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Abstract. We formulate a problem for the unsteady transonic small disturbance equa-
tions which describes a situation analogous to the reflection of a weak shock off a wedge,

with the incident shock replaced by an incident rarefaction. We linearize this problem

and solve it exactly, and we compute a numerical solution of the full nonlinear prob-
lem. The solution of this problem has several features in common with the solution of

the weak shock reflection problem, known as Guderley Mach reflection. In both cases, a

rarefaction wave reflects off a sonic line and forms a transonic shock. There is transonic
coupling between the supersonic and subsonic regions across the sonic line and shock. In

both situations, this sonic line/shock can be considered a free boundary in the formula-

tion of a new type of free boundary problem which has not previously been formulated
or analyzed. The free boundary problem that arises in the context of the problem con-
sidered here is, however, simpler than the free boundary problem that arises in the weak

shock reflection problem.

Keywords: Free boundary problem; unsteady transonic small disturbance equations;

triple point paradox; Guderley Mach reflection.

1. Introduction

When a weak incident shock wave (loosely speaking, a shock with Mach number
only slightly greater than 1) reflects off a thin wedge, a reflection pattern that ap-
pears to be Mach reflection is observed, in which the incident, reflected and Mach
shocks meet at a shock “triple point”. However, von Neumann showed in 1943 [13]
that for sufficiently weak shocks, a standard triple point configuration, consisting
of three shocks and a contact discontinuity meeting in a point, is impossible. This
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discrepancy is referred to as the von Neumann, or triple point, paradox. Various
proposals have been put forth over the years to resolve the paradox; see [5,8] for
detailed discussions. Of particular note, Guderley [7] in 1947 proposed the existence
of an additional wave at the triple point, an expansion fan, to resolve the paradox
in a steady weak shock Mach reflection (the same triple point paradox occurs in the
steady case as in the unsteady one). He showed that local solutions satisfying the
Rankine-Hugoniot jump conditions and consisting of three shocks, a centered ex-
pansion wave, and a contact discontinuity meeting at a point could be constructed.
His resolution contained a supersonic patch at the triple point, since the flow must
be supersonic for an expansion wave to occur.

Recently it has been shown that Guderley’s expansion fan and supersonic
patch are indeed found in a weak shock Mach reflection, although the solution
is much more complicated than Guderley envisioned. In [17], numerical solutions
were obtained of a problem for the unsteady transonic small disturbance equations
(UTSDE) that describes the reflection of weak shocks off thin wedges. In [17], the
equations were expressed in special self–similar variables, so that the area of interest
– the neighborhood of the triple point – remains stationary on the numerical grid,
and extreme local grid refinement can be implemented relatively easily to resolve
the solution there. In a parameter range for which regular reflection is not possible,
the solutions contain a structure that is similar to the one proposed by Guderley.
However, instead of a single triple point, supersonic patch, and expansion wave,
there is a sequence of triple points and tiny supersonic patches behind a leading
triple point, with a centered expansion wave originating at each triple point. Each
expansion wave reflects off the sonic line as a compression wave, becoming a re-
flected shock which hits the Mach stem and generates the next triple point. This
structure is shown schematically in Figure 1. It was shown in [17] that the triple
points with centered expansion fans are consistent with theory, and provide a reso-
lution of the paradox. The name Guderley Mach reflection (GMR) was chosen for
this new reflection pattern in [9].

Following the detection of Guderley Mach reflection in [17], a problem for the
nonlinear wave system that is the analogue of shock reflection was studied numer-
ically in [19]. The nonlinear wave system is a 3 × 3 hyperbolic system that has
a characteristic structure similar to that of the compressible Euler equations, but
which is not derived from them via a limit (as is the UTSDE). At a set of parameter
values for which regular reflection solutions of the nonlinear wave system do not
exist, a numerical solution was obtained which is remarkably similar to the solu-
tions obtained in [17]. Again, a sequence of triple points and supersonic patches was
obtained in a tiny region behind the leading triple point, with a centered expansion
wave originating at each triple point. The discovery of Guderley Mach reflection in
a solution of this system led to the subsequent numerical study of a shock reflection
problem for the full Euler equations of gasdynamics in [20]. At a set of parameter
values for which both regular and Mach reflection solutions are impossible, solu-
tions containing Guderley Mach reflection were once again obtained. To summarize
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Fig. 1. A schematic diagram of Guderley Mach reflection, as obtained in [17]. The dashed line is the
sonic line; flow to the right of this line is supersonic. There is a sequence of triple points, reflected

shocks and centered expansion waves. The first triple point is labeled T1, the first reflected shock

is labeled R1, and the first centered expansion wave is labeled E1. Each reflected shock–expansion
wave pair in the sequence is smaller and weaker than the one preceding it.

these recent numerical results, Guderley Mach reflection solutions have now been
found in solutions of shock reflection problems for the UTSDE, the nonlinear wave
system, and the full compressible Euler equations. All of the computations show
that these new features are extremely small relative to the length of the Mach
shock, explaining why they had not been observed before either experimentally or
numerically.

On the experimental front, following the announcement of the results in [17],
Skews and Ashworth modified an existing shock tube arrangement specifically to
search for GMR. Their results in [15] and, more recently, the results of Skews and
coauthors in [16], appear to confirm that Guderley Mach reflection occurs when a
weak shock reflects off a thin wedge. A proof of existence of this structure, however,
appears to be beyond our analytic techniques at the moment. In fact, we do not
know even whether the sequence of patches and triple points is finite or infinite, and
if it is finite, what causes its termination, and what is the nature of the solution in
the final patch. Another complication is that shock waves are embedded in the sonic
line, which can be considered a free boundary in the formulation of a free boundary
problem. There is a transonic coupling between the subsonic and supersonic regions.
The two-way coupling across the sonic line gives rise to our description of this
situation as a “continuous, two-way free boundary”.

Because of these difficulties, in this paper we pose a much simpler problem
for the UTSDE that retains some of the features of Guderley Mach reflection. We
choose initial data that correspond to a supersonic flow hitting the corner of an
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expanding duct at t = 0. We obtain a rarefaction wave in the far field that interacts
with a sonic line, producing a shock that is embedded in the sonic line. As in
Guderley Mach reflection, this sonic line can be considered a free boundary, but
the resulting free boundary problem is simpler than the corresponding problem for
Guderley Mach reflection since there is no sequence (possibly infinite) of supersonic
patches. There is an analogy, however, between the sonic line in this problem and the
sonic line in a single patch in Guderley Mach reflection. In each case a rarefaction
interacts with a sonic line to produce a transonic shock, and the supersonic and
subsonic flows are coupled. In both cases, if one wishes to formulate and solve a free
boundary problem, a degenerate hyperbolic and degenerate elliptic equation must
be simultaneously solved, with data matched across the sonic line.

The problem we introduce here is more difficult than the problems studied in
[3], since the location of the sonic line is unknown and has to be determined as part
of the solution, along with the solution on either side of the sonic line, and because
the equations on either side of the sonic line are degenerate hyperbolic/elliptic. We
present a numerical solution of this problem. A proof of well-posedness remains an
open issue. We do, however, linearize the problem and solve the resulting boundary
value problem exactly. Our solution of the linearized problem, in fact, is what leads
us to expect a transonic shock in the solution of the nonlinear problem. We subse-
quently show this to be the case, when we solve the nonlinear problem numerically:
a transonic shock is indeed produced by the rarefaction wave/sonic line interaction.

This paper is organized as follows. In Section 2 we describe the rarefaction
problem for the UTSDE. In Section 3 we formulate a linearized version of the
problem and solve it exactly. In Section 4 we describe our method for solving the
nonlinear problem numerically. The numerical results we obtain are presented and
interpreted in Section 5.

2. The nonlinear problem

We consider an initial value problem for the unsteady transonic small disturbance
equations,

ut +
(

1
2
u2

)
x

+ vy = 0,

uy − vx = 0.
(2.1)

This problem consists of (2.1) together with initial data given by

(u, v) =


(0, 0) if x > −b|y|,
(−1,−b) if x < −by, y > 0,
(−1, b) if x < by, y < 0.

(2.2)

Here b > 0. See Figure 2(a) for a depiction of the data.
Because the data in (2.2) is symmetric, an equivalent half-space problem in y > 0

is obtained by applying the no-flow boundary condition

v(x, 0) = 0 (2.3)
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Fig. 2. In (a), initial data for the full-space problem (2.1)–(2.2), and in (b), initial data for the

half-space problem consisting of (2.1)–(2.2) in y > 0, and (2.3).

on the axis of symmetry, y = 0. See Figure 2(b) for an illustration of the data
for this half-space problem. The discontinuity located at x = −by propagates as a
rarefaction wave for t > 0, as we show in Section 4.1. (Equivalently, the discontinu-
ities located at x = ±by in Figure 2(a) propagate as a pair of diverging rarefaction
waves.)

The problem (2.1)–(2.2) in y > 0, (2.3) is self-similar, so the solution depends
only on the similarity variables

ξ = x/t, η = y/t.

Writing (2.1) in terms of ξ and η, we get

−ξuξ − ηuη +
(

1
2
u2

)
ξ

+ vη = 0,

uη − vξ = 0.
(2.4)

Equation (2.4) is hyperbolic when u < ξ + η2/4, corresponding to supersonic flow
in a self-similar coordinate system, and elliptic when u > ξ + η2/4, corresponding
to subsonic flow. The equation changes type across the sonic line given by

ξ +
η2

4
= u(ξ, η). (2.5)

By abuse of notation, we will refer to the locus of transition points between
u < ξ + η2/4 and u > ξ + η2/4 as the sonic line, whether the flow is continuous
there or not. Where the rarefaction wave intersects this sonic line there will be an
interaction, since rarefactions cannot be continued in the backwards time direction.
In the supersonic, hyperbolic region, the inverse slopes of the (bi-)characteristic
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curves of (2.4) are given by [8]

dξ

dη
= −1

2
η ±

√
ξ +

1
4
η2 − u. (2.6)

We refer to the characteristics as plus or minus characteristics, depending on the
choice of sign in this equation.

3. The linearized problem

In order to determine the asymptotic behavior of the solution of the nonlinear
problem at large distances from the rarefaction wave/sonic line interaction region,
we seek the solution of a corresponding linearized problem. We linearize equation
(2.1) about u = 0 to obtain

ut + vy = 0,

uy − vx = 0.
(3.1)

In self-similar coordinates ξ = x/t, η = y/t, these equations take the form

−ξuξ − ηuη + vη = 0,

uη − vξ = 0.
(3.2)

Equation (3.2) is hyperbolic when ξ+ η2/4 > 0 and elliptic when ξ+ η2/4 < 0. The
equation changes type across the sonic parabola

ξ +
1
4
η2 = 0. (3.3)

We again consider the piecewise constant initial data in (2.2). The jump conditions
for (3.1), now derived from the linear theory of characteristics, show that the dis-
continuities in (2.2) propagate to the right with speed b2. In the far field, where the
two waves do not interact, so that the situation is one-dimensional, the locations of
the discontinuities in self-similar variables are thus given by

ξ = −bη + b2, η > η0,

ξ = bη + b2, η < −η0,
(3.4)

where ±η0 are the values of η where these lines meet the sonic parabola. The
positions of the sonic parabola and the discontinuities are shown schematically in
Figure 3. A calculation shows that η0 = 2b. While (3.1) (like the original system
(2.1)) is hyperbolic in space-time, the plane {t = 0} is characteristic. Thus existence
of a solution to (3.1), (2.2) requires conditions on Cauchy data, and uniqueness is
not guaranteed. For piecewise constant data of the form (2.2), the only restriction is
that u be constant across the x-axis (as is the case here). As we shall see by explicit
construction, the condition that u remain bounded is sufficient to give uniqueness.
We solve the problem by working in the self-similar plane, where we have already
found a solution, which is piecewise constant, in the hyperbolic region. Therefore,
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Fig. 3. An illustration of the boundary value problem for (3.2). The sonic parabola (3.3) is located

at ξ + 1
4
η2 = 0. Equation (3.2) is hyperbolic to the right of the sonic parabola, and elliptic to the

left. Boundary data are indicated on the parabola.

we seek the solution of a boundary value problem for (3.2) in the region ξ+η2/4 < 0,
with boundary data given on ξ + η2/4 = 0 by

(u, v) =


(−1,−b), η > η0 = 2b,
(0, 0), −2b = −η0 < η < η0 = 2b,
(−1, b), η < −η0 = −2b.

(3.5)

We supplement this with the condition |u| < M as ξ → −∞, for some M . Figure 3
illustrates the boundary conditions and domain of the boundary value problem.

To solve this boundary value problem, we use a Busemann transformation follow-
ing the method of Keller and Blank [10]. See the appendix for details. In self-similar
coordinates (ξ, η), the bounded solution to (3.2), (3.5) is

u(ξ, η) = −1 +
1
π

[
tan−1 2

√
−(ξ + η2/4)
η − η0

− tan−1 2
√
−(ξ + η2/4)
η + η0

]
,

v(ξ, η) =
−η0

2π

[
tan−1 η + η0

2
√
−(ξ + η2/4)

+ tan−1 η − η0

2
√
−(ξ + η2/4)

]
.

(3.6)

We note that the boundedness condition for u gave us boundedness for v also.
Referring again to Figure 3, the complete solution of the linearized problem is

given by (3.6) for ξ + η2/4 < 0, and by the piecewise constant values for (u, v)
depicted in the figure for ξ+ η2/4 > 0. This solution is continuous at the sonic line
ξ+η2/4 = 0 (with the exception of the two singular points (−b2,−2b) and (−b2, 2b),
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as indicated in the figure). However, it is not differentiable: (3.6) shows that there
is a square root singularity at the sonic line. Thus, the solution of the linearized
problem may not extend to a continuous solution of the nonlinear problem. As the
square root singularity has the structure of compression wave, we are led to expect
that the nonlinear problem has a shock at the sonic line. In Section 5, we provide
numerical evidence that this is in fact the case.

4. The numerical method for the nonlinear problem

The basic numerical method we use was developed in [17] specifically to solve self-
similar problems for the UTSDE. However, the numerical boundary conditions we
use here are quite different from those used in [17]. We outline the underlying algo-
rithm here, and in Section 4.1 we give a full explanation of the boundary conditions.
The main idea of the numerical method is the introduction of special self-similar
variables,

r = x/t+
1
4

(y/t)2, θ = y/t, τ = log t,

ũ = u− r, ṽ = v − 1
2
θu.

(4.1)

Writing (2.1) in terms of the variables in (4.1), we get

ũτ +
(

1
2
ũ2

)
r

+ ṽθ +
3
2
ũ+

1
2
r = 0,

ũθ − ṽr = 0.
(4.2)

Under the transformation given in (4.1) the UTSDE is unchanged except for the ad-
dition of lower-order terms, as shown in (4.2). Following the classical Cole-Murman
approach, we introduce a potential ϕ(r, θ, τ) such that

ũ = ϕr, ṽ = ϕθ, (4.3)

and we write (4.2) in the potential form

ϕrτ +
(

1
2
ϕ2
r

)
r

+ ϕθθ +
3
2
ϕr +

1
2
r = 0. (4.4)

We define a logically rectangular finite-difference grid ri in the r direction and θj
in the θ direction, and denote an approximate solution of (4.4) by

ϕni,j ≈ ϕ(ri, θj , n∆τ),

where ∆τ is a fixed time step. We discretize (4.4) in space and time using

ϕn+1
i,j − ∆ri+1/2∆τ

 ϕi,j+1−ϕi,j

∆θj+1/2
− ϕi,j−ϕi,j−1

∆θj−1/2

∆θj

n+1

+
3
2

∆τϕn+1
i,j

= ϕn+1
i+1,j − ϕ

n
i+1,j + ϕni,j + ∆τ

(
F (ũi+1/2,j , ũi+3/2,j)n − F (ũi−1/2,j , ũi+1/2,j)n

)
+

3
2

∆τϕn+1
i+1,j +

1
2

∆τ∆ri+1/2 ri. (4.5)
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Fig. 4. A schematic diagram of the computational domain. AB is the wall and BCDEA is the

numerical boundary. In the region to the right of the sonic line, the flow is supersonic, and to the

left it is subsonic.

Here, F is a second order minmod-limited numerical flux function, and

ũi−1/2,j =
ϕi,j − ϕi−1,j

∆ri−1/2
.

Additional nomenclature used in (4.5) is quite standard. For example, ri+1 = ri +
∆ri+1/2, and ∆ri = 1

2 (∆ri−1/2 + ∆ri+1/2), with similar definitions applying in the
θ-direction. We evolve a solution of (4.5) forward in pseudo-time τ until it converges
to a steady state, using semi-implicit time marching. See [17] for further details of
the numerical algorithm.

4.1. Boundary conditions

For computational efficiency, we solve the half-space problem (2.1)–(2.2) in y > 0,
together with (2.3), since this requires only half as many grid points as the full-
space problem (2.1)–(2.2) for the same numerical resolution. We computed solutions
on the finite computational domain shown schematically in Figure 4. The left and
right boundaries of the computational domain are curved because of the use of the
parabolic coordinates in (4.1).

On the wall boundary AB we impose the physical no-flow condition (2.3), which
implies that ϕθ = 0. In addition, we require numerical boundary conditions on the
outer computational boundaries, which we determine as follows.

As noted in Section 2, the discontinuity in Figure 2(b) propagates as a rarefaction
wave. This rarefaction enters the computational domain through the right boundary
BC, as indicated in Figure 4. By solving a one-dimensional Riemann problem, we
find that the rarefaction wave solution is given by

(u, v) =


(−1,−b) if x+ by < (b2 − 1)t,(
(x+ by − b2t)/t, b(x+ by − b2t)/t)

)
if (b2 − 1)t ≤ x+ by ≤ b2t,

(0, 0) if x+ by > b2t.

(4.6)
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Fig. 5. The far field solution. The front of the rarefaction, located at x + by = b2t, propagates

to the right for t > 0. The rear of the rarefaction either propagates to the right, is stationary at

x = −by, or propagates to the left, depending on the value of b. The dashed lines emphasize that
this solution is valid only sufficiently far from the origin.

This solution is illustrated in Figure 5.
On the right boundary BC, we impose Dirichlet data corresponding to the

rarefaction solution in (4.6). The location of the propagating expansion wave is
given by

(b2 − 1)t ≤ x+ by ≤ b2t. (4.7)

Using (4.1) in (4.7), we find that the location of the rarefaction in terms of the
transformed self-similar coordinates r and θ is given by

−bθ +
1
4
θ2 + b2 − 1 ≤ r ≤ −bθ +

1
4
θ2 + b2.

Thus, the rarefaction wave is bounded by parabolas with respect to the transformed
coordinates, instead of by straight lines. Ahead of the rarefaction we have (u, v) =
(0, 0), behind it we have (u, v) = (−1,−b), and inside the wave the solution (u, v) is
given by the middle expression in (4.6). So, using (4.1), (4.3), and the requirement
that the potential is continuous across the rarefaction, we find that the potential
for the far field rarefaction solution is

ϕ(r, θ) =


− 1

2r
2, if r > −bθ + 1

4θ
2 + b2,

{ 1
32θ

4 − 1
4bθ

3 + ( 3
4b

2 − 1
4r)θ

2 if − bθ + 1
4θ

2 + b2 − 1 < r

+(br − b3)θ − b2r + b4

2 }, < −bθ + 1
4θ

2 + b2,

−r − 1
2r

2 − bθ + 1
4θ

2 + b2 − 1
2 , if r < −bθ + 1

4θ
2 + b2 − 1.

(4.8)

We impose (4.8) as a boundary condition for (4.4) on BC.
The asymptotic behavior of the solution of the nonlinear problem at large dis-

tances from the origin is assumed to be given by the solution of the linearized
problem in (3.6). This corresponds to assuming that u tends to the constant value
−1 as ξ → −∞. We use this solution to formulate a numerical boundary condition
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on the subsonic boundary DEA. In terms of the self-similar variables in (4.1), the
linearized solution for ũ = ϕr behind the sonic line located at r = −1 is

ϕr = −1− r +
1
π

[
tan−1

(
2
√
−(r + 1)
θ − 2b

)
− tan−1

(
2
√
−(r + 1)
θ + 2b

)]
, r < −1.

We write this equation as ϕr = f(r, θ), and discretize it using

ϕi+1,j − ϕi,j
∆ri+1/2

= f(ri+1/2, θj). (4.9)

We impose (4.9) as a Neumann condition on the left boundary EA. On the top
boundary CDE, we impose (4.9) when r < −1, corresponding to boundary seg-
ment DE. For r > −1, corresponding to the segment CD, we impose the Dirichlet
condition (4.8). The exact location of the shock produced by the rarefaction/sonic
line interaction is slightly different from r = −1, where we switch the numerical
boundary conditions, and the exact solution differs slightly from the linearized so-
lution, but we found that the disturbance originating from the top boundary is
extremely small. On the other hand, we found that the use of (4.9) as a subsonic
boundary condition was crucial. The use of simpler boundary conditions such as ex-
trapolation, which are well understood in the computation of solutions of the usual
time-dependent unsteady transonic small disturbance equations (see, for example,
[6]) result in unacceptably large errors in the solution in the subsonic portion of the
flowfield. This is not surprising, since in the subsonic region (2.4) is elliptic, and
errors produced at the boundaries influence the entire region.

5. Numerical results

We computed a numerical solution of (2.1)–(2.2) in y > 0, and (2.3) for b equal to
0.5. Figures 6(a) and (b) show u- and v-contour plots, respectively, of the global
solution as functions of (x/t, y/t). The state ahead of the rarefaction is constant,
with (u, v) = (0, 0), and there is a constant region of flow behind the rarefaction,
with (u, v) = (−1,−0.5). There is a shock behind the rarefaction wave, as indicated
(this is especially evident in the plot in (b)). In order to show this shock and other
solution features more clearly, in Figure 7 we show surface mesh plots of u and
v. These plots have been rotated in relation to the plots presented in Figure 6, as
indicated, so that the shock is more clearly visible. The strength of the rarefaction
wave, as measured by the change in u from the state ahead of it to the state behind
it, is −1. The plot in Figure 7(a) shows that the rarefaction wave is much stronger
than the shock. From the numerical data, the shock forms at (x/t, y/t) ≈ (−1.5, 1.6).
The shock strength, as measured by the jump [u] in u, increases initially as it moves
away from the formation point, then decreases, approaching zero as y/t→ +∞. The
shock attains its maximum strength [u]max ≈ 0.12 at (x/t, y/t) ≈ (−1.7, 1.8). In
order to capture the shock more sharply, we used local grid refinement in the area
of the shock formation point. In the plots shown in Figure 7, however, we have
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Fig. 6. Contour plots of velocity over the full numerical domain, for b = 0.5. The rarefaction wave
enters the computational domain through the curved right boundary. The u-contour spacing is

0.02 in (a) and the v-contour spacing is 0.05 in (b). Local grid refinement was used in the area of
the shock formation point, with ∆ξ = ∆η = 6.25× 10−5 in the refined grid area.

displayed a solution computed on a uniform grid, and have displayed only a portion
of the mesh points, to avoid obscuring the shock area.

In Figure 8(a) we show u-contours and the numerically computed location of
the sonic line (2.5), in order to illustrate the regions of supersonic and subsonic
flow in our solution. The sonic line runs down the shock, through the rarefaction
wave, and down to the wall, as indicated. In the region to the right of the sonic line
u < ξ + η2/4, so the flow there is supersonic, and to the left u > ξ + η2/4, and the
flow is subsonic. In Figure 9 we present velocity profiles taken at several vertical
cuts through the shock, and the locations of these cuts are indicated by the short
vertical line segments through the sonic line in Figure 8(a).
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Fig. 7. A surface mesh plot of u in (a), and v in (b), for b = 0.5, rotated so that the bottom

boundary in Figure 6 is at the top of each surface plot. The state ahead of (to the left of, in this
view) the expansion wave is (u, v) = (0, 0), and the state behind it is (u, v) = (−1,−0.5). The

solution displayed was computed using a uniform grid with ∆ξ = ∆η = 2.5×10−3. Only a portion
of the numerical grid points are displayed, so that the shock appears less sharp than it actually is.

In Figure 8(b) we focus on the sonic line (2.5) that is depicted in the plot in (a),
in order to illustrate its location. For constant states, the sonic line, ξ + η2/4 = u,
is a parabola in the (ξ, η)-plane, and two sonic parabolas are of interest. Ahead of
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Fig. 8. In (a), a contour plot of u with the sonic (dashed) line superimposed; see Figure 9 for
shock velocity profiles at the indicated cuts. The u-contours are plotted at the same levels as in

Figure 6(a). The plot in (b) illustrates the location of the sonic (dashed) line, relating this to the
locations of the sonic parabolas for the states ahead of and behind the rarefaction.

the rarefaction, u = 0, and so equation (2.4) changes type across the sonic parabola
ξ + η2/4 = 0. This is illustrated in Figure 8(b), which shows that the forward
portion of the sonic line, which corresponds to the flow ahead of the rarefaction
wave, appears to coincide with the curve ξ+ η2/4 = 0. Behind the rarefaction wave
u = −1, and if the flow were continuous there, then equation (2.4) would change
type across the sonic parabola ξ + η2/4 = −1. As we have seen, however, there is
a shock at the sonic line behind the rarefaction, and although it is weak it moves
at greater than sonic velocity. This is also illustrated in Figure 8(b), which shows
that the portion of the sonic line corresponding to the flow behind the rarefaction is
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Fig. 9. Shock profiles of u-velocity taken across the shock at different x/t locations; these locations
are indicated in Figure 8(a). The dotted line represents the constant supersonic state behind the

rarefaction. The high-resolution numerical method captures the shock in approximately two mesh

points, as indicated.

located close to, but slightly ahead of, the sonic parabola ξ+ η2/4 = −1. The sonic
line appears to asymptotically approach the location ξ+η2/4 = −1 as y/t→∞. As
it crosses the rarefaction wave, the sonic line appears to bend smoothly to connect
the two (approximately) parabolic portions.

In Figure 9, we show cross sections of u (referred to as shock profiles) taken
at three different vertical cuts through the shock, from the numerical data. The
locations and lengths of these cuts are indicated by the short vertical line segments
depicted in Figure 8(a): each cut has length y/t ≈ 0.5, and the cuts are taken
through the shock at the locations x/t = −4, x/t = −3, and x/t = −2. Proceeding
vertically upwards along one of the line segments in Figure 8(a) and measuring u
(that is, measuring u while y/t increases and x/t is held constant) corresponds to
moving from left to right along the corresponding shock profile in Figure 9. Hence,
in moving from left to right along a given shock profile in Figure 9, the transition
is from subsonic to supersonic flow, as indicated in the figure. For small values of
y/t in a given shock profile, u is non-constant, corresponding to the subsonic region
below the shock in Figure 8(a). As y/t increases in a profile, u jumps approximately
discontinuously (note the mesh points “inside” the jump), corresponding to crossing
the shock. At sufficiently large values of y/t in a profile, u reaches a constant value
of −1, corresponding to the constant supersonic state with u = −1 behind the
rarefaction. The shock strength [u] ≈ 0.095 at x/t = −2, and decreases as x/t
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decreases, as shown. We note that in its depiction here, the numerical shock appears
steeper than it did in Figure 7. This is due to the fact that, in Figure 7, only a portion
of the data points were shown.

The preceding discussion of the shock has made no mention of the point in the
finite plane where the shock begins. The exact location of this point is difficult to
capture numerically, but it appears to be very close to or at the sonic line. Careful
numerical calculations [18] show that the shock forms strictly inside the supersonic
region.

5.1. Interpretation of the Numerical Results

While it is standard that, in this as in any elliptic problem, the boundary conditions
influence the entire region, the nature of the causality in the hyperbolic region of
this problem is less obvious. The numerical results help to shed some light on the
situation.

As u is not constant on the sonic line, the (bi-)characteristic curves intersect
this line transversally. Recall that in a planar (straight line) rarefaction wave, one
characteristic direction lies along the u-contours. Recall in addition, that through
any point (ξ0, η0) in the hyperbolic region pass two bicharacteristic curves; their
directions are tangent to the parabola ξ+η2/4 = u(ξ0, η0), as in (2.6). The forward
time direction is toward the parabola. If we take as given the structure of the
solution illustrated in the simulations, then the key point is that the rarefaction
wave is reflected at the sonic line. The reflected waves affect the solution, so that
near the sonic line, the rarefaction is no longer planar (in fact, technically it is
no longer a rarefaction – that is, no longer a simple wave). The outer boundary
of the region influenced by the interaction with the sonic line is given by a curve
Γ: It is the integral curve through P0 = (b2, 2b) of the direction field given by the
minus characteristic at each point. The curve Γ continues (as a straight line) beyond
the rarefaction, terminating at the shock. See [11, Example 5.1]. Figure 10(a)-(b)
shows the numerically computed characteristic vector fields of the solution inside
the region bounded by the sonic line and Γ. Thus, the interaction between super-
and subsonic points takes place in three regimes along the sonic line, separated from
each other by a priori undetermined points:

(i) Near the nose of the parabolic subsonic region, a sonic line across which the
flow in continuous, with the flows on either side matched by the equation
u(ξ, η) = ξ + η2/4 and by the continuity of v. The shock, as mentioned,
forms inside the hyperbolic region but becomes transonic at a point P1

quite near its formation point. The sketch in Figure 11 greatly exaggerates
the distance from the shock formation point to P1.

(ii) Between P1 and the point P2 where the shock intersects Γ, the shock is
transonic. The super- and subsonic regions are coupled by the two Rankine-
Hugoniot conditions. However, the shock itself is a (downstream) spacelike
curve for the supersonic flow, which is determined by upstream conditions.
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Fig. 10. The minus (a) and plus (b) characteristic vector fields in the region bounded by the

curve Γ (heavy line) and the sonic line. Coarsely spaced u-contours indicate the location of the
rarefaction. The direction of propagation along the self-similar characteristics is in the direction
of decreasing ξ + η2/4. The plot in (c) gives an overall impression of this region (the sonic line is
the dashed line).

In particular, the subsonic flow does influence the supersonic solution locally
here, but only indirectly via the coupling in (i).

(iii) Beyond P2 we have a standard transonic shock of the type analysed in [1]
or [2]. Here the supersonic state locally is determined (and constant).

The real “continuous, two-way free boundary”, then, is confined to the interval of
the free boundary between P0 and P1. Analysis of the problem is complicated by the
need to include shock formation and by the fact that the subsonic region extends
well beyond the segment P0P1 – it is, in fact, unbounded for the UTSD equation.
(Even for the Nonlinear Wave System of [11], where the subsonic region is bounded,
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Fig. 11. A schematic diagram of the region shown in Figure 10, illustrating the characteristic and

shock structure (as determined by the numerical solution), and the domain of the free boundary
problem. The shock begins inside the supersonic region, as shown.

the problem is coupled to the shock part of the free boundary.) A model for the
coupling in (i) is considered in [12].

A possible approach to solving this free boundary problem is mentioned in [4].
Finally, in Figure 12 we illustrate the close relationship between the problem for

the reflecting rarefaction and the problem for Guderley Mach reflection, which was
noted in Section 1. The plot in Figure 12(a) shows an enlargement of the solution
depicted in Figure 8 in a region centered about the shock formation point. The
plot in (b) shows a solution of the weak shock reflection problem for the UTSDE
obtained in [17]. Both plots show v-contours and the numerically computed location
of the sonic line. In (b), a single supersonic patch (and part of a second patch) in
the sequence of patches comprising GMR are shown. There is a centered expansion
wave, generated at the intersection of three shocks. This expansion wave reflects off
the sonic line into a compression wave which steepens into a shock, as indicated.
Similarly, in the plot in (a) an expansion wave reflects off a sonic line and forms
a shock. Unlike GMR, in the solution of the rarefaction problem there is no fine
structure in the neighborhood of the rarefaction/sonic line interaction: there is a
single shock and hence a single shock formation point, and no sequence of supersonic
patches and shocks.

The structure of the solution of the problem considered here, including the
possible existence of shocks, was a priori unknown. Based on our solution of the
linearized problem in Section 3, we conjectured that the solution of the nonlinear
problem has a shock at the sonic line. The numerical results we have presented
appear to confirm the existence of this shock, and in addition (see [18]) show that
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Fig. 12. A comparison of the reflecting rarefaction problem and Guderley Mach reflection. The

plots show v-velocity contours from numerical solutions of the reflecting rarefaction problem in

(a), and for GMR in (b). The region shown in (b) contains a single supersonic patch from the
multiple patch GMR structure; the tip of the next patch is visible to the left of this patch, and

the shock from the preceding patch is to its right. In both (a) and (b), the solution is supersonic

to the right of the sonic line, and subsonic to the left.

the shock forms inside the supersonic region. In the formulation of a free boundary
problem on the domain shown in Figure 11, therefore, part of the free boundary is
continuous (the continuous part of the sonic line) and the remainder consists of a
transonic shock. Moreover, as we showed in Figure 8(b), we can explain the location
of the sonic line in terms of the sonic parabolas for the constant states ahead of and
behind the rarefaction. Therefore, the sonic line has the structure we predicted for
it: it contains an embedded shock, and it is located approximately where we expect
it to be.
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Appendix A. Solution of the boundary value problem

Here, we solve the linear boundary value problem (3.2), (3.5). We make a change
of variables to the Busemann coordinates

X = 2
√
−(ξ + η2/4), Y = η.

After a calculation, equation (3.2) can be written in these coordinates as

1
2

(XuX + Y uY )− vY = 0,

1
2

(−Y uX +XuY ) + vX = 0.
(A.1)

Differentiating the first equation with respect to X and the second with respect to
Y , and adding, we obtain

uXX + uY Y = 0. (A.2)

Similarly, by reversing the differentiation we find that vXX + vY Y = 0.
The sonic parabola ξ+ η2/4 = 0 is mapped by the Busemann transformation to

the Y -axis, and the region ξ + η2/4 < 0 interior to the parabola is mapped to the
right half-plane in (X,Y )-space, as indicated in Figure 13. Therefore, we look for
functions u and v that are harmonic in X > 0, and take on the boundary values (on
X = 0) indicated in (3.5). The procedure that we will follow is to solve a Dirichlet
problem for u, and then to obtain v from the solution by integration. The Dirichlet
problem consists of (A.2) together with the boundary conditions

u(0, Y ) =


−1, Y > Y0 = 2b,
0, −2b = −Y0 < Y < Y0 = 2b,
−1, Y < −Y0 = −2b.

(A.3)

The Dirichlet problem is depicted schematically in Figure 13.
The bounded solution to (A.2)-(A.3) can be obtained using standard methods

from elementary complex analysis; see, for example, [14]. The solution is

u(X,Y ) = −1 +
1
π

[
tan−1 X

Y − Y0
− tan−1 X

Y + Y0

]
. (A.4)

Next we obtain v(X,Y ). From (A.1) we have

vY =
1
2

(XuX + Y uY ), (A.5)

vX = −1
2

(−Y uX +XuY ).

Integrating v in X from the point (0, 0), and using the second equation in (A.5),
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Fig. 13. Illustration of the Dirichlet problem for u. Boundary conditions are given on X = 0.

we calculate that

v(X, 0) = v(0, 0) +
∫ X

0

vX(X, 0) dX

= v(0, 0)− 1
2

∫ X

0

XuY (X, 0) dX

= v(0, 0)− 1
2π

∫ X

0

(
X2

X2 + (−Y0)2
− X2

X2 + (Y0)2

)
dX.

In the last expression on the right, we have computed uY , and evaluated it at Y = 0,
from our solution for u in (A.4). Since the integrals cancel, we obtain

v(X, 0) = v(0, 0) = 0.

Now we use the first equation in (A.5) to integrate in Y . We calculate that

v(X,Y ) = v(X, 0) +
∫ Y

0

vY (X,Y ) dY

= 0 +
∫ Y

0

1
2

(XuX + Y uY ) dY.

Again we compute uX and uY from (A.4), and substitute into the integral on the
right. After another calculation, we obtain

v(X,Y ) =
−Y0

2π

[
tan−1 Y + Y0

X
+ tan−1 Y − Y0

X

]
. (A.6)

Finally, we return to the self-similar coordinates (ξ, η). The solution of the boundary
value problem is given by (3.6).
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