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Similarity Analysis of Two-Dimensional Systems

Ut+F (U)x+G(U)y = 0, U ∈ Rn

Data: U(x, y, 0) = f
(

x
y

)

Similarity Variables:

ξ =
x

t
, η =

y

t
U = U(ξ, η)

Reduced System in Two Variables

∂ξ(F − ξU) + ∂η(G− ηU)

≡ ˜Fξ + ˜Gη = −2U

x

y

Sectorially Constant Data

Method: resolve 1-D far-field discontinuities; solve as IV/BVP in 2-D

Type Changes: hyperbolic in far field; ‘subsonic’ region near origin
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Acoustic-type Structure: Degenerate/Non-degenerate Characteristics

Ut +AUx +BUy = 0; det |Iτ +Aλ+Bµ| =
(

n−2
∏

i=1

`i · σ
)
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σ = (τ, λ, µ)
(

(A− ξI)∂ξ + (B − ηI)∂η
)

U = 0
Ξ = (ξ, η) dual vector ~α = (α, β)

n−2
∏

i=1

`i · (−~α · Ξ, α, β) q(σ(~α,Ξ), U)
︸ ︷︷ ︸

q̃(~α,Ξ,U)

CHANGE OF TYPE THEOREM Reduced

equation hyperbolic iff x = (1, ξ, η) outside

acoustic wave cone CW = {xTQ−1
N x = 0}.

RP in 2 + 1 dim ⇒ CP w. data at ∞ NONDEGENERATE

CHARACTERISTICS

  Ξ
0DEGENERATE CHARACTERISTICS

SUBSONIC REGION:
ELLIPTIC OR MIXED

SUPERSONIC REGION: HYPERBOLIC
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Far Field Solution and Wave Interactions

• ‘Quasi-One-Dimensional’ Riemann Problems in Hyperbolic Region
• Shock-shock

Rarefaction-rarefaction

Rarefaction-shock

• No Q-1-D solns for some probs

Mach stems

• Sonic lines

Sonic bdry not det. a priori −6 −4 −2 0 2 4 6 8 10
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• Current effort: examine simplified ‘Nonlinear Wave System’ —

Nonlinear and Linear parts decouple & Linear waves stationary
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Comparison: Isentropic Gas Dynamics & NLWS

Isentropic Gas Dynamics: p = ργ/γ

ρt + (ρu)x + (ρv)y = 0
(ρu)t + (ρu2 + p)x + (ρuv)y = 0
(ρv)t + (ρuv)x + (ρv2 + p)y = 0

Nonlinear Wave System:

ρt +mx + ny = 0
mt + px = 0
nt + py = 0

Second-order equation for nonlinear char. variable (ρ):
(

(c2(ρ)− U2)ρξ − UV ρη
)

ξ

+
(

(c2(ρ)− V 2)ρη − UV ρξ
)

η

+(V uη − Uvη)ρξ + (Uvξ − V uξ)ρη
+2(vξuη − uξvη)ρ = 0
U = u− ξ, V = v− η (‘pseudo-vel.’)

(

(c2(ρ)− ξ2)ρξ − ξηρη
)

ξ

+
(

(c2(ρ)− η2)ρη − ξηρξ
)

η

+ξρξ + ηρη = 0

Transport equation for linear char. variable:
W = Vξ − Uη = vξ − uη
UWξ + VWη + (Uξ + Vη + 1)W = 0

w = nξ −mη

(ξ, η) · ∇w + w = 0
or rmr = pξ rnr = pη
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Converging Shocks: A Bifurcation Problem for NLWS

U
1

U
0

x

y
x=κ a

 yx=−κ
a  y

2-state data: U0, U1

Data give 2 shocks

Far field soln: 4 waves

U
1

U
0

U
1a

U
1b

ξ

η
Linear WaveLinear Wave

Shock
Shock

• Symmetric prototype for converging sector boundaries

• ‘Weak shock reflection’, von Neumann paradox

1. Parameterized by ρ0/ρ1 > 1 and by κa

2. Incident shocks: ξ = κη − χ, ξ = −κη + χ

3. Linear waves: angle of incidence = angle of reflection

4. Small κ: two local solutions –‘weak’ and ‘strong’ regular reflection

5. Large κ: curved shock, weak reflected wave (cf. κ =∞)

6. Intermediate values of κ: no solution from shock polar analysis
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Converging Shock Data for the Nonlinear Wave System

ρ
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C RR possible
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Some Numerical Simulations of the Problem

Alex Kurganov, Tulane University

• Godunov-type central scheme, ‘central-upwind scheme’, Alexander

Kurganov, Sebastian Noelle and Guergana Petrova; modified

version, Kurganov and Chi-Tien Lin. SISC , 23, 2001, pp 707-740.

(http://math.tulane.edu/∼kurganov).

• Central schemes (eg. Lax-Friedrichs scheme): avoid solving RP by

integrating over local Riemann fans (at cell interface).

• Second-order staggered Nessyahu-Tadmor scheme (1990), later

extended to higher orders and to multi-D.

• Kurganov & Tadmor, 1999: nonstaggered central schemes, with

lower dissipation, simple semi-discrete form.

• New, central-upwind schemes: more accurate estimate of size of

Riemann fans and more accurate projection step.
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Regular Reflection: κa = 0.5
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Intermediate Angle, κa = 1, Region B
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An Intermediate Angle, κa = 2: Weak or Mach Reflection?
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‘Weak’ Mach Reflection (Large κa): Region C
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Contour Plot of Density ρ.  Data U
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Sonic circle

C0 = {ξ2+η2 = c2(ρ0)}

Supersonic soln known

U continuous at C0

∂U/∂r singular
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‘Weak’ Mach Reflection (Large κa): Momentum Component m
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Analysis of Weak Mach Stem Problem (Large κ)

Degenerate Elliptic Free Boundary Problem

Existence theorem for global problem for NLWS

Q ≡
(

(c2(ρ)− ξ2)ρξ − ξηρη
)

ξ
+
(

(c2(ρ)− η2)ρη − ξηρξ
)

η
+ ξρξ + ηρη

Ω σΣ

Σ

0

Q(ρ) = 0 (degenerate elliptic) in Ω
c2(ρ) = ξ2 + η2 = c2(ρ0) on σ

(degenerate boundary, continuous solution)

ρξ = 0 (symmetry) on Σ0

Free boundary from RH equations:

N(ρ) ≡ β · ∇ρ = 0 (oblique deriv) on Σ

dη

dξ
=

η2 − s2

ξη +
√

s2(ξ2 + η2 − s2)
s2 =

[p]
[ρ]

ρ = ρmax at Σ ∩ Σ0 (part of D. bdry)

Approach: Fixed Point Theorem (CK & Lieberman, CKK)

• New difficulties: N not uniformly oblique; est. at degenerate corner
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Previous Results on Related Free Boundary Problems

Fixed point approach developed in joint work with Gary Lieberman

(F B problem in steady TSD equation: C, K & Lieberman)

Partial solution for regular reflection in UTSD model, (a >
√

2):

2 types of regular reflection

weak & strong

a∗ = (1 +
√

5/2)1/2

(
√

2, a∗): both subs

a > a∗: 1 sub, 1 sup

WEAK STRONG

Incident Shock Incident Shock

Reflected
Shock Reflected

Shock

Sonic Line
ELLIPTIC
REGION

ELLIPTIC
REGION

FREE BOUNDARY

DEGENERACY IN ELLIPTIC EQUATION

Riemann data:

U0 = (0, 0), x > a|y|,

U1 = (1,−a), y > 0, x < ay

U∗1 = (1, a), y < 0, x < −ay

Complete description of flow needs:

• asymptotic behavior at ξ = −∞
• solving degen elliptic prob

• solving F B prob for shock

Unbounded subsonic region: artifact of UTSD model
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Procedure: Find the Free Boundary as a Fixed Point

Formulate as 2nd order PDE for density, ρ (not potential);

Rewrite RH conditions as (1) evolution eqn for shock and

(2) ODBC for ρ

Problem is quasilinear, degenerate elliptic PDE, mixed BC

Regularize PDE (parameter ε)

Step 1 Fix approx. η = η(ξ), defines Σ ∈ Kε ⊂ H1+α1 (Hölder)

Step 2 Solve (fixed) mixed BVP for ρ

Lieberman’s Mixed BVP theory + linearization

+ modifications for loss of obliqueness

Step 3 Map η → η̃ = Jρ by other RH condition (shock evolution)

Schauder F. P. Thm: Compactness ⇒ fixed pt for J

J : K ⊂ H1+α1 → K ∩H1+α, α > α1

Step 4 Show η and ρ solve the problem.
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Degenerate Elliptic Equations

Principal part:
(

(c2(ρ)− U2)ρξ − UV ρη
)

ξ
+
(

(c2(ρ)− V 2)ρη − UV ρξ
)

η

with U = u− ξ, V = v − η or U = −ξ, V = −η
Linear prototype: Tricomi, uxx + xuyy, or Keldysh, xuxx + uyy

NONDEGENERATE

CHARACTERISTICS

  Ξ
0DEGENERATE CHARACTERISTICS

SUBSONIC REGION:
ELLIPTIC OR MIXED

SUPERSONIC REGION: HYPERBOLIC

τ
−

τ
+

L

S
P

A
C

E
LIK

E
 

 C
U

R
V

E

ξ

η

Differ on Hyperb. side (x < 0): dir. of char.

Differ on Elllliptic side (x > 0):

Fichera fn b ≡ (bk − akjxj )nk (NB: l. o. terms)

(Nonlinear definition ambiguous)

• Keldysh eqns permit Dirichlet BC (need in nonlin. eqn)

• Linear Keldysh solns have singularities at x = 0: u = xγ

• Nonlinear Keldysh solns are regular OR singular
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Mixed BC: Weighted Hölder Norms for Corner Singularities

P

P

1

2

Ωδ

Ck,α = Hk+α : |u|k+α =
∑

j<k |Dju|0 + |Dku|α
Partially interior or weighted norms (corners)

|u|(b)a;Ω∪Sc = supδ δa+b|u|a;Ωδ , H
(b)
a;Ω∪Sc

Example: S = V ≡ {P1, P2}; u = rγ ∈ H(−γ)
1+α

Lin Prob, z ∈ H(−γ1)
1+ε : Lu = Di

(

aij(z)Dju
)

, Mu = β(z) · ∇u
Estimates indep of z: |u|(−γ)

1+α ≤ C1 (|f |γ + |u|0)
Nonlinear problem: Harnack ineq ⇒ est with α indep of α1

Schauder Fixed Point Theorem: B = H1+α1 ; α1 ≡ min
{

α
2 ,

γ
2

}

K closed, bdd., cvx. K ⊂ B; J : K → K, JK ⊂⊂ K ⇒ J has fixed pt.

γ dep. on corners only; α indep. of α1; Jρ ∈ H1+α , α > α1
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A Priori Estimates (following Lieberman, Zheng, Canic&Kim, CKL)

Regularize: Qερ = Qρ+ ε∆ρ.

Obliqueness fails at Ξs.

Step 1: ∃ for FBP for Qε; a priori bds on

ρε, ρε(η) unif. in ε.

Step 2: Local lower barrier for ρε inde-

pendent of ε, ⇒ unif. local ellipticity

⇒ local compactness.

Step 3: Convergent subsequence; limit

solves the problem in Ω \ {Ξ0}: apply-

ing regularity, compactness and a diag-

onalization.

Step 4: Convergence at Ξ0 requires more.

0

η

ξ
Ω

Σ
Ξ

Ξ

0

σ

Σ 0

Ξ
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The Upper Barrier at Ξ0

Barrier construction (supersolution):

Qψ ≤ 0, Nψ ≤ 0, ψ ≥ ρ on bdry of Ω(a, h)
Qερ = (c2 − r2 + ε)ρrr + c2

r2 ρθθ

+p′′(ρ2
r + 1

r2 ρ
2
θ) + ( c

2

r − 2r)ρr
Upper barrier:

ψ(r, θ) = ρ0 +A(c0 − r)b +B(θ1 − θ)2

A, B, b ∈ (0, 1) to be determined from

Qεψ = (c0−r)b−2p′′B(θ1−θ)2b(b−1)A+ . . . ≤ 0

Singular barriers in degenerate eqns:

Choi-McKenna &Canic-Kim.

Σ
Ξ0

θ1

(a,h)Ω
σ

Conjecture: solution has
√

sing. at C0; b ( < 1/2) optimal

(c0−r)2b−2 : A2b

(

p′′(ρ)(b−1)+p′′(ρ)b
)

≤ A2k0 < 0 if b < min p′′

2 max p′′ ,

so A >> 1, ⇒ Qεψ < 0.

Also need ψ − ρε ≥ 0 on ∂Ω(a, h).
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Completing the Upper Barrier at Ξ0

On σ: ρε = ρ0 < ψ.

On {θ = θ1 − a}: Choose Ba2 > ρM .

On {r = c0 − h}: Choose A so Ahb > ρM .

Σ
Ξ0

(a,h)Ω
σ

On Σ, ODBC: if N1(ρε)ψ ≡ β(ρε) · ∇ψ ≤ 0, then ψ − ρε > 0.

Now ∇ψ = (ψr, ψθ)→∞ as r → c0: ψn →∞ AND ψt →∞:

usual barrier construction fails.

But N1ψ = βrψr + βθψθ, βr = 1
r (β1ξ + β2η),

Now β1ξ + β2η ≡ (η − η′ξ)(ξ + η′η)
︸ ︷︷ ︸

>0 by geometry

(

r2(c2(ρ) + 3s2(ρ, ρ1))− 4c2s2
)

︸ ︷︷ ︸

>0 at r=c0,ρ=ρ0

.

A priori bound: need β1ξ + β2η > 0 for all ρ ∈ (ρ0, ρM ).

But ρM = ρ0 +O(1/κa).

If ρ0 >> ρ1, then κa ∼ 8 suffices.


