
Partial Differential Equations

Barbara Lee Keyfitz
Department of Mathematics

University of Houston
Houston, Texas 77204-3476



2



Contents

1 Introduction 5
1. Definitions and Notation . . . . . . . . . . . . . . . . . . . . 9
2. Review of Background Material . . . . . . . . . . . . . . . . 12

2.1 Curves and Surfaces in Space . . . . . . . . . . . . . 12
2.2 Vector Fields . . . . . . . . . . . . . . . . . . . . . . 15
2.3 The Implicit Function Theorem . . . . . . . . . . . . 20
2.4 Linearity . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 First-Order Equations 27
1. Linear First Order Equations . . . . . . . . . . . . . . . . . 29
2. Quasilinear First-Order Equations . . . . . . . . . . . . . . . 45
3. Fully nonlinear . . . . . . . . . . . . . . . . . . . . . . . . . 50
4. Applications to turbulence and traffic flow . . . . . . . . . . 50

3



4



Chapter 1

Introduction

Two aspects of partial differential equations form the thread of this book:

1. obtaining global from local information by solving the equation

2. relating the algebraic structure of a partial differential operator to
analytic properties of its solutions.

In this introduction, we will try to explain what is meant by these state-
ments. The second part of the chapter gives a brief review of material from
ordinary differential equations and advanced calculus which will be used
later in the book.

A partial differential equation (PDE) is an equation involving a function
of several variables, u(x, y), for example, and its partial derivatives

∂u

∂x
,
∂u

∂y
,
∂2u

∂x2
,
∂2u

∂x∂y
,
∂2u

∂y2
, . . . .

Some examples of PDE which govern interesting phenomena in mathemat-
ics, physics and engineering are

Potential Equation ∆u ≡ ∂2u
∂x2 + ∂2u

∂y2 + ∂2u
∂z2 = 0

Wave Equation ∂2u
∂t2

= c2∆u

Heat Equation ∂u
∂t

= k∆u

Burgers Equation ∂u
∂t

+ u∂u
∂x

= ε∂
2u
∂x2

Korteveg-deVries Equation ∂u
∂t

+ u∂u
∂x

= µ∂
3u
∂x3

Cauchy-Riemann Equations ux = vy, vx = −uy.
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6 CHAPTER 1. INTRODUCTION

Like an ordinary differential equation, a partial differential equation ex-
presses a relation between the values of a function at a point and its deriva-
tives at the same point. This is what we mean by ‘local’ information. In the
case of a PDE, the derivatives express different mathematical and physical
properties of the function: if t represents time, then a time derivative is a
rate of change, so if u in addition represents position in space then ∂u/∂t
represents velocity, ∂2u/∂t2 is acceleration, and so on. If x represents a
spatial variable, then ∂u/∂x represents a spatial gradient: it is a slope if
u represents position in space, a thermal gradient if u represents temper-
ature, and so on. If u is spatial position, then ∂2u/∂x2, the infinitesimal
change in slope, is proportional to the curvature of u in the direction of
x, while if u represents a state like temperature or density, then the in-
terpretation of its second derivatives is less intuitive, though we shall see
that second derivatives arise naturally in modeling physical problems. In
any case, we can always graph u versus x, whatever u stands for, and the
second derivative is (related to) the geometric curvature of the graph. The
point is that differential equations (ordinary or partial) arise naturally as
statements about processes that are governed by local influences. Newton’s
law of cooling, for example, predicts that the instantaneous rate of change
of temperature at a point in space is governed by the temperature gradients
in its immediate neighborhood, and is insensitive to what is occurring at
distant points. Many rational deductions about the behavior of the physical
world are based on balancing forces in a small neighborhood of a point, and
lead to differential equations.

However, it is evident that a statement about what influences tempera-
ture at a point is less interesting (to someone trying to predict the weather,
say) than a determination of what the temperature actually is at that point
and, even more important, what it will be tomorrow. As we all know, future
behavior of temperature depends on much more than just one point: even
if we take the heat equation to be a complete statement about all the dy-
namics of temperature change, then we can be certain that temperature in
the future will depend both on temperature now (initial conditions) and on
the distribution of sources and sinks of heat (for example, controls imposed
on the boundary of the region being considered – a silver spoon dipped
into a pot of boiling water, say). The fact that the local PDE, given by
physical or mathematical principles, and information about heat exchange
at the boundary of the body, enables one to predict, fairly accurately, the
future temperature distribution in a solid body (the spoon), based only on
the temperature at a particular initial time, is what makes PDE a powerful
tool for solving problems in science and engineering. The process of com-
bining the local PDE with initial and boundary conditions to arrive at a
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function defined in the entire region of space and time where the local law
holds is called, reasonably enough, ‘solving the equation’.

The success of this approach to studying the physical world has made
PDE a mainstay of applied mathematics and science for over a hundred
years, so much so that in many fields people regard modeling phenomena
by PDE as the natural way to do it, even in the case of phenomena like
traffic flow or quantum mechanics that may not seem, at first inspection,
to have the requisite features, such as a continuum in space and time or a
local governing relation.

By contrast to the situation in elementary ordinary differential equa-
tions, it turns out that there are relatively few types of PDE for which
solutions can be written down explicitly in terms of the functions (poly-
nomials, trigonometric, or transcendental) one studies in calculus. This,
rather than leading to a defeatist attitude, has stimulated mathematical
advances in two directions. First, there is an extensive study of qualitative
properties of solutions. If one cannot write down a solution explicitly, it
becomes all the more important to know whether a solution exists, and if
it does, if it is unique. Other properties, such as the location of its max-
ima and minima, possible discontinuities, and its dependence on the initial
and boundary data, become very interesting (by contrast, if the solution
can be written down explicitly, then all this behavior can be verified using
calculus), and form a large part of the study of PDE. A second field of
study is the numerical simulation of solutions of PDE. While this book is
not primarily about how to obtain numerical approximations to PDE, we
shall develop a few straightforward methods, in part to help visualize the
solutions we describe and in part as an application of the theory we will
develop in this book. It turns out that a few simple principles, which derive
from the theory, are very helpful in developing suitable approximations. As
an additional advantage, theory also establishes principles which are useful
in forming new models for physical processes.

An important feature in the study of PDE, which will be emphasized
here, is the interesting relation between what one might call the algebraic
structure of a partial differential operator and the analytic features of solu-
tions of the equation, as referred to above (location of extrema and discon-
tinuities, for example). A function of several variables has so many different
derivatives that even finding a notation to write them all down requires some
thought. We shall explore some convenient notations later. Then, partial
derivatives can be combined into an equation in many different ways, as the
examples on page 1 show. When faced with a collection of things that look
superficially different, a mathematician’s first reaction is to classify them
into sets: objects within one set resemble each other closely, while those
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in different sets differ in some essential way. An example from ordinary
differential equations will illustrate the point.

Example 1 A second-order, linear, constant-coefficient homogeneous ODE
can be written

ay′′ + 2by′ + cy = 0;

here y = y(x), say, is the dependent variable, the prime ′ denotes differen-
tiation with respect to x, and a, b, and c are constants. (The factor of 2
in front of b is a convenience.) We may assume a 6= 0, or else the equation
is not second-order. (In ODE it is not usually difficult to write down the
general case of a type of equation, particularly for linear equations.) Now,
in solving this equation, one learns to write down the auxiliary equation

aλ2 + 2bλ+ c = 0.

This is an algebraic (even polynomial) equation, and it provides an example
of what will prove to be very useful in PDE: associating an algebraic object
with a partial differential operator. In fact, this can be done formally by
using a symbol like ‘D’ to denote differentiation; then the equation is written

aD2y + 2bDy + cy ≡ (aD2 + 2bD + c)y = 0,

and formation of the auxiliary equation is effected by substituting an al-
gebraic symbol, λ, for the symbol for differentiation, D. The expression
aD2 + 2bD + c is an example of an operator: it is a set of instructions
for forming another function, ay′′ + 2by′ + cy, from the function y (that is
why the last term in the operator is ‘c’, which is the instruction ‘multiply
by c’ and produces the term ‘cy’ in the function). Operator notation is
suggestive: it reminds us that there is a close connection between the equa-
tion and the algebraic object which is the symbol of the operator. In this
example, we find the solution by solving the auxiliary quadratic equation.
For the purposes of illustrating the connection between algebraic proper-
ties and properties of solution, the precise solution of the equation is less
important than the classification into types of behavior: when b2 − ac < 0
the quadratic equation has complex conjugate roots and the solutions of
the differential equation are oscillatory; when a, b and c all have the same
sign, all solutions of the equation decay to zero as x→∞, and so on. Thus
solutions of a second-order, linear, constant-coefficient, homogeneous, ODE
can be classified according to the relative sizes of the coefficients.

Problem 1 Verify the statements in this example by finding the general
solution of the equation.
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b

c

all solutions oscillate

   all solutions decayall solutions grow   

some solutions decay and some grow

c=b2 →

all solutions are periodic →

↑ some solutions are constant

Figure 1.1: Regions of Different Qualitative Behavior of y′′+2by′+ cy = 0

Problem 2 Since we have assumed a 6= 0, there is no harm in dividing the
equation (and hence the operator) by a, or, what is equivalent, assuming
a = 1. Then verify, using the solution of the previous problem, that the b, c-
plane can be divided into five open regions of different qualitative behavior,
as shown in Figure 1.1.

A second theme of the subject of PDE, and of this book, is that operators
can be classified into certain broad types (‘hyperbolic’, ‘parabolic’, ‘elliptic’)
on the basis of algebraic criteria, and membership in one of these classes
determines many qualitative properties of the solutions: not only location
of extrema and existence of discontinuities in the solutions, but even such
fundamental questions as what sorts of initial and boundary value problems
have solutions at all. The situation is much more complicated than it is for
ODE. We will begin to explore this in Chapter 2.

1. Definitions and Notation

We are studying functions of several independent variables; when we want to
emphasize generality we will consider the variable to be x = (x1, x2, . . . , xn);
the collection of n-tuples is denoted Rn, real n-dimensional Euclidean space.
When we are dealing with specific examples, or to simplify or to be concrete,
we will write the independent variable as x = (x, y) or as x = (x, y, z).
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The standard measure of distance between two points x and y is Eu-
clidean distance,

d(x,y) =

√

√

√

√

n
∑

i=1

|xi − yi|2.

The open ball with center x0 (it is convenient, when we are using subscripts
to denote coordinate functions, to use superscripts to denote specific points)
and radius r is the subset of Rn:

B(x0, r) = {x | d(x,x0) < r}.

The closed ball is the closure of the open ball:

B(x0, r) = {x | d(x,x0) ≤ r},

while the sphere of radius r is the surface of the ball:

S(x0, r) = {x | d(x,x0) = r}.

We recall the definitions of open and closed sets in Rn, and the boundary
of a set. A set A in Rn is open if around every point x in A we can find some
open ball B(x, r) which is also in A; if A is open its complement, Rn\A is
closed. For any set A, the interior of A, Å, is the largest open set contained
in A, the closure of A, A, is the smallest closed set containing A and the
boundary of A, ∂A, is the closure of A minus the interior of A.

A neighborhood of a point x0 in Rn is an open set containing x0.
We recall the definition of a limit: if f is a function of n variables, then

lim
x→x0

f(x) = L

means that for any ε > 0 there exists a δ > 0, depending on ε, such that

|f(x)− L| < ε whenever d(x,x0) < δ.

A function f is continuous at x0 when limx→x0 f(x) = f(x0).
We are ready to define partial derivatives. Let us consider a function

f(x, y) of two variables. Then

∂f

∂x

∣

∣

∣

∣

(x0,y0)

= lim
h→0

f(x0 + h, y0)− f(x0, y0)

h

if the limit exists. Similarly,

∂f

∂y

∣

∣

∣

∣

(x0,y0)

= lim
h→0

f(x0, y0 + h)− f(x0, y0)

h
.

A partial derivative of a function is another function, and so we can define
second and higher order derivatives.



11

Example 2 If f(x, y) = 2x2 + xy3 − 1
x
, then

∂f

∂x
= 4x+ y3 +

1

x2

∂f

∂y
= 3xy2

∂2f

∂x2
= 4− 2

x3

∂2f

∂y2
= 6xy

∂2f

∂x∂y
= 3y2 =

∂2f

∂y∂x
.

The set of points where a function is defined is called its domain of definition,
or its domain. The function in this example is defined for all points (x, y)
in R2 with x 6= 0; that is, everywhere except on the y-axis. The same is
true of its derivatives. (In this example, the y-derivatives of f are functions
defined everywhere in R2; however, they are not the derivatives of f at points
where f is undefined.) We say f is of class Ck on a set A, or f ∈ Ck(A),
if f has k continuous derivatives at every point in A, and f ∈ C∞(A) if
all partial derivatives of every order are continuous. A function can have
partial derivatives without those derivatives being continuous.

Example 3 Here is a classic example in a single variable. Let f be defined
by

f(x) =

{

x2 sin
(

1
x

)

, x 6= 0
0, x = 0

.

Then

f ′(x) =

{

2x sin
(

1
x

)

+ cos
(

1
x

)

, x 6=
0, x = 0

.

(The derivative for x 6= 0 is found by applying the usual rules of calculus; to
find the derivative at zero, one calculates the difference quotient and takes
the limit.) It can be seen that f ′ is defined for all x, but is discontinuous
at zero.

Example 4 By contrast to functions of a single variable, where one proves
early in a calculus course that if a function is differentiable then it is con-
tinuous, a function of several variables may have partial derivatives but be
discontinuous. The function

f(x, y) =

{ xy
x2+y2 , (x, y) 6= (0, 0)

0, (x, y) = (0, 0)
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is not continuous at zero, but

∂f

∂x
(0, 0) = lim

h→0

f(h, 0)− f(0, 0)

h
= 0

is defined, as is ∂f/∂y.

2. Review of Background Material

2.1 Curves and Surfaces in Space

In this book we will be talking about functions of several variables. Al-
though usually these functions do not represent geometric objects (they
may be temperature or density, for example) and although the variables
may not always be spatial variables (one variable may be time, or they may
all be abstract placeholders), it helps in developing intuition about the dif-
ferential equations they satisfy to think of them geometrically. We begin
with a function of a single variable. We can view y = f(x) as a function or
a curve in the x, y-plane. Considered as a curve, the equation y = f(x) is
the same as F (x, y) ≡ f(x)− y = 0. However, an equation F (x, y) = 0 may
not correspond to a function. For example, the equation x2 + y2 − 4 = 0
is the equation of a circle. Parts of the solution set of F (x, y) = 0 may be
written as functions: y =

√
4− x2 and y = −

√
4− x2 in this example. See

Figure 1.2. The Implicit Function Theorem (discussed below) states that if
∂F/∂y 6= 0 at a point (x0, y0) in the solution set, then there is a neighbor-
hood of (x0, y0) where the solution set is given by a function y = f(x). In
the case of the function F (x, y) = x2 + y2 − 4, the places where F = 0 and
∂F/∂y = 0 are (2, 0) and (−2, 0), and those are exactly the places which do
not have neighborhoods in which F = 0 can be written as a single-valued
function of x. The roles of x and y are symmetric. Any point (x0, y0) at
which ∂F/∂x 6= 0 has a neighborhood in which we can solve for x = f(y).
In this example, the exceptions are the points (0, 2) and (0,−2). Notice that
unless ∂F/∂y and ∂F/∂x are both zero at the same point, we can always
solve for one of x or y. The points where ∇F ≡ (∂F/∂x, ∂F/∂y) = 0 are
called singularities of the curve.

Problem 3 Where are the singularities of the equation F (x, y) = 0 when
F = x2−y2? Describe the curve(s) that satisfy this equation; what happens
to them at a singularity?

If F (x, y) = 0 is the graph of a function y = y(x), then we can find
derivatives of y (these are ordinary derivatives) by implicit differentiation,
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x2+y2=4→

x

y

←y=(4−x2)1/2

←y=−(4−x2)1/2

Figure 1.2: The Graph of a Circle

a technique learned in calculus: we differentiate the equation F (x, y(x)) = 0
with respect to x and obtain

d

dx
F (x, y(x)) ≡ ∂F

∂x
+
∂F

∂y

dy

dx
= 0. (1.1)

We adopt the notation

Fx =
∂F

∂x
, Fy =

∂F

∂y
,

and now see that (1.1) can be solved for dy/dx:

dy

dx
= −Fx

Fy
.

For example, if F = x2+y2−4 then this yields dy/dx = −x/y. As a practical
matter, knowing that dy/dx = −x/y may not be very useful unless we also
know the value of y at a given value of x, but the relation between dy/dx
and the partial derivatives of F turns out to be very useful. We turn to this
now.
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In the x, y-plane, dy/dx is the slope of the tangent line to y(x). A
tangent vector to the curve y(x) is given by t = (1, dy

dx
). (We say “a”

tangent vector because there are many: any vector whose slope is dy
dx

—
that is, any multiple of t — is a tangent vector.) Now the gradient of F is
defined as ∇F = (Fx, Fy); this is also a vector, and the quantity Fx + Fy

dy
dx

is the dot product of the two vectors t and ∇F . Recall that the dot product
of two vectors is zero when the vectors are orthogonal. Hence the equation
Fx + Fy

dy
dx

= 0 states that the gradient of a function F of two variables is
orthogonal to the zero-set of F (which is the function y(x)). This is well
known; in fact, more is true: the gradient of F is orthogonal to any level
set, F (x, y) = c.

Problem 4 Show that ∇F is orthogonal to the curve F (x, y) = c. Hint:
Adapt the argument above, for example by considering the functionG(x, y) =
F (x, y)− c, whose zero-set is a level set of F and whose partial derivatives
are the same as those of F .

In spaces of higher dimension, there are a number of ways to represent
curves and surfaces. A function of n variables, u(x1, . . . , xn), is the equa-
tion of a surface in the n + 1-dimensional space of points (x1, . . . , xn, u).
Typically, an equation of the form F (x1, . . . , xn) = 0 gives a surface (or
hypersurface) in n-dimensional space. A higher-dimensional version of the
Implicit Function Theorem gives conditions for being able to write the sur-
face as xn = f(x1, . . . , xn−1).

How do we denote a curve in R3? One simple way is to write the y and z
coordinates as functions of x; that is, y = Y (x), z = Z(x). Then, the points
in space which are on the curve are written as (x, y, z) = (x, Y (x), Z(x));
notice that this is a special case of a parametric representation, with x = t.
A general parametric representation of a curve in three-dimensional space
is given by (x(t), y(t), z(t)), where the parameter, t, lies in an interval of the
real line. A curve in n-dimensional space is given by x = x(t).

The fact that a curve in three-dimensional space is given by two func-
tions, Y (x) and Z(x), might lead you to guess that in general two equations,
F (x, y, z) = 0 and G(x, y, z) = 0 determine a curve, just as one equation
determines a surface. Under appropriate conditions, this is so; one needs a
variant of the implicit function theorem to prove it.

A result similar to (1.1) holds in any number of variables. Writing
the equation xn = f(x1, . . . , xn−1) in Rn, which determines a surface, in
implicit form as F (x1, . . . , xn) = 0 for some function F of n variables, again
we claim that ∇F is normal to the surface. To see this, we calculate the
implicit derivatives with respect to each of x1, . . . , xn−1 of the identity

F (x1, x2, . . . , xn−1, f(x1, x2, . . . , xn−1)) = 0.
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We obtain

∂F

∂x1

+
∂F

∂xn

∂f

∂x1

= 0;

∂F

∂x2

+
∂F

∂xn

∂f

∂x2

= 0;

...
∂F

∂xn−1

+
∂F

∂xn

∂f

∂xn−1

= 0.

Now, this says that the dot product of

∇F =

(

∂F

∂x1

,
∂F

∂x2

, . . . ,
∂F

∂xn

)

with each of the n− 1 vectors
(

1, 0, . . . , 0,
∂f

∂x1

)

,

(

0, 1, 0, . . . , 0,
∂f

∂x2

)

, . . . ,

(

0, . . . , 0, 1,
∂f

∂x2

)

is zero. Each vector in this list is a tangent vector to the surface, since it
is tangent to the curve in the surface in one of the coordinate directions.
This shows that ∇F is orthogonal to n − 1 linearly independent vectors
in the tangent plane of the surface and so it is normal to the surface. See
Figure 1.3.

2.2 Vector Fields

There are many familiar examples of vector fields in physical space. In
R3, we may write a vector field V(x, y, z) as (P,Q,R), where P , Q and
R are functions of x, y and z: V is a vector-valued function defined on a
domain D ⊂ R3. One can study the motion determined by the following
rule: A point mass at x moves under the influence of V(x) along a path
(also called an orbit or trajectory) which satisfies the system of first-order
ordinary differential equations

dx

dt
= V(x). (1.2)

Example 5 Here is an example involving fluid flow in the plane. Suppose
that at any point in the plane, the velocity field V(x, y) = (−y, x). Then
the position (x(t), y(t)) of a particle satisfies

dx

dt
= −y

dy

dt
= x.
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x1

x2

xn F

(0,1, .. , f x
2

)

(1,0, .., f x1
)

Figure 1.3: Tangents and Normal to a Surface

This is a first-order system of ordinary differential equations. By the basic
theory of linear ordinary differential equations, the position of the particle
is completely determined for all time if we know it at any one time, say
(x(0), y(0)) = (x0, y0). We outline two ways to solve this system:

1. Write the equations for x and y as a second-order equation in a single
variable,

d2x

dt2
=

d

dt

(

dx

dt

)

=
d

dt
(−y) = −dy

dt
= −x

or d2x/dt2 +x = 0. This is the familiar ‘harmonic oscillator’ equation
whose general solution is

x(t) = A cos t+B sin t

for parameters A and B. We then recover y = −dx/dt = −A sin t +
B cos t, and then apply the initial conditions

x(0) = x0 = A, y(0) = y0 = B

to determine A and B from the data.

2. A curve (x(t), y(t)) can be written (locally) as y = f(x) or x = g(y)
(that is, F (x, y) = 0) and so

dy

dx
=
dy/dt

dx/dt
=

x

−y
.
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Using this approach, we get a first order ordinary differential equation
dy/dx = −x/y or dx/dy = −y/x. This equation is not linear, but is
a separable equation which can be solved as follows:

x dx = −y dy ⇒ 1

2
x2 = −1

2
y2 + C

where C is a constant of integration; from the initial condition, C =
1
2
[(x0)2 + (y0)2]. We immediately see that the solution lies on a circle;

however, we have to do a little more work to find x and y as functions
of t. We use the solution to find another first-order equation:

dx

dt
= −y = −

√
2C − x2

or
dx√

2C − x2
= −dt.

Integrating both sides (the left side is seen to yield an inverse trigono-
metric function upon integration), and solving for x we get the same
solution as above.

The next example is set up a little differently.

Example 6 The gravitational field due to a point source of mass M at the
origin is

E(r) = −MGr

|r|3
,

where G is the gravitational constant and we let r denote the point (x, y, z).
The domain of E is D = R3\0. The motion of a particle of unit mass under
the influence of gravity is given by

dr

dt
= v

dv

dt
= E(r).

For dr/dt = v(t) is the velocity of the particle, while, by Newton’s law of
gravitation, the acceleration, d2r/dt2, is equal to E. This system of six first-
order ordinary differential equations is an example of (1.2) in six dimensions,
with x = (r,v) and V = (v,E).

We focus on the position of a solution x(t) of (1.2). For example, if
x(t) = (x(t), y(t), z(t)) is in R3, then as t varies, this forms a curve in
space; as we saw, (x(t), y(t), z(t)) is a standard parametric representation
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of a curve in R3. In Example 5, we noted that (x(t), y(t)) is a parametric
representation of a curve in the plane given by F (x, y) = 0. Recall that on
such a curve we have

dy

dx
= −Fx

Fy
.

Now the system

dx

dt
= P

dy

dt
= Q

is the same as
dy

dx
=
Q

P

and so we have a relation between the partial derivatives of F and the vector
field V = (P,Q):

−Fx
Fy

=
Q

P

or

P
∂F

∂x
+Q

∂F

∂y
= 0.

So we have demonstrated the following proposition.

Proposition 1 If F (x, y) = 0 is an integral curve of the vectorfield V =
(P,Q), then F (x, y) is a solution of the first order partial differential equa-
tion

P (x, y)
∂F

∂x
+Q(x, y)

∂F

∂y
= 0

Here is an illustration.

Example 7 Applying this in the example above, where V = (−y, x), the
corresponding partial differential equation is

−y∂F
∂x

+ x
∂F

∂y
= 0,

and we saw that F = x2 + y2 − c is a solution of this equation for any
constant c.
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Problem 5 Drill in curves and surfaces.

1. Sketch the graph of the function y = x3 − 3x.

2. Sketch the graph of the function y = x3 − 3x+ 2.

3. What is the domain of y2 = x3−3x? Sketch the curve. What functions
are defined by this equation?

4. Sketch the graph of y = tanx.

5. Sketch the graph of y = tanhx.

6. Sketch the level curves of y = x2 + y2.

7. Sketch the level curves of y = x2 − y2.

Problem 6 Drill in ODE.

1. Find the general solution of y′′ + 4y′ + 5y = 0.

2. Find the general solution of y′′ + 5y′ + 4y = 0.

3. Solve the initial value problem y′′ + 9y = 0, y(0) = 1, y′(0) = 3.

4. Find the general solution of y′′ + ω2y = t.

5. Solve dy
dx

= y
x
.

6. Solve dy
dx

= x
y
.

7. Solve the system

ẋ = x
ẏ = −y
ż = 1.

8. Solve the system

ẋ = y
ẏ = −x
ż = x.
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Figure 1.4: The Inverse Function Theorem in One Variable

2.3 The Implicit Function Theorem

We discuss several related theorems which are very useful in solving PDE.
They go by the names of ‘implicit’ and ‘inverse’ function theorems. They tell
us when a function y = f(x) can also be written as x = f(y) (for example
y = 2x is the same as x = y/2), in one or many dimensions, and also when
an equation f(x, y) = 0 can be solved for y(x); again, we are interested in
cases where x and y may be vector-valued. For our purposes here, it is more
important to understand that these theorems do not always hold, and that
the hypotheses need to be checked, than to follow the details of how they
are proved, and so we will prove only the simplest case, the inverse function
theorem in one variable, which uses only results from calculus. Proofs of all
the theorems can be found in texts on advanced calculus.

Theorem 1 (Inverse Function Theorem) Given a C1 function y =
f(x) for x in a neighborhood N of x0, with the property f ′(x0) 6= 0, then,
denoting f(x0) by y0, there is a neighborhood M of y0 and a function g ∈
C1(M) such that x = g(y) for y ∈M if and only if y = f(x).

Proof We can assume f ′(x0) > 0. Since f ′ is continuous, there is an open
interval I ⊂ N in which f ′(x) > 0. (See Figure 1.4.) Considering f as a
mapping, then f maps I to an image, which we shall call f(I). Since f ′ is
positive, then f is monotonic, and so the mapping is 1−1. Also, the image,
f(I) is also an interval. We see this by using use the intermediate value
theorem, from calculus, as follows: take any closed interval [a, b] inside I;
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let f(a) = c and f(b) = d; then c < d and by the intermediate value theorem
for any y ∈ [c, d], there is an x ∈ [a, b] for which f(x) = y, so y is in f(I),
which is thus connected and forms an interval. Since f is one-to-one, the
value x associated with each y is unique, and so defines a function, g(y) = x,
the inverse mapping; g maps f(I) ≡ M to I. To complete the proof, we
need to show that g is monotonic, continuous, and differentiable.

Monotonicity is proved along the lines above: for any c and d in M with
c < d, find a and b such that g(c) = a and g(d) = b; then if b < a we will
have d = f(b) < f(a) = c, a contradiction.

We prove that g is continuous by using the mean-value theorem for f .
Let c be the point at which we want to prove g is continuous, and let d be
another point; we want to show limd→c g(d) = g(c). Now, let g(c) = a and
g(d) = b; we apply the mean-value theorem to f :

f(b)− f(a) = (b− a)f ′(k), (1.3)

where k is a value between a and b. Since we are choosing all points to lie in
the interval I, we know that f ′(k) 6= 0, so we can divide by it. Now rewrite
(1.3) expressing f(b) as d, and so on: we obtain

1

f ′(k)
(d− c) = g(d)− g(c).

Finally, we take the limit d → c. The quantity 1
f ′(k)

will vary with d, but

it is bounded (in fact, as d → c, it approaches the limit 1
f ′(c)

), and so

g(d)→ g(c).
We can now find g′ directly by calculating the difference quotient. For

any y ∈ [c, d], we want to find

lim
k→0

g(y + k)− g(y)

k
.

Let x = g(y), and define h = g(y + k) − g(y), so g(y + k) = x + h and
y + k = f(x+ h) or k = f(x+ h)− f(x). Then the quantity above can be
written as

g(y + k)− g(y)

k
=

h

f(x+ h)− f(x)
.

Now, by the continuity of g, when k → 0 then also h→ 0. But

lim
h→0

f(x+ h)− f(x)

h

exists, since this is by definition f ′(x), and it is nonzero, so the limit of its
reciprocal also exists and is 1

f ′(x)
. Thus g′(y) exists and is equal to 1

f ′(x)
.



22 CHAPTER 1. INTRODUCTION

We have given this proof in some detail so that the reader can see where
each hypothesis is used. The implicit function theorem in two variables
reads as follows:

Theorem 2 (Implicit Function Theorem) If F = F (x, y) ∈ C1(Ω),
and F (x0, y0) = 0 while ∂F (x0, y0)/∂y 6= 0, then there is a function f =
f(x) ∈ C1 with f(x0) = y0, and a neighborhood N of x0 in R1 such that
F (x, y(x)) = 0 for all x ∈ N .

Notice that Theorem 1, which we have just proved, is a special case of
Theorem 2 with the function F defined by F (x, y) = y − f(x). However,
the proof of Theorem 2 in two or more variables is quite intricate. One way
to prove Theorem 2 is to use a two-dimensional version of Theorem 1. The
context now is inverting a mapping T : (x, y) 7→ (u, v) of two variables. Such
mappings are more complicated than one-dimensional mappings (functions).

Example 8 Cartesian to polar coordinates. For (x, y) ∈ R2, polar coordi-
nates are defined implicitly by

x = r cos θ, y = r sin θ,

with r ≥ 0 and a convention such as 0 ≤ θ < 2π. This defines a mapping
T (r, θ) 7→ (x, y) from a half-strip in R2 to R2. See Figure 1.5. An inverse is
defined by

r =
√

x2 + y2, θ =

{

cos−1(x/r), y > 0
2π − cos−1(x/r), y < 0

,

where a careful definition of θ is necessary to ensure that θ represents the
angle between the vector (x, y) and the positive x-axis for all points (x, y),
including those in the lower half-plane. Even with this care, the inverse
mapping has two unavoidable difficulties: first, the origin (x, y) = (0, 0)
is singular, in that there is no way of defining θ there. In fact, the entire
interval I = {r = 0, 0 ≤ θ < 2π} is mapped by T to (0, 0), so the mapping T
is not one-to-one there. In addition, the inverse mapping is not continuous
across the positive x-axis: points just above the axis are mapped to points
(r, θ) with θ near 0, while their neighbors just below the axis are mapped
to points with θ near 2π. One could redefine the original mapping T to
make the domain of θ the interval (−π, π], but then the discontinuity just
moves to the negative x axis. Alternatively, one could allow θ to take all
real values; then T is no longer one-to-one, but a continuous inverse can be
defined in a neighborhood of any non-zero point (x, y).
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Figure 1.5: Polar and Cartesian Coordinates

To uncover the correct hypotheses for inverting a mapping, consider the
case of a linear mapping, in which case T is given by a 2 × 2 matrix A;
we may suppose that (x, y) and (u, v) are column vectors, and T acts by
matrix multiplication by A:

T (x, y) = A

(

x
y

)

=

(

u
v

)

.

Now, in this case, the mapping is invertible if and only if A is nonsingular,
that is, det(A) 6= 0. We can use Taylor’s Theorem for vector functions to
find the linear map that best approximates a nonlinear mapping at a point
(x0, y0); it is given by the Jacobian matrix

A =

( ∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)

where all partial derivatives are evaluated at (x0, y0). The determinant of
A, the Jacobian determinant, is often written J(x0, y0) = |∂(u, v)/∂(x, y)|,
where the entries are evaluated at (x0, y0).

Example 9 In Example 8, noting that T (r, θ) = (x, y), we have

A =

(

∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

)

=

(

cos θ −r sin θ
sin θ r cos θ

)

and detA = r. Thus the singularity at r = 0, or (x, y) = (0, 0), is predicted
by the fact that the Jacobian determinant is zero there.

The idea behind the use of the Jacobian determinant is exactly the same in
any number of dimensions, and forms a hypothesis of the inverse function
theorem:

Theorem 3 (Higher Dimensional Version of IFT) Given a C1 map-
ping T : (x1, . . . , xn) 7→ (u1, . . . , un) for x in a neighborhood N of x0, with
the property that the Jacobian determinant J(x0) 6= 0, then, denoting T (x0)
by u0, there is a neighborhood M of u0 and a mapping S ∈ C1(M) such that
x = S(u) for u ∈M if and only if T (x) = u.
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We omit the proof of this Theorem, but we show how the proof of Theorem
2 follows from it:
Proof of Theorem 2 Define a mapping T by

T (x, y) = (u, v) = (x, F (x, y));

T is defined on the domain Ω of the theorem. At (x0, y0), the Jacobian is

( ∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)

=

(

1 0
∂F
∂x

∂F
∂y

)

and its determinant is ∂F/∂y(x0, y0) 6= 0 by hypothesis. Thus there is an
inverse mapping S : (u, v) 7→ (x, y), which we will write as x = X(u, v),
y = Y (u, v) (that is, X and Y are the functions given by Theorem 3). Also
S is defined on a neighborhood of (u0, v0) = T (x0, y0) = (x0, 0). Now, T
composed with S gives the identity:

(u, v) = T (S(u, v)),

which means
F (x, y) = v = F (u, Y (u, v))

and this identity holds for all v near 0. In particular, it holds at v = 0,
which means

0 = F (u, Y (u, 0)) = F (x, Y (x, 0)).

This equation shows that the function f(x) we seek is f(x) = Y (x, 0), where
Y is the function given by Theorem 3.

2.4 Linearity

Throughout these notes, we will talk about linearity in different contexts:
linear functions, linear spaces, linear mappings, linear operators, linear de-
pendence and independence, and so on. Examples of linear spaces, also
called vector spaces, are Rn, real Euclidean space, for any n. The prop-
erties which define a vector space are given in any linear algebra text; we
recall here the two fundamental properties that vectors in the same space
can be added, and that a vector can always be multiplied by a scalar. In
linear algebra, one speaks of linear transformations on finite dimensional
vector spaces. These are mappings which can be described by matrices: if
x and u are vectors in Rn and Rm respectively, and A is an m× n matrix,
then a linear mapping from Rn to Rm is given by u = Ax. This mapping
has the important properties of superposition:
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1. If x and y are vectors in Rn then A(x + y) = A(x) + A(y);

2. If x ∈ Rn and α is any number, then A(αx) = αA(x).

One consequence of linearity is that A(0) = 0 — that is, a linear trans-
formation always maps the origin in the domain space to the origin in the
image space. Another consequence is that if a linear transformation is de-
fined for a set of vectors, it is then defined on the entire vector space spanned
by those vectors. Yet another is that the set of solutions x of an equation
Ax = 0 forms a linear space, the null space of A.

There is also a relation between the solution set of a system of linear
equations Ax = b and the associated homogeneous system A(x) = 0: if N
(for null space) denotes the vector space of solutions to A(x) = 0 and x0

is one solution of Ax = b, then X = N + x0 is the space of solutions to
Ax = b. The plus sign in the definition of X means that X consists of all
vectors of the form x + x0, with x ∈ N . The space X is not a vector space
(superposition does not apply and the space does not contain the origin);
however, it has many other properties in common with a vector space; it is
called an affine space.

In ODE, one learns that the general solution of a homogeneous linear
equation is the set of linear combinations of some basic solutions. Similarly,
the general solution of an inhomogeneous linear equation is found by adding
a particular solution to the general solution of the homogeneous equation.
In fact, one can think of the basic solutions as vectors which form a basis
for the vector space of solutions to the homogeneous equation. Then the
solutions to the inhomogeneous equation form an affine space in the same
way as in linear algebra. As we saw in Example 1, a linear differential
equation can be written as a differential operator acting on a function; for
a second-order equation, the operator looks like

L(y) = (aD2 + bD + c)y.

This operator is linear in the same way that linear transformations on Rn
are linear: the two superposition principles hold. Notice that this is true
whether the coefficients a, b and c are constant or are functions of the
independent variable, t, but it is not true if they are functions of y.

Problem 7 Find the general solution of y′′+ω2y = 0. What is a basis for
the vector space of solutions? What is the dimension of the space? Find
the general solution of y′′ + ω2y = t and describe it as an affine space.

Problem 8 Show that the operator L = t2D2 + 2tD+ sin t is linear. Show
that the operator N(y) = D2y + yDy is not linear by showing that super-
position does not work.
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In these notes, we will study many PDE which are linear, and we will
discover how the linear structure of the solution space helps to solve the
equation. We will also study many nonlinear problems, and we will find ways
to compensate for the lack of linear structure. Here is one more example
from ODE showing how linearity can emerge from a different aspect of the
problem; we will see much more like this in PDE.

Example 10 A two-point boundary-value problem for an ODE consists of
an equation, say y′′+ω2y = 0, which holds on an interval, say 0 ≤ t ≤ π, and
boundary conditions at the end points. If we take as boundary conditions
y(0) = 0 and y(π) = 0, then one can verify that

1. y ≡ 0 is always a solution, and

2. y ≡ 0 is the only solution unless ω is an integer, say ω = n, and then
y(t) = c sinnt is a solution for any constant c.

Now, we can write the equation in terms of a homogeneous linear operator:
L(y) ≡ (D2 + ω2)y = 0, and we can also write the boundary conditions
as homogeneous equations by defining linear operators B0(y) = y(0) and
Bπ(y) = y(π). Then the boundary conditions become B0(y) = 0, and
Bπ(y) = 0. Now, because the operator and the boundary conditions are all
homogeneous, their solution sets are vector spaces. Depending on the value
of ω, the solution space has dimension 0 or dimension 1.

Problem 9 Let L(y) = (aD2 + bD + c)y be a linear ordinary differential
operator, and let B0 and Bπ be the boundary operators above. Without
solving the two-point boiundary-value problem, show that the set of solu-
tions to L)y) = 0, B0(y) = 0 and Bπ(y) = 0 forms a linear space — that is,
that superposition applies.
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First-Order Equations

In this chapter we study first-order equations; specifically, we examine
equations which involve a single unknown function u of two or more vari-
ables (x, y) or (x1, x2, . . . , xn) and its first derivatives. If we let x de-
note the vector variable and ∇u denote the vector gradient of u, ∇u =
(∂u/∂x1, . . . , ∂u/∂xn), then the notation for a first-order equation is

F (u,∇u,x) = 0. (2.1)

We often express the PDE as an equation in 2n + 1 variables by writing
p = (p1, p2, . . . , pn) to represent the gradient ∇u.

Example 11 The function F (u,p,x) = p2
1 + p2

2 − 1 gives the equation

(

∂u

∂x1

)2

+

(

∂u

∂x2

)2

= 1;

the function F (u,p,x) = x1p1 + . . . xupn + u corresponds to

x1
∂u

∂x1

+ . . .+ xn
∂u

∂xn
+ u = 0.

We shall see that there is a solution method which applies to all such equa-
tions, and which determines precisely which equations have solutions, and
when the solutions break down. This can sometimes lead to an explicit for-
mula for solutions, using techniques of ordinary differential equations. Even
when the equations cannot be solved explicitly, the theory of ordinary dif-
ferential equations, coupled with the implicit function theorem, tell us when
solutions exist (and so could be found by numerical or other approximation)
and what obstacles might be present to existence of solutions.

In having this feature, the ability of a single, overarching technique to
give a general solution of all equations of the form (2.1), whether linear

27
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or nonlinear and no matter how many independent variables they contain
or what sort of boundary or initial data is prescribed, first-order equations
differ from the typical situation of higher-order equations or systems of equa-
tions. (A student familiar with ordinary differential equations will recognize
that, at least for linear constant-coefficient equations, the passage from a
single first-order equation to a system of first-order equations is effected by
introducing linear algebra. No such unifying theory is available for partial
differential equations.) In this sense first-order equations are atypical, and
it might be considered misleading to begin the book with them. We start
here, however, for four reasons:

1. To give students some experience in manipulating functions of several
variables and their derivatives,

2. Because for at least some types of higher-order equations and systems,
knowledge of a related first-order equation is useful in constructing the
solution,

3. Nonlinear first-order equations can be solved by modifications of the
technique which applies to linear equations, and so first-order equa-
tions provide a case in which we can, by explicit examples, contrast
linear and nonlinear equations, and

4. There are interesting examples and applications, which we consider at
the end of this chapter.

The equation (2.1) is linear if the unknown u and its derivatives appear
only in linear combination with coefficients depending on x. Thus the form
of a linear first-order equation is

P (x, y)
∂u

∂x
+Q(x, y)

∂u

∂y
+ C(x, y)u = G(x, y)

in two independent variables, or

a1(x)
∂u

∂x1

+ a2(x)
∂u

∂x2

+ . . . an(x)
∂u

∂xn
+ b(x)u = f(x)

with n independent variables. A linear equation is called constant-coefficient
if the coefficients (P , Q, C or ai and b) multiplying the unknown function
and its derivatives are constants (that is, independent of x), and homoge-
neous if the unknown or one of its derivatives appears in every term (that
is, the terms G and f are absent).
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1. Linear First Order Equations

We begin with a special kind of linear equation: a homogeneous equation
in which the term b(x)u is missing. That is, the equation looks like

a1(x)
∂u

∂x1

+ a2(x)
∂u

∂x2

+ . . . an(x)
∂u

∂xn
= 0. (2.2)

We will solve this equation by generalizing Proposition 1 from the Intro-
duction. Recall that this Proposition states that if u(x, y) satisfies

P (x, y)ux +Q(x, y)uy = 0 (2.3)

then the curve u(x, y) = 0 is an integral curve of

ẋ = P (x, y), ẏ = Q(x, y).

In fact, because of the form of equation (2.3), if u is a solution then so is
u− c for any constant c, so the curve u(x, y) = c is also an integral curve of
the same vectorfield. For simplicity, suppose that the vectorfield V = (P,Q)
is defined for all (x, y) in the plane and is never zero. Then through every
point in the plane there is exactly one integral curve. Suppose the value of
u(x, y) is known at one point on such a curve, say at (x0, y0). Then, since
u is constant along the curve, the value of u is that same value everywhere
on the curve. Thus, for this equation, in order to determine a solution u at
every point (x, y) in the plane, it is necessary and sufficient to specify u at
exactly one point on each integral curve of V. In order to do this, we need
to know something about the vectorfield.

Example 12 Suppose P = P 0 and Q = Q0 are nonzero constants. Then
the integral curves are straight lines, which can be written parametrically
as

x = x0 + P 0t, y = y0 +Q0t.

Furthermore, we may choose for (x0, y0) a one-parameter family of points
such that one point is on each integral curve. This can be done in many
ways; since we assumed P 0 6= 0 and Q0 6= 0, we could take y0 = 0, −∞ <
x0 < ∞; or x0 = 0, −∞ < y0 < ∞; or we could take all the points on a
line through the origin perpendicular to V: that is, the set of all (x0, y0)
such that P 0x0 + Q0y0 = 0. In fact, we could take any curve of points
(x0(s), y0(s)) which is transverse to the vector field; the condition is that

(

dx0

ds
,
dy0

ds

)
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must not be parallel to (P 0, Q0). This can also be written

P 0(y0)′(s)−Q0(x0)′(s) 6= 0. (2.4)

Along this curve, we can assign values of u in any way we wish, say u = u0(s)
at the point (x0(s), y0(s)). Then the solution of the problem is

u(x0(s) + P 0t, y0(s) +Q0t) = u0(s).

This is not completely satisfactory; what we would like to know is u(x, y);
how do we find the value of s which corresponds to a given point (x, y)? We
need to solve the system

x = x0(s) + P 0t, y = y0(s) +Q0t (2.5)

for s and t. Note that the Jacobian of this system,

∂(x, y)

∂(s, t)
= det

(

(x0)′(s) P 0

(y0)′(s) Q0

)

6= 0

for all s and t by the transversality condition. By the inverse function
theorem, this is enough to imply that we can always find s and t for a given
x and y in a sufficiently small set. However, in the case that P 0 and Q0 are
constant, as we are assuming in this example, we can find the set. We do
this by solving explicitly for t (since equations (2.5) are linear in t):

t =
x− x0(s)

P 0
=
y − y0(s)

Q0

and then writing a single equation involving s:

P 0y0(s)−Q0x0(s) = P 0y −Q0x. (2.6)

The left side of this equation is a function of s, g(s), say; by the relation
(2.4), it is a monotonic function, since g′(s) = P 0(y0)′(s)−Q0(x0)′(s) 6= 0,
and hence it has an inverse, so s is uniquely determined for each (x, y)
such that P 0y − Q0x is in the range of g; and hence u0(s) is also uniquely
determined for each (x, y) in this set. Thus we have proved that for the case
P and Q constant, the PDE has a unique solution; in fact we can write it
as u(x, y) = u0(g−1(P 0y −Q0x)) where g−1 is the inverse of g. The details
of g−1 depend on how we selected the curve (x0(s), y0(s)). For example, it
is reasonable to select the curve so that it crosses every integral curve of
the vector field. We can also say something quite general: every solution of
this constant-coefficient problem is of the form u = f(P 0y −Q0x) for some
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function f of a single variable; and every function of this form is a solution
of P 0ux + Q0uy = 0. Thus we are justified in calling u = f(P 0y − Q0x)
the general solution. We also note that the general solution of this equation
in two independent variables is given by an arbitrary function of a single
variable.

Problem 10 Find the solution of

5ux + 3uy = 0

which takes the value u = s2 on the curve

x0(s) = s, y0(s) =
1

s
, 0 < s <∞.

For what values of x and y is the solution defined?

Example 12 can be generalized to a constant-coefficient equation in any
number of variables, of the form

P1
∂u

∂x1

+ . . .+ Pn
∂u

∂x1

= 0, (2.7)

where P = (P1, . . . , Pn) is constant.

Problem 11 Consider the equation (2.7) above, and assume that Pn 6= 0.
Show that the integral curves of the vectorfield V = P are the straight lines

xi = Pit+ x0
i , i = 1, . . . , n (2.8)

and that the plane in Rn given by x0
n = 0 is an (n − 1)-parameter surface,

parameterized by x0
1, . . . , x

0
n−1, transversal to the integral curves. (That is,

show that the Jacobian determinant

∂(x1, . . . , xn)

∂(x0
1, . . . , x

0
n−1, t)

is nonzero.) Noting that with x0
n = 0 in (2.8) one can easily solve for

t = xn/Pn and thence invert the mapping (x0
1, . . . , x

0
n−1, t) 7→ (x1, . . . , xn)

explicitly, show that any solution of (2.7) can be written in the form

u(x) = u0

(

x1 −
P1

Pn
xn, . . . , xn−1 −

Pn−1

Pn
xn

)

for an arbitrary function u0 of n− 1 variables.
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Problem 12 Carry out the construction in Problem 11 for the equation

ux + 2uy − uz = 0,

assuming arbitrary data given on the x,y-plane:

u(x, y, 0) = u0(x, y).

When the vectorfield is not constant, its integral curves may not fill the
plane smoothly, even when it is linear. Typically, the condition V 6= 0 does
not hold in the entire plane.

Example 13 Returning to n = 2, if P and Q are linear or affine functions
of x and y, the equations ẋ = P , ẏ = Q can be written as a linear system

(

ẋ
ẏ

)

=

(

a11 a12

a21 a22

)(

x
y

)

+

(

b1

b2

)

(or ẋ = Ax + b). The solutions of this equation have different qualitative
behavior depending on the matrix A; if A is invertible, then there is an
equilibrium at x = −A−1b, which may be a saddle, sink, source, or center,
and the integral curves behave in one of a number of ways which are classified
in the study of ODE. If A is not invertible there may be a number of
equilibria, or none.

Example 14 We looked at the vectorfield V = (−y, x) in Examples 5 and
7 of Chapter 1. The integral curves are circles centered at the origin; the
origin itself is an equilibrium of the system ẋ = V. There are no integral
curves through the origin in this case. Furthermore, every other integral
curve is a closed curve. Writing the general solution as

x(t) = A cos t+B sin t, y(t) = A sin t−B cos t,

we see that choosing a curve transversal to the vector field corresponds to
choosing a one-parameter family A(s), B(s). Some notation is necessary
to convey the information that the solution depends both on t and on the
choice of curve. For example, suppose that at t = 0 we get the positive
x-axis, by letting A = s, B = 0, where s ranges through the open interval
(0,∞). We then write x0(s) = (A(s),−B(s)) = (s, 0) to indicate the data
curve. Then the solution to the vectorfield becomes

x(t, s) = x(t; x0(s)) = s cos t, y(t, s) = y(t; x0(s)) = s sin t. (2.9)
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Problem 13 In Example 14, what does equation (2.9) become if the curve
is chosen to be the positive y-axis and the parameterization is y = es in-
stead?

When we try to solve the PDE, in this variable-coefficient case, we find two
difficulties. The first is that finding the integral curves of V is more difficult,
and so is establishing transversality. The second is that manipulating the
implicitly given solution to eliminate the parameters is also harder. The
next theorem, which uses the inverse function theorem again, shows that in
principle this can always be done, but possibly not in the entire x,y-plane.

Theorem 4 Suppose that P and Q are C1 functions of x and y in a con-
nected open set D in the x, y-plane, and that they do not simultaneously
vanish there. Then the equation

P (x, y)ux +Q(x, y)uy = 0

has a C1 solution u(x, y) in D. Furthermore, we can find a solution that
takes a given value u0(s) on a given curve (x0(s), y0(s)) which is a C1 func-
tion of s and is transverse (not tangent) to V at every point. The solution
with this data is unique on a subset of D.

Proof By hypothesis, the vectorfield V = (P,Q) 6= 0 in D, and hence
the integral curves of ẋ = P , ẏ = Q form a set of C1 curves which fill
the region D: through each point in D there is a unique curve; no two
curves intersect, and each curve can be continued until it leaves D (or tends
to infinity, if D is unbounded in some directions). As in the example,
denote by x(t; x0), y(t; x0) the integral curve through x0 = (x0, y0). Now
let x0(s) = (x0(s), y0(s)), be the data curve. The transversality condition,
corresponding to (2.4), is P (y0)′(s)−Q(x0)′(s) 6= 0 where P andQ, functions
of x and y, are now evaluated at points on the curve. This can be written

det

(

P (x0(s), y0(s)) Q(x0(s), y0(s))
(x0)′(s) (y0)′(s)

)

6= 0.

We let u take the value u0(s) at the point (x0(s), y0(s)); then u = u0 at
every point on the integral curve x(t; x0), y(t; x0) through (x0(s), y0(s)).
We can write this as

u(x(t; x0(s)), y(t; x0(s))) = u0(s).

Once again, as in the example, we have a formula which gives a solution,
but it is expressed in terms of parameters s and t instead of directly as a
function of x and y. We have a mapping (t, s) 7→ (x, y) given by the formula

(x, y) = (x(t; x0(s)), y(t; x0(s))).
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By the inverse function theorem, the condition for inverting this mapping
is that the Jacobian ∂(x, y)/∂(t, s) be nonzero. Now, ∂x/∂t = (P,Q);
however, the derivatives of x with respect to s are complicated functions.
As these are derivatives of the solution of a differential equation with respect
to the initial data, their existence is affirmed by the continuous dependence
theorem for ODE. However, the only place where it is straightforward to
calculate them is at t = 0: since

x(0, s) = x(0; x0(s)) = x0(s),

we can write the Jacobian at (0, s) as

∂(x, y)

∂(t, s)
(0, s) = det

(

P (x0(s), y0(s)) Q(x0(s), y0(s))
(x0)′(s) (y0)′(s)

)

and by construction this is nonzero. Since we assumed that P , Q and x0

were continuously differentiable functions, this expression is continuous, and
so it is nonzero in an open set containing the curve x0. Now the inverse
function theorem says that we can find (t, s) for each (x, y) in some (possibly
smaller) set. This is good enough: by construction, we now have a unique
solution in a neighborhood of the data curve x0. But we can now choose
any other C1 curve which is transverse to V in this neighborhood. Since
the solution u is known there, we can take this as data, and apply the
construction again to get a unique solution in a neighborhood of this curve.
In fact, beginning with the original data curve x0(s), we can construct the
solution this way all along the integral curve through x0(s), for each s, until
the curve leaves the domain D (or all the way out to infinity, if it remains
in D). The solution so found is unique in the entire region comprising the
collection of integral curves through x0(s) until they leave D. If there are
parts of D that are not covered by the curves through x0(s), or if the curves
exit from D and re-enter it, then this construction will not find the solution
everywhere in D, but only in a subset of D. However, the solution can
always be continued (albeit not uniquely) to the rest of D. For if there is
a part of D which is not included in the region, R, say, swept out by the
integral curves coming from points in x0(s), then the boundary between
that part and R consists of an integral curve. Then we can take any curve
transverse to V that crosses the boundary, and extend the solution defined
along it in R in any smooth way as a function u(s) to the part of D where
it has not been defined yet. Now perform the construction again using this
curve as a base curve. Finally, we note that if we were not given a data
curve in the first place, we could begin with any smooth curve transverse
to V, and so we have proved the first part of the theorem as well.
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D

R
x0

V

Figure 2.1: An Illustration of the Theorem

In Figure 2.1, we sketch a typical example: in this case the integral curves
are circles, D is a simply connected domain not containing the origin, and
x0(s) a curve transverse to the integral curves. It can be seen that there
are several parts of D in which the solution is not uniquely defined by data
given on x0(s). We may add a comment on the hypotheses of this theorem.
It is clear that difficulties will arise if V has zeros, for the integral curves
through such points will not be well defined. Furthermore, smoothness of
x0(s) is required in order for us to calculate whether the curve is transverse
to the vectorfield. The smoothness of P and Q is not needed for this,
but is needed in order to apply the fundamental existence and continuous
dependence theorems of ordinary differential equations. For this, we could
get away with a slightly weaker condition: in fact we need only that P and
Q be Lipschitz continuous. The condition we gave is simpler. (We shall
often state results with simple, rather than optimal, hypotheses.)

Now, this procedure for solving equations of the special form (2.2) works
in any number of dimensions. For practice in the use of subscripts, we
will describe the general method; then we will do some examples in three
dimensions.

Theorem 5 Suppose that a1, . . . , an are C1 functions of x in a connected
open set D in Rn, and that V = (a1, . . . , an) 6= 0 there. Then the equation
(2.2) has a C1 solution u(x, y) in D. Furthermore, we can find a solution
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that takes a given value u0(s) on a given C1 surface x0(s) parameterized by
s ∈ Rn−1 where u0(s) is a C1 function of s and the surface is transverse to
V at every point. The solution with this data is unique on a subset of D.

Note the dimensions of all the sets involved: a surface in an n-dimensional
space can be written parametrically in terms of n− 1 parameters. One fact
that was apparent in the simple Example 12 but may have been obscured
in the statements of Theorems 4 and 5 is that the general solution of the
equation is a function of n − 1 variables. That is exactly the role of the
function u0(s). Notice that this is an exact generalization of the case of a
first-order ODE: the number of independent variables is one, in this case,
and the general solution contains an arbitrary function of zero variables —
that is to say, a constant. The reader may want to guess at this point that
the solution of a second-order PDE in n variables will involve two arbitrary
functions of n − 1 variables. However, as we shall see, this is true only
for a very limited set of equations: when we begin to look at second-order
equations, we shall find that they are much less like ODE than are first-order
equations.

Theorem 5 is proved in exactly the same way as Theorem 4: we first
construct a function of t and s by finding the integral curve through x0(s),
which we call x(t; x0(s)); then, since u is constant along that curve, we have

u(t, s) = u0(x(t; x0(s))).

Next we find out when we can invert the mapping (t, s) 7→ x(t; x0(s). Again,
this depends on the Jacobian of the mapping, and this can be calculated at
any point on the surface x0(s), and is

∂x

∂(t, s)
(0, s) = det

(

V(x0(s)
∂x0

∂s

)

.

Now, the point is that the transversality condition implies that this deter-
minant is nonzero. The argument is that a row of ∂x0/∂s, say the i-th
row, is ∂x0/∂si is a tangent vector to the surface. The condition that the
vectorfield be transverse to the surface is exactly a statement that V is not
tangent to the surface and hence not a linear combination of the tangent
vectors ∂x0/∂si. (The condition that x0(s) is a surface also implies that
there are n− 1 linearly independent tangent vectors at each point.)

Example 15 We do an example in R3. For the equation

xux + yuy + uz = 0,
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the vectorfield V = (x, y, 1) is never zero, so we may take D = R3. Inte-
grating the vectorfield equations

ẋ = x

ẏ = y

ż = 1,

introducing a parameter, t, say, and constants of integration, we get

x = c1e
t

y = c2e
t

z = c3 + t,

or (x, y, z) = (c1e
t, c2e

t, c3 + t). Now we want to give data u0 on a surface
which is transverse to (x, y, 1). Conveniently, the x, y-plane has this prop-
erty, and it is conveniently parameterized by x = c1, y = c2, z = 0. That is,
working in dimension 3, we have a two-parameter family representing the
surface. Now we may suppose u has a given value, say u = u0(c1, c2) at
every point in the x, y-plane, and so we have the solution expressed para-
metrically as u(x, y, z) = u0(c1, c2) where (x, y, z) = (c1e

t, c2e
t, t) since this

is the solution of ẋ = V with the initial data (c1, c2, 0). The Jacobian of
the mapping is

∂(x, y, z)

∂(t, c1, c2)
= det





c1e
t et 0

c2e
t 0 et

1 0 0



 = e2t.

In this example, we can calculate the Jacobian at every point, not merely
at points on the surface x0. In fact, we can invert the mapping explicitly:

t = z, c1 = xe−z, c2 = ye−z,

and so we can see directly that the inverse is defined for every point in R3.
Now we can write the solution explicitly as well:

u(x, y, z) = u0(xe−z, ye−z),

and this formula substantiates the claim made earlier that the general so-
lution is given by a function of two variables.

We introduce some terminology.

Definition 1 In a first-order linear equation of the form a(x)·∇u = 0, the
integral curves of the vectorfield equation ẋ = a(x) are called bicharacteristic
curves or characteristics.
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Figure 2.2: The Bicharacteristic Curves in Example 15

The procedure we have developed for solving first-order equations of this
form is called the method of characteristics. In Example 15, the bicharac-
teristic curves are the curves (x, y, z) = (c1e

t, c2e
t, c3 + t), parameterized by

t, or the curves given by x = Aez, y = Bez. These are sketched in Figure
2.2. Notice that in this example each bicharacteristic curve lies in a plane
x/y = A/B.

Example 16 This example will appear in the next section on quasilinear
equations. The equation zux + uy = 0 is an example of a linear equation
in three independent variables, (x, y, z) in which one variable, z appears
only as a parameter in the equation. The method of characteristics can be
applied to this equation. The vectorfield is V = (z, 1, 0) and the equations
for the bicharacteristic curves are

ẋ = z

ẏ = 1

ż = 0;

we solve by integrating, beginning with the last equation, whose solution
is z = z0. Choose y0 = 0 to make the data curve the x-z-plane. This is a
logical choice since the x-z-plane is transverse to the vectorfield V. Then
y = t and x = z0t+ x0, so the bicharacteristic curves are (x(t), y(t), z(t)) =
(z0t + x0, t, z0). Furthermore the mapping (t, x0, z0) 7→ (x, y, z) has an
inverse defined for all points in R3: t = y, x0 = x − yz, and z0 = z. Thus
the general solution is

u(x, y, z) = u0(x0, z0) = u0(x− yz, z)

where u0 is an arbitrary function of two variables.
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Problem 14 Show that the bicharacteristic curves of of zux +uy +uz = 0
are the curves (x, y, z) = (x0 + z0t + t2/2, t, t + z0) and that the general
solution is a function of the two variables x− yz + y2/2 and y − z.

We now greatly expand the range of equations which can be solved
using the method of characteristics by noting that the equation reduces to
an ODE along each bicharacteristic curve. The method we are about to
describe applies to any equation of the form

a(x) · ∇u = g(x, u). (2.10)

If g depends on x only, or is of the form −b(x)u + f(x), then the equa-
tion is linear (homogeneous or nonhomogeneous), of the form given at the
beginning of this chapter. The method applies more generally, though we
shall see a difference between linear and nonlinear equations in the form
and properties of their solutions. Here is the idea. Take a solution u(x) to
(2.10), and differentiate u along a single bicharacteristic curve, x(t), with
respect to t. To emphasize that we are restricting to a single curve, along
which all variables depend on t only, we shall write u(t) for u(x(t)), and
evaluate the (ordinary) derivative of u along the curve, using the chain rule
and the equation ẋ = a(x) for the characteristics:

du

dt
= u̇(t) =

d

dt
u(x1(t), x2(t), . . . , xn(t)) = ux1ẋ1 + ux2ẋ2 + . . .+ uxnẋn

= ux1a1(x(t)) + ux2a2(x(t)) + . . .+ uxnan(x(t)) = a · ∇u = g(x(t), u(t));

in short, since x is a known function of t along the curve, we have an
ODE of the form u̇ = G(t, u) along the curve. This equation is linear in
u if g is linear, and if g is independent of u it reduces to an integration
in t. Whatever the form of g, the theory of ordinary differential equations
gives existence of a unique solution which takes a given value u0(s) on a
data surface transverse to the bicharacteristic curves as in Theorem 5. This
gives an extension of Theorem 5.

Theorem 6 Suppose that a1, . . . , an are C1 functions of x in a connected
open set D in Rn, and that V = (a1, . . . , an) 6= 0 there. Suppose also that
g is a C1 function of x and u for x ∈ D and for u in an interval I ∈ R.
Then the equation (2.10) has a C1 solution u(x, y) ∈ I in a neighborhood of
any point x in D. We can find a solution that takes a given value u0(s) ∈ I
on a given C1 surface Γ = {x0(s)} parameterized by s ∈ Rn−1 where u0(s)
is a C1 function of s and the surface is transverse to V at every point. The
solution with this data exists and is unique on a neighborhood of Γ in D.
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Notice that we assert only local existence; this is because we have allowed
the function g to be nonlinear, and existence theory for nonlinear ODE
is only local. If g is a linear or affine function of u, then again we get a
conclusion similar to Theorem 5.

Corollary 1 If in (2.10) g has the form −b(x)u+ f(x), then there exists
a solution which is C1 in D and takes the value u0(s) on a given C1 surface
Γ transverse to V at every point.

We illustrate with several examples before giving the proof.

Example 17 An equation of the form cux+uy = g is a transport equation
with a source term g; we suppose now that y represents the time variable
and x a space variable. When u is the density of the substance being
transported down a pipe, then g may depend on space and time if the
substance is being injected (or removed) at places along the pipe at some
given, possibly variable, rates; g will depend on u if the rate of injection or
removal at a point in space and time depends also on the amount u of the
substance present at that point. Suppose for example that the equation is
2ux + uy = x, in which a nonhomogeneous source is applied to the original
transport equation. The vectorfield is constant; the bicharacteristic curves,
parameterized by t, are (x(t), y(t)) = (x0 + 2t, t). Here we have chosen the
data curve to be y = 0, and y coincides with the parameter t. We write u(t)
for u(x(t), y(t)) = u(x0 + 2t, t), noting that u also depends on x0, a fact not
reflected in the notation. Along a characteristic, the equation for u(t) is

u̇ = x = x0 + 2t

and we find u by integration. If we compute the definite integral, then

u(t)− u(0) = x0t+ t2. (2.11)

Now u(0) means u(x0, 0), and we suppose as usual that we are given a
function u0(x0) on the data curve y = 0 (initial data in this case). Writing
the solution as u(x(t), y(t)) = u(t) we have

u(x(t), y(t)) = u(x0 + 2t, t) = u0(x0) + x0t+ t2,

from (2.11) and we complete the problem by inverting the mapping (t, x0) 7→
(x, y) = (x0 + 2t, t). Thus, t = y and x0 = x− 2y, so

u(x, y) = u0(x− 2y) + (x− 2y)y + y2 = u0(x− 2y) + (x+ y)y.

It can be checked that this is a solution of the equation. The solution is a
superposition of u0(x− 2y), the solution of the homogeneous equation with
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data u(x, 0) = u0(x), and a particular solution, (x + y)y, to the nonhomo-
geneous equation, which is zero at y = 0. This solution is clearly defined
for all x and y.

Now look at 2ux + uy = u2, which is not linear. Using the method of
characteristics, the ODE for u is now

u̇ = u2,

a ‘separable’ first-order equation, which can be written as

1

u2

du

dt
= 1,

and integrated:
∫ t

0

1

u2

du

dt
dt =

∫ u(t)

u(0)

1

u2
du = t.

So

− 1

u(t)
+

1

u(0)
= t; (2.12)

letting u(0) = u(x(0), y(0)) = u(x0, 0) = u0(x0) be the given data at y = 0
and solving (2.12) for u(t), we have

u(t) = u(x, y) =
u0(x0)

1− tu0(x0)
=

u0(x− 2y)

1− yu0(x− 2y)
, (2.13)

where we have again solved for x0 and t in terms of x and y. Again, we
have a solution, as can be checked, and the solution is unique because every
step is reversible (no additional assumptions were made). However, unlike
the choice of g = x in this example, this solution may not be defined for all
x and y. If yu0(x−2y) = 1 for any values of x and y, then the denominator
of (2.13) becomes zero and since the numerator cannot be zero at the same
point, the function u(x, y) is undefined there. To be precise, if there is
any value x0 at which u0(x0) is nonzero, then we have yu0(x− 2y) = 1 for
y = 1/u0(x0) and x = 2y + x0. In fact, typically there is a curve of such
points. By way of illustration, take u0(x0) = e−x

0
, so the solution is

u(x, y) =
e2y−x

1− ye2y−x ,

which becomes undefined on the curve x = 2y + log y for y > 0. This
is illustrated in Figure 2.3. Note that while the function u(x, y) may be
defined on the other side of the data curve, Γ, from the singular curve, and
will still satisfy the PDE, it is no longer a C1 solution to the problem with
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Figure 2.3: The Domain of Existence for a Nonlinear Equation

data given on Γ. Also note the difference in structure of the solution in
the linear as distinct from the nonlinear problem: in the nonlinear problem
we have just solved, one can see from the form of (2.13) that superposition
does not hold.

Problem 15 Show that the principle of superposition fails for the problem
2ux+uy = u2; that is, show that if u and v are solutions with data u(x, 0) =
u0(x) and v(x, 0) = v0(x) respectively, then u+v is not generally a solution.

Problem 16 Show that if u1 and u2 are solutions of 2ux + uy = g with
g = g1(x, y) and g = g2(x, y) respectively, then u1 + u2 is a solution of
2ux + uy = g1 + g2. Use this to solve 2ux + uy = x+ y2.

Problem 17 For what values of x and y is the solution to 2ux + uy = u2

with u(x, 0) = 1 defined? What is the solution to 2ux + uy = u2 with
u(x, 0) = x, and for what (x, y) is it defined? (Consider both positive and
negative values of y.)

Example 18 Here is a linear equation, but one with variable coefficients:

−yux + uy = u.

We studied the vectorfield V = (−y, x) in Example 14, and found that the
characteristics through (s, 0) for s > 0 are (x, y) = (s cos t, s sin t). Along a
characteristic, the ODE for u is

u̇ = u,



43

and its solution is u(t) = u(0)et, from which we deduce that

u(x, y) = u0(s)et,

where (s, t) are polar coordinates for (x, y); thus s =
√

x2 + y2 and t =

cos−1(x/
√

x2 + y2) when y ≥ 0 and t = 2π − cos−1(x/
√

x2 + y2) when y <
0. With this determination of t the solution is discontinuous as (x, y) tends
to the positive x-axis from below; a different choice for t is possible, but there
is necessarily a discontinuity somewhere along each circular characteristic.
Note that in this example, superposition does hold.

Problem 18 Show that the characteristics of

xux + yuy = g(x, y, u) (2.14)

are radial lines through the origin, and use the method of characteristics to
solve (2.14) with g = −u and data u = u0(x0) given on the curve (x, y) =
(x0, 1). Verify that the function you have found solves the equation. Where
is the solution defined?

We now prove Theorem 6 and its Corollary.

Proof From the proof of Theorem 5, we can construct the bicharacteristic
curve x(t; x0(s)) through each point x0 of the data surface Γ. This curve is
defined for t in an open interval, and thus the curves fill out a neighborhood
of Γ. On each curve, parameterize u as u(t) = u(x(t; x0)); u satisfies

u̇ = g
(

x(t; x0), u(t)
)

= g(t, u).

Since g is a C1 function of u, this equation, with the initial data u(0) =
u0(x0), has a unique solution in an interval a < t < b, where the endpoints
depend on the value of u0(x0) and the size of the interval I where g is a
smooth function of u. The size of the interval (a, b) depends also on the
interval of t for which x(t) remains in D, since otherwise x and hence g may
not be defined. However, for each s and hence for each value of x0, a unique
solution u(t) exists on an open interval in t on which the map (t, s) 7→ x
can be inverted to give t = t(x) and thus the unique solution u(x) has been
found.

Finally, to prove the Corollary we note that if g is a linear function of
u then the solution of the ODE u̇ = g exists for all t and so u can be found
on the entire length of each characteristic exactly as in Theorem 5.
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Example 19 Here is an example based on Example 15, in R3. Consider

xux + yuy + uz =
xy2

u
,

with data u(x, y, 0) = u0(x, y) on the x-y-plane. We found the characteris-
tics in Example 15 to be (x(t), y(t), z(t)) = (c1e

t, c2e
t, t) and so the equation

for u is
du

dt
=
c1e

t(c2e
t)2

u
,

or

u
du

dt
= c1c

2
2e

3t,

which gives the solution

1

2
u2(t)− 1

2
u2(0) =

1

3
c1c

2
2(e3t − 1).

Now solving for t = z, c1 = xe−z and c2 = ye−z, and recalling that u(0) =
u(c1, c2, 0) = u0(c1, c2), we get

1

2

(

u(x, y, z)
)2

=
1

2

(

u0(xe−z, ye−z)
)2

+
xy2

3

(

1− e−3z
)

,

which we can easily solve for u by multiplying the equation by 2 and taking
the square root, noting that we must take the positive or negative square
root according as u0 was positive or negative, in order to get a solution
which is equal to the initial data at z = 0. Thus

u(x, y, z) = ±
√

(

u0(xe−z, ye−z)
)2

+
2

3
xy2(1− e−3z),

where the correct choice of sign is determined as above. The nonlinearity
of the equation has apparent consequences: This solution exists only for
values of x, y and z for which the quantity under the square root remains
positive. In addition, the principle of superposition clearly does not hold.

Problem 19 Find the solution of ux + 2uy − uz + u = x2 with data
u(x, y, 0) = u0(x, y). For what values of (x, y, z) is the solution defined?
Where is it unique?

Problem 20 Answer the same questions as in Problem 19 for ux + 2uy −
uz + u2 = 0.

Problem 21 Find the solution to 2ux+uy = x which takes the value u = 1
on the line x+ y = 1.
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Problem 22 Solve 2ux + uy = x with the side condition u(x, x) = x.

Problem 23 Show that the solution to 2ux + uy = x with u(2y, y) = y2

is not unique, and that there is no solution to the equation which satisfies
u(2y, y) = y.

2. Quasilinear First-Order Equations

In the previous section, we showed how to solve any linear first-order equa-
tion of the form

a1(x)
∂u

∂x1

+ a2(x)
∂u

∂x2

+ . . . an(x)
∂u

∂xn
+ b(x)u = f(x).

In fact, we did a little more: we solved equations of the form

a1(x)
∂u

∂x1

+ a2(x)
∂u

∂x2

+ . . . an(x)
∂u

∂xn
= g(x, u), (2.15)

using the method of characteristics. An equation like (2.15) is called semi-
linear ; this terminology reflects the property, which we have observed, that
although the equation is not linear and superposition does not hold, the
fact that the coefficients of the highest-order part of the equation do not
depend on u means that characteristics are defined and the method of char-
acteristics can easily be adapted to solve the equation.

In this section, we move further in classifying nonlinear first-order PDE
according to the kind of nonlinearity they exhibit by defining quasilinear
first-order equations.

Definition 2 A first-order equation is called quasilinear if it is of the form

a1(x, u)
∂u

∂x1

+ a2(x, u)
∂u

∂x2

+ . . . an(x, u)
∂u

∂xn
= g(x, u). (2.16)

In a quasilinear equation, the partial derivatives of u, the components of
∇u, appear in linear combination, but the coefficients may depend on u as
well as on the independent variable x.

Example 20 The most famous example is the Hopf, or inviscid Burgers’,
equation ut + uux = 0. We will study this, along with similar equations of
the form ut + a(u)ux = 0, which are used, for different functions a(u), to
model traffic flow. On the other hand, the equation

u2
x + u2

y = 1,

which governs the propagation of light rays, is fully nonlinear . We will
study fully nonlinear equations in the next section.
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The following proposition shows that solutions to quasilinear equations can
be obtained from solutions to linear equations.

Proposition 2 Given equation (2.16), define the linear equation

a1(x, z)
∂w

∂x1

+ a2(x, z)
∂w

∂x2

+ . . . an(x, z)
∂w

∂xn
+ g(x, z)

∂w

∂z
= 0. (2.17)

If w(x, z) is any solution to (2.17) with wz 6= 0, then the function z = z(x)
obtained by solving w(x, z) = 0 for z is a solution to (2.16).

Example 21 The linear equation corresponding to uux + uy = 1 is zwx +
wy + wz = 0. The method of characteristics for zwx + wy + wz = 0 gives
(see Problem 14)

w(x, y, z) = w0(x− yz + y2/2, z − y).

Now, according to Proposition 2, a solution to uux +uy = 1 is given implic-
itly by the equation

w0
(

x− yu(x, y) + y2/2, u(x, y)− y
)

= 0, (2.18)

which can be solved for u as long as −yw0
1 +w0

2 6= 0, where the subscripts 1
and 2 indicate partial derivatives of w0 with respect to its first and second
arguments. Suppose that we want a solution of uux + uy = 1 which takes
the value u(x, 0) = u0(x) (thinking of y as a time variable). Then, setting
y = 0 in (2.18), we want w0 to satisfy

w0(x, u0(x)) = 0,

so an appropriate choice for w0 is w0(a, b) = u0(a) − b. In that case the
solution (2.18) becomes

u0(x− yu(x, y) + y2/2)− (u(x, y)− y) = 0,

and this defines u(x, y) implicitly as long as −y(u0)′−1 6= 0. This condition
always holds at y = 0 and for y sufficiently close to zero, but fails when
y = −1/(u0)′.

Problem 24 The linear equation corresponding to uux + uy = 0 is zwx +
wy = 0; this is an equation for w(x, y, z) in which z appears as a parameter.
It was solved in Example 16. Using that solution, w(x, y, z) = w0(x−yz, z),
find a formula which gives implicitly the solution u(x, y) to uux + uy = 0,
with u(x, 0) = u0(x). Show that the solution breaks down for the same
values of y as in Example 21.
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The proof of Proposition 2 is a straightforward calculation.
Proof Given a solution w(x, z) of (2.17), then the condition wz 6= 0 means
we can solve w(x, z) = 0 for z = u(x), say. We need to show that u
satisfies (2.16), and for that, we compute the partial derivatives of u by
differentiating the equation

w(x, u(x)) = 0

with respect to each xi in turn. Denoting ∂f/∂xi by fi, we obtain

wi + wzui = 0

and hence
∂u

∂xi
= −wi

wz
, (2.19)

for i = 1, . . . , n. Now, always assuming wz 6= 0, simply divide every term
in (2.17) by wz, note from (2.19) that the ratios wi/wz are the partial
derivatives of u (with a sign change), and note that z = u in (2.17), to
conclude that the equation becomes (2.16), and so u, found from solving
w(x, z) = 0 for z = u(x) is a solution of (2.16). Furthermore, as in Example
21, we may seek a solution with data u = u0(s) on the surface x0(s) by
choosing w(x, z) = w0

(

x0(s), u0(s)
)

.

Problem 25 Show that two solutions of

xux + yuy + z2uz = 0

are u1 = x/y and u2 = 1/z+log x, and use them to find the general solution
of

xwx + ywy = w2.

Find also the solution w satisfying w(1, y) = y2.

Problem 26 Use Proposition 2 and the solution of Example 15 to find the
solution of

xwx + ywy = 1

which is zero on the line x+ y = 1. Where is the solution defined? Justify
your answer by reference to the characteristics.

Problem 27 What is the linear equation of the form (2.17) which corre-
sponds to the quasilinear equation u2ux + uy = 0? Find its characteristics,
and find, in implicit form, the solution with data u(x, 0) = u0(x).
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A significant difficulty with quasilinear equations, as indicated already
in Example 21, is that solving the equation which gives u(x) implicitly
may not be possible. Using Proposition 2, we see that we can set up the
method of characteristics for a quaslinear equation (2.16) without actually
writing down the corresponding linear equation (2.17). For, given (2.16),
the equations for the bicharacteristic curves in (2.17) are

ẋ1 = a1(x, u)
ẋ2 = a2(x, u)

...
ẋn = an(x, u)
u̇ = g(x, u).

(2.20)

Example 22 For the Hopf equation, uux + uy = 0, we have

ẋ = u
ẏ = 1
u̇ = 0.

Comparing the system (2.20) to the vectorfield equations ẋ = V(x) for
a linear equation, we see that a significant difference is that the integral
curves of (2.20) depend on the dependent variable u as well as on the inde-
pendent variables x. We extend the definition of bicharcteristic curves to
the quasilinear case.

Definition 3 The integral curves of the system (2.20) are called the bichar-
acteristic curves of the quasilinear system (2.16). A surface x ∈ Γ ⊂
Rn is called noncharacteristic for data u0(x) if the vectorfield V(x, u0) =
(a1(x, u0), a2(x, u0), . . . , an(x, u0) is transversal to Γ.

Problem 28 Find the bicharacteristic curves of the equation euux+uy = 0.
Show that both the x-axis and the y-axis are noncharacteristic.

Unlike linear or semilinear equations, data surfaces for quasilinear equations
may or may not be characteristic depending on the data assigned there.

Example 23 We looked at the equation uux + uy = 1, for which V =
(u, 1), in Example 21. The x-axis is always noncharacteristic, since if Γ =
{(x, 0)} then the vector (1, 0) is tangent to Γ and this is never parallel to V.
However, if we give data on the y-axis, then Γ = {(0, y)} has tangent (0, 1)
and this is characteristic at any point (0, y) where the data u(0, y) = u0(y)
is zero. Indeed, if we try to solve this equation with the data u(0, y) = y,
say, then we find, integrating

ẋ = u, ẏ = 1, u̇ = 1,
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with respect to t, with the initial conditions

x(0) = 0, y(0) = y0, u(0) = y0,

that
x = y0t+ t2/2, y = y0 + t, u = y0 + t.

Now it is clear by inspection that u(x, y) = y for all points (x, y) which
lie on any characteristic through Γ. However, trying to invert the mapping
(t, y0) 7→ (x, y) = (y0t + t2/2, y0 + t) results in t = y ±

√

y2 − 2x and

y0 = ∓
√

y2 − 2x, and this is defined only if x ≤ y2/2. (The + sign in the
expression for t corresponds to y < 0 and the negative sign is for y > 0;
the signs are reversed in the expression for y0.) In fact, all one can say
about the solution of this problem is that u(x, y) = y outside the parabola
x = y2/2. It is of course the case that u(x, y) = y is a solution for all x and
y but so for example is the function

u(x, y) =

{

y, x ≤ y2/2
α(x+ y + y2/2)/(1 + y) + (1− α)y, x > y2/2

for every α. This function has the correct values on the y-axis and is contin-
uous everywhere. Thus the failure of the data curve to be noncharacteristic
at even a single point can have enormous consequences.

Problem 29 Suppose that the initial data in the preceding example are
such that u(0, y) 6= 0; take u(0, y) = 1 for concreteness. Show that a unique
solution is now defined for all x > 0; show, however, that the solution found
by the method of characteristics does not exist for x < −1/2.

Problem 30 Use the method of characteristics to find the an implicit for-
mula for the solution to uux + uy = 0 which takes the value u(0, y) = ey.
Show that this solution is defined in a neighborhood of x = 0. Is it defined
for all (x, y)?

Problem 31 What are the characteristics of the equation uux+u2uy = 1?
Show that neither the x not the y axis is noncharacteristic for all data. Are
there any lines y = ax+ b which are noncharacteristic for all choices of data
u?


