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We report on an approach to analysing hyperbolic conservation laws in several
space variables by examining two-dimensional Riemann problems. Use of self-
similar coordinates reduces the problem to a system of conservation laws in two
variables; however, the system now changes type, and a complete analysis requires
solving unusual boundary-value problems for degenerate elliptic and degenerate
hyperbolic equations, as well as free-boundary problems for such equations. Recent
work has resolved some of these difficulties. The talk illustrates this by solving some
problems related to weak shock reflection in prototype equations.

1 Multidimensional Conservation Laws

Modeling by conservation principles is fundamental to fluid mechanics, and the
importance of multidimensional systems is widely acknowledged. However, there
are no general existence theorems for weak solutions of systems of conservation laws
in more than one space dimension, as the tools which form the basis of a theory for
hyperbolic conservation laws in a single space dimension do not extend to higher
dimensions. To be specific, the principal method of analysis is through solution
of the Riemann problem; this constitutes a nonlinear version of the method of
characteristics. The role of characteristics in propagation of solutions of hyperbolic
equations is complicated in several space dimensions, even for linear and semilinear
problems, and a nonlinear formulation has not yet been found.

Recently, we have started to analyse two-dimensional Riemann problems. One
goal of the research is to learn what sorts of singularities appear generically — that
is, what are the two-dimensional analogues of shock discontinuities. Related to this,
we hope to establish a priori bounds on weak solutions. In addition, a number of
self-similar problems are of interest in themselves. For example, the so-called “von
Neumann paradox” in weak shock reflection focuses on the failure of shock polar
analysis to explain the nature of shock reflection when the waves are weak enough
that the nonlinear acoustic waves dominate the linear entropy and vorticity waves.
This problem can be studied in prototype equations which are simpler than the
full equations of gas dynamics. We have examined the unsteady transonic small
disturbance (UTSD) equation and the nonlinear wave system (NLWS).
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2 Self-Similar Reduction

A working definition of a Riemann problem (not the only definition possible), is
one for which the data depend only on x/y and hence self-similar solutions in x/t
and y/t are expected. A system of conservation laws in two space dimensions and
time,

Ut + F (U)x +G(U)y ≡ Ut +A(U)Ux +B(U)Uy = 0,

where U(x, y, t) ∈ Rn and F and G are smooth maps on Rn, becomes a system in
two variables ξ = x/t, η = y/t, which can also be written in conservation form:

˜Fξ + ˜Gη ≡ (F − ξU)ξ + (G− ηU)η = −nU.

A typical system of conservation laws, for example the equations of isentropic or
polytropic compressible gas dynamics, is hyperbolic in space and time, with a pair
of nonlinear acoustic wave speeds and a number of linear, degenerate characteristics
corresponding to entropy or vorticity waves. The reduced system is hyperbolic only
far from the origin and changes type at the sonic line, corresponding to the acoustic
wave cone1; there is a bounded set {(ξ, η) ∈ Ω} in which the system is elliptic (if
n = 2) or of mixed type (if n > 2). The reduced system is often called ‘quasi-
steady’, and there is a close analogy with the equations of steady transonic flow,
which are also much used in applications but for which there is not a complete
theory. In the prototype systems we have studied, the UTSD equation and NLWS,
the elliptic part can be written as a second-order equation which appears to be
tractable. The Euler system is more complicated.

In any case, Ω is not known a priori, but depends on the solution U ; typically
the boundary of Ω is at most Lipschitz. In the hyperbolic region, solutions of the
reduced system may be relatively simple. For example, for Riemann data which is
piecewise constant in sectors, the far-field solution can be found by the elementary
construction of solving one-dimensional Riemann problems. Interactions in the
hyperbolic region of these one-dimensional waves can be analysed for small data
(as a consequence of one-dimensional theory), and in some case have simple self-
similar solutions by elementary constructions1.

At least two types of behavior at ∂Ω have been identified. If U is continuous
at ∂Ω then the elliptic equation is degenerate at ∂Ω. This is the case even for
linear equations such as the two-dimensional wave equation, whose fundamental
solution has a square-root singularity at the wave cone. When U is also constant
at ∂Ω, the nonlinear equation possesses a nonlinear version of the same anisotropic
degeneracy, which is of a type first analysed in work of Keldysh2; it is different
from the Tricomi singularity, which appears when the steady transonic potential
equation is written in hodograph variables. This nonlinear equation had not been
previously studied. Čanić and Keyfitz3,4, and Čanić and Kim5 found solutions in
weighted Sobolev spaces and in Hölder spaces (see also related work of Zheng6), and
found that nonlinear Keldysh equations, as distinct from linear equations, may in
addition have solutions which are continuously differentiable up to the degenerate
boundary. Both singular and regular behavior occur, often in the same problem,
on different parts of the boundary7.
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The segments of ∂Ω at which U is continuous and constant correspond to space-
like surfaces; that is, the problem of posing Dirichlet data on ∂Ω is well-posed.
However, there are configurations in which locally well-posed solutions outside of
Ω are not constant on ∂Ω and do not extend to a solution in all of R2. Thus, even
when a solution which is continuous across the sonic line is expected (from the
absence of compression waves in the data, for example), it is not always possible to
predict the location of Ω based on the supersonic solution alone.

A second type of behavior occurs when transonic shocks appear in the solution.
In this case, the solution is discontinuous across ∂Ω. The equation may be strictly
hyperbolic on one side and the elliptic part of the operator strictly elliptic on the
other; however, the boundary itself is now unknown a priori. This leads, then, to
a free boundary problem in which the position of the shock and the subsonic flow
are coupled by means of the Rankine-Hugoniot equations, a system of nonlinear
equations relating the shock slope, the (known) state outside the shock and the
unknown state inside Ω. In simple cases, the equation governing the subsonic flow
is strictly elliptic, the shock may change continuously from supersonic to transonic,
crossing a degenerate part of ∂Ω as it does so. Even without this additional com-
plication, the free boundary problem is not of a standard type, as the underlying
elliptic equation is quasilinear and the coupling between the shock slope and the
states is highly nonlinear. This has turned out to be the principal challenge of the
project up to this point.

3 Oblique Derivative Free Boundary Problems

In work with Lieberman8 which proves a stability result for steady transonic flow,
and which we have extended to establish weak9 and strong10 regular reflection pat-
terns in the UTSD equation, at least in a neighborhood of the interaction point, we
have found a method to prove existence of the free boundary and the corresponding
subsonic solution. The method is classical, but seems well-adapted to quasilinear
equations and nonlinear boundary conditions. It is based on formulating the elliptic
equation as a second-order equation Q(u) = 0, whose coefficients do not involve the
derivatives of u (here u is one state variable); and on casting the Rankine-Hugoniot
as an evolution equation for the shock position and an oblique derivative boundary
condition, β · ∇u = 0, on the free portion of the boundary. Taking an approximate
position for the shock in an appropriate Hölder space K of curves, a mapping on K
is defined by solving the quasilinear fixed boundary problem for u and then solving
the evolution equation to define a new curve. The key is is a gain of regularity in
this mapping, due principally to estimates one can obtain in the oblique derivative
problem; we can show that the mapping is compact and has a fixed point. Kim
has shown that in some cases the solution is unique11. The lack of regularity of
∂Ω requires the use of weighted Hölder norms. The lack of uniform ellipticity in
the case of a shock adjacent to a continuous sonic boundary is handled by elliptic
regularization.

We have solved two prototype problems for the UTSD equation9,10, but we
expect the method to work quite generally. Up to this point we have assumed that
the oblique derivative boundary condition is uniformly oblique. This is true in cases
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where the shock itself is oblique and never normal. However, in many interesting
problems, such as the formation of a Mach stem, the shock is normal at one point
(the foot or symmetry point), and such appears to be, in fact, the generic situation
for transonic shocks. For example, a uniform planar shock spanning a subsonic
region has this property at its mid-point. Our current work focuses on adapting
the compactness estimates to include this degeneracy.
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3. S. Čanić and B. L. Keyfitz. An elliptic problem arising from the unsteady tran-
sonic small disturbance equation. Journal of Differential Equations, 125:548–
574, 1996.
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9. S. Čanić, B. L. Keyfitz, and E. H. Kim. A free boundary problem for a quasi-
linear degenerate elliptic equation: Regular reflection of weak shocks. Com-
munications on Pure and Applied Mathematics, LV:71–92, 2002.
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