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I Course intro
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Course intro

Problems involving data analysis:
I Unsupervised learning/dimensionality reduction

I PCA and various other types of matrix factorization and
completion

I Problems on graphs, such as clustering

I (Self)supervised learning
I regression (including sparse regression, compressed sensing,

kernel methods, regularization techniques)
I classification, including logistic regression and SVM and

kernelized SVM
I mathematical aspects of deep learning (including CNNs and

models for sequential data and graphs);

I Learning with incomplete information/policies for interaction
with the environment
I “bandit” problems, Markov decision processes, mathematical

aspects of reinforcement learning
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I Combine theory and computation
I Theory tells us about solutions and how to find them
I Computation allows us to find solutions
I They are related: understanding computational methods is a

type of theory
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Tools

I The main math tools for this course are linear algebra and
probability/statistics

I The main computational tool is optimization
I Probability and statistics will come in two forms:

I Randomized models: data is modeled by some unknown
distribution; the problem would entail estimating that
distribution

I Randomized algorithms, e.g., stochastic gradient descent
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Regression example

n data points (a1, b1), . . . , (an, bn) ∈ Rd ×R organized as

I The feature matrix A =


−a1−
−a2−

...
−an−

 ∈ Rn×d

I The response vector b =


b1
b2
...
bn

 ∈ Rn

I E.g., NOAA publishes hourly observation of temperature at
various stations across the US

I Can we predict the temperature b̂τ at time τ at Yellowstone
from the contemporaneous observations at other stations aτ
(e.g., if the Yellowstone sensor fails)?
I Use the observations A and b from the periods when all the

sensors were working
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OLS: closed form sol’n

I Minimize the least-squares fit between the data and a linear
model

x̂ = arg min
x

R(x)

where

R(x) =
n∑

t=1

(bt − 〈at , x〉)2 = ‖b − Ax‖22

= x>A>Ax − 2b>Ax + b>b

I If A is full rank and n ≥ d (“big data” regime), then A>A is
positive definite

I Using the 2nd deriv test gives

x̂ =
(
A>A

)−1
A>b
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OLS: computational aspects

x̂ = arg min
x

R(a) =
(
A>A

)−1
A>b

I But if d is large, inverting A>A is computationally expensive

I Use iterative optimization methods (e.g., conjugate gradient)

I Since R is convex, convergence is guaranteed; can study rates
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OLS: stats interpretation

I If
b ∼ N(Ax , σ2I ) = Ax + N(0, σ2I )

OLS is the value of x that makes the data most probable, i.e.

x̂ = arg min
x

R(a) = arg max
x

L(x , σ2) = xMLE

where

R(x) = ‖b − Ax‖22

I Maximize the log of the likelihood fcn L w.r.t. x and σ2:

L(x , σ2) = p(b|Ax , σ2) =
1√

2πσ2
e−
‖b−Ax‖2

2σ2

I Again use the 2nd deriv test
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OLS: geometric interpretation

x̂ = arg min
x

R(x)

where

R(x) = ‖b − Ax‖22

I Ax̂ = UUTb - projection of b on the span of the columns of A

I Prove using the SVD: A = UΣV T .
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Overfitting

I Small error on the training set, but high error on a test set
because x̂ will fit the features that may not be relevant (e.g.,
sensors very far from Yellowstone)

I Can we find a sparse linear model?
I E.g., predict the Yellowstone temperatures based on

observations from a small subset of the stations
I This subset is “learned” from the training data
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Sparse regression (LASSO)

I l0 penalty: ‖x‖0 = # of nonzero entries of x

I This regularization enforces sparsity: for λ > 0

x0 = arg min
x

(
R(x) + λ‖x‖0

)
I But is intractable (the objective not convex; l0 not a norm)

I Would a ”relaxation” to the l1 norm also promote sparsity?
I LASSO

I Penalized form

x1 = arg min
x

(
R(x) + λ‖x‖1

)
I Equivalent to constrained form

x1 = arg min
‖x‖1≤r

R(x)

I Pf. by a Lagrange multiplier-type calculation
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LASSO
I Constrained form

x1 = arg min
‖x‖1≤r

R(x)

I By completing the squares,

R(x) = (x − ŵ)>AAT (x − ŵ) + R(ŵ)

where the OLS solution ŵ of the unconstrained problem is the
center of the ellipsoid OLS level sets

Figure: Level sets of R(x) in red and the area satisfying ‖x‖1 ≤ r in blue
(Fig 13.3 from [2]).
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Solving LASSO numerically

I No general closed form solution
I Even for OLS, the closed form solution is not used for large

data sets due to computation cost of matrix inversion

I Since LASSO can be reduced to a convex optimization
problem (QP), can use standard iterative solvers

I Can be more efficient to use other methods that exploit the
structure of the lasso objective, e.g., the linear separability of
the l1 norm
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Sparse inverse problems

I If b in column space of A and n < d (“inverse problem”
regime, e.g. MRI), then Ax = b is an underdetermined
system.

I But with sparsity and other technical assumptions, l1
minimization can exactly recover a sparse vector x .

I (Candes, Tao, Donoho) For

x∗ = arg min ‖x‖1
s.t. b = Ax

if the row of A are not too localized so that they won’t miss
the entries of S-sparse x and if there is enough data
n ≥ O(S log d)

I key idea entails recovering the support of x (i.e., indices of
nonzero entries) and therefore reducing it to a well-posed
problem.
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Matrix completion
I Low rank models are common when only a few factors explain

the variance in data organized in the matrix.
I Motivation: Netflix competition

Bob Molly Mary Larry


The Dark Knight −10 −10 10 5
Spiderman 3 −7 −10 8 10
Love Actually 8 10 −5 −9
Bridget Jones’s Diary 10 4 −6 −10
Pretty Woman 8 9 −9 −4
Superman 2 −9 −8 9 10

:= A,

I To make a recommendation, estimate missing entries

Bob Molly Mary Larry
( )X-Men 7: Mutant Mosquito −10 ? 8 10

I Fit a low rank model using the SVD: A = UΣV T

I a truncated rank-k SVD is the best rank-k approximation of A
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Matrix completion

I Low rank structure implies correlation between entries

I Netflix problem: How do we exploit it to predict missing
entries?

I E.g. where a user is going to like a new movie

I E.g., if the below matrix is rank 1, then we must have 1 in
place of the missing entry.1 ? 1

1 1 1
1 1 1

 = 11
T

I This seems like an easy matrix to complete.
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Matrix completion

I On the other hand, if a matrix is sparse or its rows correlate
with the canonical basis, it seems much harder to complete0 0 0

0 0 0
0 0 ?

 =

0
0
?

 [0 0 ?
]

Therefore differences in the structure of a low rank matrix
may determine how hard or difficult it is to complete.

I Coherence (or localization of rows and columns) introduced
previously is relevant here: for A = UΣV T

I For example, if the left singular vectors (columns of U)
correlate with the canonical basis vectors, matrix will hard to
complete.
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Nuclear norm minimization

I Since rank is not a convex function, minimization of the rank
subject to known entries A0 = {(i , j), aij} is not
computationally tractable.

(N) min rank(A)

A ∈ Rm×n

Aij = aij for (i , j) ∈ A0

I Note that rank is an l0 “norm” of Σ for A = UΣV T .
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Nuclear norm minimization

I Instead use a “convex relaxation” based on minimization of
the nuclear norm:

(N) min ‖A‖N
A ∈ Rm×n

Aij = aij for (i , j) ∈ A0

where

‖A‖N =
r∑

i=1

σi

and σi are singular values and r is rank of A

I Note that rank is an l1 “norm” of Σ.
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Movie ratings - policies for interacting with the
environment

I Let a feature vector x describe a user

I We choose 1 out of 5 hit movies and recommend it to x

I We only get the feedback on the recommended movie

I Let’s say the feedback is 3 out of 5 stars

I Next time we have a similar user x ′ ≈ x , should we
recommend the same movie?

I Or try a different one hoping to get 5 stars?
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k-armed bandit

In each t ∈ [T ],

I Environment samples reward (Xt ,Rt) ∈ X ×Rk from a
fixed k-dimensional distribution P i.i.d.

I Xt is revealed to the player

I The player selects At ∈ [k] based on history

Dt = (A1:t−1,R1:t−1,X1:t)

I Player receives the reward Rt(At)

I Rt(a) for a 6= At (“counterfactuals”) are not revealed to the
player

I At is not independent from Rt - information about Rt can
propagate to At through Xt

I But At is conditionally independent from Rt given Xt - Rt is
not revealed to the player when it selects At .
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Optimal policy

I Suppose we knew

r(x , a) = E[R|A = a,X = x ]

which gives the expected reward for each action.

I Then the optimal policy would be

π∗t (a|Xt ,Dt) = 1[a = arga max r(Xt , a)]

I Here choosing an action according to policy πt means
choosing At randomly s.t.

P(At = a) = πt(a|Xt ,Dt)

I Of course we don’t know r(x , a), but can we estimate it?
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Next steps

I Review of linear algebra, probability and optimization

I PCA, least squares
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