme’, Alexander

Kurganov, Sebastian Noelle and Guergana Petrova; modified

version, Kurganov and Chi-Tien Lin. SISC, 23, 2001, pp 707-740.
(http://math.tulane.edu/~kurganov).

Central schemes (eg. Lax-Friedrichs scheme): avoid solving RP by
integrating over local Riemann fans (at cell interface).

Second-order staggered Nessyahu-Tadmor scheme (1990), later
extended to higher orders and to multi-D.

Kurganov & Tadmor, 1999: nonstaggered central schemes, with
lower dissipation, simple semi-discrete form.

New, central-upwind schemes: more accurate estimate of size of

Riemann fans and more accurate projection step.
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Regular Reflection: k, = 0.5

Density p. Data UO:(64,0,803.0956), U1:(1 ,0,0); X, = 0.5; K, = -0.5 Density p. Data U0=(64,0,803.0956), U1=(1,0,0); X, = 0.5; K, = -0.5

114.6301

. € axis .
n axis M axis

m. Data U =(64,0,803.0956), U,=(1,0,0) n. U,=(64,0,803.0956), U =(1,0,0)
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Intermediate Angle, kK, = 1, Region B

Density p. Data U =(64,0,507.9222), U,=(1,0,0); %, = 1; % =1 Contour Plot of m: U = (64,0,507.9222); U, = (1,0,0); x, = 1; K = -1 n. U=(64,0,507.9222), U =(1,0,0)

p'=127.9693

€ axis . ) £ axis
M axis & axis M axis

m. Data U =(64,0,507.9222), Contour Plot of n. UO = (64,0,507.9222); U1 =(1,0,0); K, = 1; K= -1

Contour Plot of Density p. Data U0 = (64,0,507.9222); U1 =(1,0,0); k=10 Kk =1 J ) YA ! J
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An Intermediate Angle, Kk, = 2: Weak or Mach Reflection?

Density p. Data U0=(64,0.401 .5478), U1=(1 ,0,0); K, = 2; Ky = -2 Contour Plot of m: Uo = (64,0,401.5478); U1 =(1,0,0); K, = 2; K = -2 n U0=(G4,0,401 .5478), U1=(1,0,0)

£ axis £ axis

— 0
M axis & axis M axis

m. Data U =(64,0, 401 5478), U,=(1,0,0) Contour Plot of n. Uy = (64,0,401.5478); U, = (1,0,0); x, =2;

Contour Plot of Density p. Data U, = (64,0,401.5478); U, = (1,0,0); &, =2; k, = -2 ! ! j

11
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‘Weak' Mach Reflection (Large x,): Region C

Contour Plot of Density p. Data U0 = (64,0,361.9503); U1 =(1,0,0); K, = 8; K, = -8

Density p. Data U0=(64,0,361.9503), U1=(1 ,0,0); Ka

i
-5 0
& axis

Sonic circle

Co = {&%+n* = *(po)}

Supersonic soln known

U continuous at Cy
oU /Or singular
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‘Weak' Mach Reflection (Large x,): Momentum Component m
m. Data U =(64,0,361.9503), U,=(1,0,0)

13
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Analysis of Weak Mach Stem Problem (Large k)
Degenerate Elliptic Free Boundary Problem

Existence theorem for global problem for NLWS

((c*(p) = €)pe — Enpy) c + (((p) = 0*)py — Empe) , + Epe +npy
Q(p) = 0 (degenerate elliptic) in
c*(p) =& +n*=c*(po) on o
(degenerate boundary, continuous solution)

pe = 0 (symmetry) on X

Free boundary from RH equations:
N(p)=p-Vp=0 (oblique deriv) on X

d_ P ol

€ en+\/s2(€ + 2 — 57) )
P = Pmax at XN Xg (part of D. bdry)

Approach: Fixed Point Theorem (CK & Lieberman, CKK)
e New difficulties: /V not uniformly oblique; est. at degenerate corner
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Previous Results on Related Free Boundary Problems

Fixed point approach developed in joint work with Gary Lieberman
(F B problem in steady TSD equation: C, K & Lieberman)
Partial solution for regular reflection in UTSD model, (a > v/2):

2 types of regular reflection WEAK STRONG

Reflected
weak &  strong st,wck FREE BOUNDAR

a* = (1++/5/2)1/2 ELLIPTI JMM

%Y. REGION '
(v/2,a*): both subs .

a>a”": 1sub, 1 sup DEGENERACY IN ELLIPTIC EQUATION

REGION Incident Shock

Riemann data:
Uo =(0,0), =z > alyl, Complete description of flow needs:

Ui = (1,—a), y >0,z < ay e asymptotic behavior at £ = —0
Uy =(1,a), y< 0,z < —ay ® solving degen elliptic prob
e solving F B prob for shock

Unbounded subsonic region: artifact of UTSD model
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Procedure: Find the Free Boundary as a Fixed Point

Formulate as 2nd order PDE for density, p (not potential);
Rewrite RH conditions as (1) evolution eqn for shock and
(2) ODBC for p

Problem is quasilinear, degenerate elliptic PDE, mixed BC
Regularize PDE (parameter ¢)

Step 1 Fix approx. n = 1(&), defines ¥ € K¢ C Hy14, (Holder)

Step 2 Solve (fixed) mixed BVP for p
Lieberman’s Mixed BVP theory + linearization
+ modifications for loss of obliqueness
Step 3 Map nn — 17 = Jp by other RH condition (shock evolution)
Schauder F. P. Thm: Compactness = fixed pt for J
J KCHi1o, > KNHi1,, a>ay
Step 4 Show 7 and p solve the problem.
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Degenerate Elliptic Equations

Principal part:

(((p) = U?)pe = UVpy), +((c*(p) = VZ)py —UVp¢),
withU=u—-§ V=v—norlU=-(V =-—ng
Linear prototype: Tricomi, uy, + xu,,, or Keldysh, xu,, + u,,

Differ on Hyperb. side (x < 0): dir. of char.
Differ on Elllliptic side (z > 0):
' Fichera fn b = (b — aﬁg)nk (NB: I. o. terms)

(Nonlinear definition ambiguous)

1
@]
m
e
X
m
]

SUPERSONIC REGION: HYPERBOLIC

e Keldysh eqns permit Dirichlet BC (need in nonlin. eqn)
e Linear Keldysh solns have singularities at x = 0: u = 27
e Nonlinear Keldysh solns are regular OR singular
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Mixed BC: Weighted Holder Norms for Corner Singularities

Che = Hiyo : |[ulkya = Zj<k ‘Dju|0 + ‘Dku|a
Partially interior or weighted norms (corners)

(b)
|u a;QUSe — Ha;QuSc
(=)

2" Example: S =V ={P, P}, u=1r"€ H_,

Lin Prob, z € H1(+Zl) Lu = D;(a"(z)Dju), Mu=p(z) - Vu
Estimates indep of z: |u]1 V< Cy (1] + |ulo)
Nonlinear problem: Harnack ineq = est with « indep of ay

Schauder Fixed Point Theorem: B = Hi44,; @1 = min { 5 2
IC closed, bdd.,, cvx. K C B; J: K — K, JK CC K = J has fixed pt.

v dep. on corners only; « indep. of a1; Jp € Hi1n, a>aq
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A Priori Estimates (following Lieberman, Zheng, Canic&Kim, CKL)
Regularize: Q°p = Qp + €Ap.
Obliqueness fails at =.
STEP 1: 4 for FBP for (J¢; a priori bds on
p%, p€(n) unif. in €.
STEP 2: Local lower barrier for p® inde-

pendent of ¢, = unif. local ellipticity
= local compactness.

STEP 3: Convergent subsequence; limit

solves the problem in Q\ {Zy}: apply-

ing regularity, compactness and a diag-

onalization.

STEP 4: Convergence at = requires more.
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The Upper Barrier at =

Barrier construction (supersolution):
Q1 <0, Ny <0, v > pon bdry of Q(a, h)

Qp=(c*—r*+¢e)pr + ﬁ—zpee
+0" (02 + £03) + (S = 2r)p,

X

Upper barrier:

Y(r,0) = po + Alco —7)° + B(bh — 0)*
A, B, b€ (0,1) to be determined from
Q%Y = (co—7)""2p"B(0; —0)*b(b—1)A+... <
Singular barriers in degenerate eqns:

Choi-McKenna & Canic-Kim.
Conjecture: solution has |/ sing. at Cp; b ( < 1/2) optimal

(co—7)2~2 A2b<p”(ﬁ)(b—1)+ p”(p)b) < A%k < 0if b < 2nE
so A>>1, = Q%Y <0.
Also need 1) — p* > 0 on 0Q(a, h).
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Completing the Upper Barrier at =

On o: p® = pg < 7. )
On {0 = 0, — a}: Choose Ba* > py;.
On {r = ¢y — h}: Choose A so Ah® > py.

On X, ODBC: if N1(p®)y = 6(p°®) - Vo <0, then ¢p — p= > 0.
Now Vv = (¢,,19) — 00 as r — co: 1, — oo AND vy — oo:

usual barrier construction fails.

But N1y = 79, + 3%y, 37 =1 (/315 + Ban),
Now $1& + Ban = (n — n'§) (€ +n'n) ( p) + 3s%(p, p1))

o\

— 40232).

"~ ~

>0 by geometry >0 at r=cg,p=po
A priori bound: need (1& + Bam > 0 for all p € (po, prr)-

But par = po + O(1/Ka).
If po >> p1, then k, ~ 8 suffices.
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