Bounded and Divergent Orbits and Expanding Curves on Homogeneous Spaces

Osama Khalil

The Ohio State University

Maryland Dynamics Workshop

April 2018
The main objects

- G is a connected Lie group with Lie algebra \mathfrak{g}.
- g_t is Ad-diagonalizable over \mathbb{R}:

 $$\mathfrak{g} = \bigoplus \mathfrak{g}_\alpha, \quad \mathfrak{g}_\alpha = \left\{ X \in \mathfrak{g} : g_tXg_{-t} = e^{\alpha(t)}X \right\}$$

- $u(Y) = \exp(Y)$ for $Y \in \mathfrak{g}$.
- X a topological space and $G \curvearrowright X$.

Osama Khalil (Ohio State) Contraction & Recurrence April 2018 2 / 32
A map \(\varphi : [0, 1] \rightarrow g \) is \(g_t \)-admissible if:

1. \(\varphi \) is \(C^2 \) and \(\dot{\varphi} \neq 0 \).
2. \(g_t \) normalizes \(\dot{\varphi} \): the image of \(\varphi \) is contained in \(g_\alpha \) for some \(\alpha > 0 \).
3. \(\varphi \) commutes with \(\dot{\varphi} \): \([\varphi, \dot{\varphi}] \equiv 0 \).
Central Questions

- Estimate the Hausdorff dimension of the set of parameters $s \in [0, 1]$:
 1. $g_t u(\varphi(s))x_0$ diverges on average in X: for any compact set $K \subseteq X$:

$$\frac{1}{T} \int_0^T \chi_K(g_t u(\varphi(s))x_0) \, dt \to 0$$

 2. $g_t u(\varphi(s))x_0$ remains inside a compact subset of X for all $t > 0$.

Real Rank One Manifolds

- T^1M: unit tangent bundle of a rank 1, locally symmetric manifold of finite volume, $p \in M$.
- $g^t : T^1M \rightarrow T^1M$: the geodesic flow.
- $\varphi : [0, 1] \rightarrow T^1_pM$ a g^t-admissible map. (Automatic for \mathbb{H}^n).

Theorem (K. ’18)

The Hausdorff dimension of the set of $s \in [0, 1]$ such that

1. $g^t \varphi(s)$ diverges on average is at most $1/2$.
2. $g^t \varphi(s)$ is bounded is equal to 1. (This set is winning).

Remark: (2) was previously obtained by Aravinda and Leuzinger by different methods (ETDS ’95).
Real Rank One Manifolds

- T^1M: unit tangent bundle of a rank 1, locally symmetric manifold of finite volume, $p \in M$.
- $g^t : T^1M \rightarrow T^1M$: the geodesic flow.
- $\varphi : [0, 1] \rightarrow T_p^1M$ a g^t-admissible map. (Automatic for \mathbb{H}^n).

Theorem (K. ’18)

The Hausdorff dimension of the set of $s \in [0, 1]$ such that

1. $g^t\varphi(s)$ diverges on average is at most $1/2$.
2. $g^t\varphi(s)$ is bounded is equal to 1. *(This set is winning).*

- Remark: (2) was previously obtained by Aravinda and Leuzinger by different methods (ETDS ’95).
Real Rank One Manifolds

- T^1M: unit tangent bundle of a rank 1, locally symmetric manifold of finite volume, $p \in M$.
- $g^t : T^1M \to T^1M$: the geodesic flow.
- $\varphi : [0, 1] \to T_p^1M$ a g^t-admissible map. (Automatic for \mathbb{H}^n).

Theorem (K. ’18)

The Hausdorff dimension of the set of $s \in [0, 1]$ such that

1. $g^t\varphi(s)$ diverges on average is at most $1/2$.
2. $g^t\varphi(s)$ is bounded is equal to 1. *(This set is winning).*

- Remark: (2) was previously obtained by Aravinda and Leuzinger by different methods (ETDS ’95).
• $K = \mathbb{Q}(\alpha)$ a number field of degree d, e.g. $K = \mathbb{Q}(\sqrt{2})$.

• \mathcal{O}_K its ring of integers, e.g. $\mathbb{Z}[\sqrt{2}]$.

• Σ the set of Galois embeddings of K into \mathbb{R} and \mathbb{C}, e.g.

\[
\begin{align*}
a + b\sqrt{2} & \mapsto a + b\sqrt{2}, \quad a + b\sqrt{2} \mapsto a - b\sqrt{2}
\end{align*}
\]
\(K_\Sigma = \mathbb{R}^r \times \mathbb{C}^s, \ r + s = |\Sigma|. \)

\(x = (x_\sigma)_{\sigma \in \Sigma} \in K_\Sigma \) is *badly approximable* by \(K \) if there exists \(c > 0 \), for all \(p, q \in \mathcal{O}_K \):

\[
\max_{\sigma \in \Sigma} \{|\sigma(p) + x_\sigma \sigma(q)|\} \max_{\sigma \in \Sigma} \{|\sigma(q)|\} \geq c
\]
$G = \text{SL}(2, \mathbb{R})^r \times \text{SL}(2, \mathbb{C})^s$.

Γ is image of diagonal Galois embedding of $\text{SL}(2, \mathcal{O}_K)$.

$g_t = \left(\begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix}\right)_{\sigma \in \Sigma}, \quad u(x) = \left(\begin{pmatrix} 1 & x_{\sigma} \\ 0 & 1 \end{pmatrix}\right)_{\sigma \in \Sigma}$

Einsiedler-Ghosh-Lyttle (Dani’s correspondence in number fields): $x \in K_\Sigma$ is *badly approximable* iff $g_t u(x) \Gamma$ remains bounded in G/Γ.
\(K_\Sigma = \mathbb{R}^r \times \mathbb{C}^s \) can be identified with the full unstable manifold of \(g_t \) via \(x \mapsto u(x) \).

\[\varphi = (\varphi_\sigma)_{\sigma \in \Sigma} : [0, 1] \to \mathbb{R}^r \times \mathbb{C}^s \text{ is } C^{1+\varepsilon}. \]

Maximality Assumption:

\[\dot{\varphi}_\sigma \neq 0, \quad \sigma \in \Sigma \]
Theorem (K. ’18)

For all $x_0 \in G/\Gamma$, the Hausdorff dimension of the set of $s \in [0, 1]$ such that

1. $g_t u(\varphi(s)) x_0$ is divergent on average in G/Γ is at most $1/2$.
2. $g_t u(\varphi(s)) x_0$ is bounded in G/Γ is equal to 1. (The set is winning).

The result for curves remains true for:

1. reducible lattices, or
2. any semisimple algebraic group G and $\Gamma < G$ is an arithmetic lattice of \mathbb{Q}-rank equal to 1 under an appropriate maximality condition.
Theorem (K. ’18)

For all $x_0 \in G/\Gamma$, the Hausdorff dimension of the set of $s \in [0, 1]$ such that

1. $g_t u(\varphi(s)) x_0$ is divergent on average in G/Γ is at most $1/2$.
2. $g_t u(\varphi(s)) x_0$ is bounded in G/Γ is equal to 1. (The set is winning).

The result for curves remains true for:

1. reducible lattices, or
2. any semisimple algebraic group G and $\Gamma < G$ is an arithmetic lattice of \mathbb{Q}-rank equal to 1 under an appropriate maximality condition.
Remarks:

- $G = \text{SL}(2, \mathbb{R})^r \times \text{SL}(2, \mathbb{C})^s, \Gamma = \Delta(\text{SL}(2, \mathcal{O}_K))$: Dimension of bounded orbits on curves was previously obtained by Einsiedler, Ghosh and Lyttle by different methods (ETDS ’16).

- Y. Cheung (ETDS ’07): the dimension of divergent orbits for g_t in the entire $\text{SL}(2, \mathbb{R})^n/\text{SL}(2, \mathbb{Z})^n$ is $3n - 1/2$ for $n \geq 2$.

Systems of Linear Forms

- $Y \in \mathcal{M}_{m,n}(\mathbb{R})$ is **badly approximable** if there exists $c > 0$ for all $(p, q) \in \mathbb{Z}^m \times \mathbb{Z}^n$:
 \[
 \|p + Y \cdot q\|_\infty^m \|q\|_\infty^n \geq c
 \]

- Y is **singular** if for every $\varepsilon > 0$, there exists $N_0 \in \mathbb{N}$; for all $N \geq N_0$, there exists $(p, q) \in \mathbb{Z}^m \times \mathbb{Z}^n$:
 \[
 \begin{cases}
 \|p + Yq\| \leq \varepsilon/N \\
 0 < \|q\| \leq N^{n/m}
 \end{cases}
 \]
Systems of Linear Forms

- $Y \in M_{m,n}(\mathbb{R})$ is **badly approximable** if there exists $c > 0$ for all $(p, q) \in \mathbb{Z}^m \times \mathbb{Z}^n$:

 $$\|p + Y \cdot q\|_\infty^m \|q\|_\infty^n \geq c$$

- Y is **singular** if for every $\varepsilon > 0$, there exists $N_0 \in \mathbb{N}$; for all $N \geq N_0$, there exists $(p, q) \in \mathbb{Z}^m \times \mathbb{Z}^n$:

 $$\begin{cases}
 \|p + Yq\| \leq \varepsilon/N \\
 0 < \|q\| \leq N^{n/m}
 \end{cases}$$
$G = \text{SL}(m+n, \mathbb{R}), \Gamma = \text{SL}(m+n, \mathbb{Z}),$

$$g_t = \begin{pmatrix} e^{nt}I_m & 0 \\ 0 & e^{-mt}I_n \end{pmatrix}, \quad u(Y) = \begin{pmatrix} I_m & Y \\ 0 & I_n \end{pmatrix}$$

Dani’s Correspondence: Y is **badly approximable** iff $g_t u(Y) \Gamma$ remains bounded in G/Γ and **singular** iff $g_t u(Y) \Gamma$ diverges in G/Γ.
Theorem (K. ’18)

Suppose $A \in \text{GL}(n, \mathbb{R})$, $B \in M_{n,n}(\mathbb{R})$ and $\varphi : [0, 1] \rightarrow M_{n,n}(\mathbb{R})$ is given by

$$\varphi(s) = B + sA$$

Then, for any $x_0 \in G/\Gamma$, the Hausdorff dimension of the set of $s \in [0, 1]$ such that

1. $g_t u(\varphi(s))x_0$ diverges on average is at most $1/2$.
2. $g_t u(\varphi(s))x_0$ remains bounded in G/Γ is equal to 1. (This set is winning).
Bounded orbits: a very brief history

- Schmidt 1969: the set of badly approximable matrices in $M_{m,n}(\mathbb{R})$ is winning (has full dimension).

- Beresnevich (Invent. Math. ’15): (weighted) badly approximable points on non-degenerate curves in $M_{1,n}(\mathbb{R}) \cong \mathbb{R}^n$ have dimension 1.

- Kleinbock-Weiss (Adv. in Math. ’10, JMD ’13): the set of bounded orbits for a partially hyperbolic algebraic flow on a homogeneous space is winning.
Y. Cheung (Annals ’11): singular vectors in $M_{1,2}(\mathbb{R}) \cong \mathbb{R}^2$ has dimension $4/3$.

Cheung-Chevallier (Duke ’16): singular vectors in \mathbb{R}^n have dimension $n^2/n + 1$.

Kadyrov-Kleinbock-Lindenstrauss-Margulis (J. d’Analyse ’17): singular matrices in $M_{m,n}(\mathbb{R})$ have dimension at most $mn - \frac{mn}{m+n}$.
Ingredients of the proof

1. Contraction Hypothesis \implies Dimension Estimates.

2. Establish the Contraction Hypothesis.
Recall our set up

- G is a connected Lie group with Lie algebra \mathfrak{g}.
- g_t is Ad-diagonalizable over \mathbb{R}:

 $$g = \bigoplus g_\alpha, \quad g_\alpha = \left\{ X \in \mathfrak{g} : g_t X g^{-t} = e^{\alpha(t)} X \right\}$$

- $u(Y) = \exp(Y)$ for $Y \in \mathfrak{g}$.
- $G \ltimes \mathcal{X}$, a topological space (not necessarily a homogeneous space for G).
Recall our set up

Definition

A map $\varphi : [0, 1] \rightarrow g$ is g_t-admissible if:

1. φ is C^2 and $\dot{\varphi} \neq 0$.
2. g_t normalizes $\dot{\varphi}$: the image of φ is contained in g_α for some $\alpha > 0$.
3. φ commutes with $\dot{\varphi}$: $[\varphi, \dot{\varphi}] \equiv 0$.
$f : X \to [0, \infty]$ is a **height function**:

1. f is proper and finite on compact subsets of $X \setminus \{f = \infty\}$.

2. f is **log-smooth**: for every bounded set $\mathcal{O} \subset G$, there exists $C \geq 1$, for all $g \in \mathcal{O}$ and all $x \in X \setminus \{f = \infty\}$,

 \[C^{-1}f(x) \leq f(gx) \leq Cf(x) \]

3. $\{f = \infty\}$ is G-invariant.
For $M > 0$, χ_M indicator function of $\{f \leq M\}$.

For $x \in X$, we say

1. $g_t x$ diverges on average if for all $M > 0$:

$$\frac{1}{T} \int_0^T \chi_M(g_t x) \, dt \to 0$$

2. $g_t x$ is bounded if

$$\sup_{t>0} f(g_t x) < \infty$$
The Contraction Hypothesis

Definition

\(\varphi \) satisfies the **first order \(\beta \)-contraction hypothesis** on \(X \) if there exists a height function \(f \) and \(0 < \beta < 1 \) such that for all \(t > 0 \):

\[
\int_0^1 f(g_t u(r \dot{\varphi}(s))x) \, dr \leq ce^{-\beta \alpha(t)}f(x) + b
\]

for some constants \(c, b > 0 \).

In words, \(g_t \) orbits starting from points on \(\varphi \) are biased towards sublevel sets of \(f \): when \(f(x) \gg 1 \)

\[
\int_0^1 f(g_t u(r \dot{\varphi}(s))x) \, dr \ll e^{-\beta \alpha(t)}f(x)
\]
The Contraction Hypothesis

Definition

ϕ satisfies the **first order β-contraction hypothesis** on X if there exists a height function f and 0 < β < 1 such that for all t > 0:

\[\int_0^1 f(g_t u(r\varphi(s))x) \, dr \leq c e^{-\beta \alpha(t)} f(x) + b \]

for some constants c, b > 0.

In words, \(g_t \) orbits starting from points on \(\varphi \) are biased towards sublevel sets of \(f \): when \(f(x) \gg 1 \)

\[\int_0^1 f(g_t u(r\varphi(s))x) \, dr \ll e^{-\beta \alpha(t)} f(x) \]
Theorem (K. ’18)

Suppose φ is a g_t-admissible curve satisfying the 1st order β-contraction hypothesis. Then, for all $x_0 \in X \setminus \{f = \infty\}$, the Hausdorff dimension of the set of $s \in [0, 1]$ such that

1. $g_t u(\varphi(s))x_0$ is divergent on average is at most $1 - \beta$.
2. $g_t u(\varphi(s))x_0$ remains bounded in X is equal to 1.
An example: $\text{SL}(2, \mathbb{R})/\text{SL}(2, \mathbb{Z})$

$f : \text{SL}(2, \mathbb{R})/\text{SL}(2, \mathbb{Z}) \to \mathbb{R}_+$ is given by the y-coordinate in the upper half plane model.

$f(x + iy) = y^\delta$
Example 2: $\text{SL}(n, \mathbb{R})/\text{SL}(n, \mathbb{Z}) \leftrightarrow \{\text{unimodular lattices in } \mathbb{R}^n\}$

$$f(x) = \max_{1 \leq i \leq n} \max \left\{ \frac{1}{\|\Lambda\|} : \Lambda \text{ is a subgroup of } x \text{ of rank } i \right\}$$
Example 2: $\text{SL}(n, \mathbb{R})/\text{SL}(n, \mathbb{Z}) \leftrightarrow \{\text{unimodular lattices in } \mathbb{R}^n\}$

$$f(x) = \max_{1 \leq i \leq n} \max \left\{ \frac{1}{\|\Lambda\|} : \Lambda \text{ is a subgroup of } x \text{ of rank } i \right\}$$
Markov Chains and Stochastic Stability

SECOND EDITION

\[\| P^n(x, \cdot) - \pi \|_f \to 0 \]

\[\pi(f) < \infty \]

\[\Delta V(x) \leq -f(x) + b\mathbb{1}_C(x) \]

Sean Meyn and Richard L. Tweedie

Cambridge
Eskin-Margulis-Mozes: averaging over $SO(p) \times SO(q) < SL(p + q, \mathbb{R})$.

Eskin-Margulis, Benoist-Quint: random walks on homogeneous spaces.

Eskin-Masur: recurrence of Teichmüller flow orbits in strata of quadratic differentials.

Eskin-Mirzakhani-Mohammadi: recurrence away from proper affine submanifolds.
Contraction in higher rank: the enemy

- $G = \text{SL}(3, \mathbb{R})$ and $\Gamma = \text{SL}(3, \mathbb{Z})$:

$$
\begin{align*}
 g_t &= \begin{pmatrix}
 e^{2t} & 0 & 0 \\
 0 & e^{-t} & 0 \\
 0 & 0 & e^{-t}
 \end{pmatrix}, \\
 u_s &= \begin{pmatrix}
 1 & s & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1
 \end{pmatrix}
\end{align*}
$$

- Mahler’s compactness criterion: a subset K of unimodular lattices inside G/Γ is bounded iff for all lattices $\Lambda \in K$, $\Lambda \cap B_{\varepsilon}(0) = \{0\}$ for some $\varepsilon > 0$.

$$
\begin{align*}
 g_t u_s \begin{pmatrix}
 0 \\
 0 \\
 1
 \end{pmatrix} &= \begin{pmatrix}
 0 \\
 0 \\
 e^{-t}
 \end{pmatrix} \xrightarrow{t \to \infty} 0
\end{align*}
$$
A uniform first order contraction hypothesis is not possible!

A higher order form of the contraction hypothesis can be established:

\[\int_0^1 f(g(t) \Phi(r)x) \, dr \leq af(x) + b \]

for some \(0 < a < 1 \) and \(b > 0 \) and \(\Phi \) a certain Taylor polynomial for the curve \(\varphi \).
A uniform first order contraction hypothesis is not possible!

A higher order form of the contraction hypothesis can be established:

\[
\int_{0}^{1} f(g_t \Phi(r)x) \, dr \leq af(x) + b
\]

for some \(0 < a < 1\) and \(b > 0\) and \(\Phi\) a certain Taylor polynomial for the curve \(\varphi\).
Higher order contraction

- \(G = SL(m + n, \mathbb{R}) \), \(\Gamma = SL(m + n, \mathbb{Z}) \) and \(X = G/\Gamma \).
- \(Y \in M_{m,n}, (r, s) = (r_1, \ldots, r_m, s_1, \ldots, s_n) \in \mathbb{R}_+^n \) with \(\sum r_i = 1 = \sum s_j \):

\[
u(Y) = \begin{pmatrix} I_m & Y \\ 0 & I_n \end{pmatrix}, \quad g_t^{r,s} = \text{diag}(e^{r_1 t}, \ldots, e^{r_m t}, e^{-s_1 t}, \ldots, e^{-s_n t})
\]

Theorem (K. 18)

Suppose \(\varphi : [0, 1] \to M_{m,n} \) is a strongly non-planar curve and \((r, s)\) is any weight with \(\sum r_i = 1 = \sum s_j \). Then, for all \(x \in X \),

\[
\sup_{t>0} \int_0^1 f \left(g_t^{r,s} u(\varphi(s))x \right) \, ds < \infty
\]

Moreover, the supremum can be taken to be uniform as \(x \) varies in compact subsets of \(X \).
This implies very well approximable points have measure 0. (Kleinbock-Margulis 1998, Kleinbock-Margulis-Wang 2010).

The approach uses the (C, α)-good theory of polynomials only.
Thanks!