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Math of Data Science: Lecture 2

Vlad Kobzar

APAM, Columbia

September 8, 2022
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I Last time - course intro

I Today - linear algebra review: diagonalization, projections
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Linear algebra - motivation

I Data is naturally represented by linear algebra objects
I vectors represent, e.g., features of the data or biases of a

neural network
I matrices represent multiple observations of the features or

weights of a neural network

I Understanding the structure of a matrix can reveal structure
in the data, e.g, PCA

I Projections allow us to reduce dimensionality/denoise the data

I Numerical linear algebra allows us to perform matrix
computations
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Eigendecomposition

An eigenvector x of a square matrix A satisfies

Ax = λx

for scalar λ which is the corresponding eigenvalue. Even if A is
real, in general its eigenvectors and eigenvalues can be complex.
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Eigendecomposition

If a square matrix A ∈ Rn×n has n linearly independent
eigenvectors x1, . . . , xn (with eigenvalues λ1, . . . , λn), it can be
expressed in terms of a matrix X , whose columns are the
eigenvectors, and a diagonal matrix containing the eigenvalues,

A =
[
x1 x2 · · · xn

] 
λ1 0 · · · 0
0 λ2 · · · 0

· · ·
0 0 · · · λn

 [x1 x2 · · · xn
]−1

= XΛX−1

Pf:

AX =
[
Ax1 Ax2 · · · Axn

]
=
[
λ1x1 λ2x2 · · · λnxn

]
= XΛ
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Example: computing matrix powers

Assume that we want to compute

AA · · ·Ax = Akx , (1)

If A has an eigendecomposition,

Ak = XΛX−1XΛX−1 · · ·XΛX−1

= XΛkX−1

= X


λk1 0 · · · 0
0 λk2 · · · 0

· · ·
0 0 · · · λkn

X−1,
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Computing eigenvalues
I In your linear algebra course, you probably computed

eigenvalues by solving the characteristic polynomial

det(A− λI ) = 0

I In practice, this is not feasible due to numerical stability issues

I Let g(λ) = detA, and note that g ′(λ) = detA
λ . Then a linear

approximation of the determinant:

∆x = det(A− (λ+ ∆λ)I ) ≈ detA− (λ+ ∆λ)
detA

λ

I Thus if we have a numerical error of ∆x when we evaluate the
characteristic polynomial, it translates into error

∆λ = − λ

detA
∆x

for the particular eigenvalue, which is blows up if the other
eigenvalues are small.
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Computing eigenvectors - power method

I Let A ∈ Rn×n be a matrix with eigendecomposition XΛX−1

and let v be an arbitrary vector in Rn.

I Since the columns of X are linearly independent, they form a
basis for Rn, so

v =
n∑

i=1

ciX:i , ci ∈ R, 1 ≤ i ≤ n. (2)

I Then,

Akv =
n∑

i=1

ciA
kX:i =

n∑
i=1

ciλ
k
i X:i

I Assume that |λ1| > |λ2| ≥ . . ., and c1 6= 0 (the latter happens
with probability 1 if we draw a random v)

I Then as k grows, the term c1λ
k
1X:1 will dominate the other

terms.
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Power method

I c1λ
k
1X:1 →∞ or 0 unless we normalize before applying A.

Algorithm 1: Power method

Input: A matrix A.
Output: An estimate of the eigenvector of A corresponding to the
largest eigenvalue.
Initialization: Set v1 := v/ ||v ||2, where v contains random entries.
For i = 1, . . . , k , compute

vi :=
Avi−1
||Avi−1||2

.

I This method has been reportedly used in Google’s PageRank
algorithm and industrial recommendation systems

I Mainly used for non-symmetric matrices
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Symmetric matrices

I S ∈ Rn×n is symmetric if S> = S (or equivalently Sij = Sji .

I These matrices arise naturally in data science

I If, for example, Sij corresponds to some similarity measure,
like covariance or distance between features i and j .
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Symmetric matrices: eigendecomposition

If S ∈ Rn×n is real symmetric, then it has an eigendecomposition
of the form

S = QΛQT (3)

where Λ is a real diagonal matrix and Q =
[
q1 q2 · · · qn

]
is an

orthogonal matrix.

I It turns out that every n × n symmetric matrix has n linearly
independent vectors.

I The proof of this fact is not very instructive, so we’ll just
assume it as true.

I Then we can show that the eigenvalues are real and the
eigenvectors are real and orthonormal
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Symmetric matrices: real eigenvalues

I The conjugate transpose of a complex vector is x∗ := x̄>, i.e.,
the imaginary part of each component of the transpose x> of
x is negated.

I One can see that x∗x = 〈x , x〉 = ‖x‖22.

I Conjugation distributes over multiplication,e.g., (λx)∗ = λ̄x∗

I Assuming an eigenvector x has norm 1

x∗Sx = λx∗x = λ

and at the same time

x∗Sx = (Sx)∗x = (λx)∗x = λ̄

I Thus, λ = λ̄ and therefore its imaginary part is zero
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Symmetric matrices: real eigenvalues

I If an eigenvector is complex, then its real and/or imaginary
parts y , z ∈ Rn are also eigenvector(s) to the extent they are
nonzero

S(y + iz) = λ(y + iz)→ Sy = λy ,Sz = λz

I And at least one of them must be nonzero since the complex
eigenvector is nonzero
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Symmetric matrices: eigenvectors are orthonormal

I If m linearly independent eigenvectors correspond to the same
eigenvalue λ, then their linear combination is also an
eigenvector corresponding to λ.

I Therefore, they can be orthonormalized by Gram-Schmidt (see
p. 128 of Strang)

I The resulting orthonormal set will also be m linearly
independent eigenvectors corresponding to λ
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Symmetric matrices: eigenvectors are orthonormal

I If two eigenvectors correspond to different eigenvalues, first
assume one of them is zero and the other λ is not:

Sx = λx and Sy = 0

I For any matrix A,the nullspace N(A) is orthogonal to the
column space C (AT ) of its transpose (see, e.g., p.31 of
Strang)

I And for a symmetric matrix S , C (ST ) = C (S)

I Since x ∈ C (S) and y ∈ N(S) , we have x ⊥ y .
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Symmetric matrices: eigenvectors are orthonormal

I If two eigenvectors correspond to two different nonzero
eigenvalues:

Sx = λx and Sy = αy

then
(S − αI )y = 0

and
(S − αI )x = (λ− α)x

for λ− α 6= 0

I Since x ∈ C (S − αI ) and y ∈ N(S − αI ), we again have
x ⊥ y .
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Eigendecomposition of S as an optimization problem

I The eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn of a symmetric matrix S ,
determine the quadratic form:

f (x) := xTSx = xTQΛQT x =
n∑

i=1

λi

(
xTqi

)2
(4)

I λ1 is the maximum attained by f if ‖x‖2 = 1

I λ2 is the maximum if we restrict x to be normalized and
orthogonal to the first eigenvector q1, and so on.
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Eigendecomposition of S as an optimization problem

Theorem
For any symmetric matrix S ∈ Rn with normalized eigenvectors
q1, q2, . . . , qn with corresponding eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn

λ1 = max
||q||2=1

qTSq, (5)

q1 = arg max
||q||2=1

qTSq, (6)

λk = max
||q||2=1,q⊥q1,...,qk−1

qTSq, (7)

qk = arg max
||q||2=1,q⊥q1,...,qk−1

qTSq. (8)
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Eigendecomposition of S as an optimization problem

I The eigenvectors are an orthonormal basis (they are mutually
orthogonal and we assume that they have been normalized)

I so we can represent any unit-norm vector hk that is
orthogonal to q1, . . . , qk−1 as

hk =
n∑

i=k

αiqi (9)

where

||hk ||22 =
n∑

i=k

α2
i = 1, (10)

Note that h1 is just an arbitrary unit-norm vector.
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Eigendecomposition of S as an optimization problem

I Now we will show that the value of f (hk) when the
normalized hk is restricted to be orthogonal to q1, . . . , qk−1
cannot be larger than λk ,

hTk Shk =
n∑

i=1

λi (
m∑
j=k

αjq
T
i qj)

2 by (4) and (9)

=
n∑

i=1

λiα
2
i because q1, . . . , qm is an orthonormal basis

≤ λk
m∑
i=k

α2
i because λk ≥ λk+1 ≥ . . . ≥ λm

= λk , by (10).
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Eigendecomposition of S as an optimization problem

I To prove the theorem we just need to show that qk achieves
the maximum:

qTk Sqk =
n∑

i=1

λi (q
T
i qk)2

= λk .
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Projections - motivation

I Data is naturally represented by vectors and matrices
I Projections allow us to:

I reduce dimensionality/denoise data;
I use iterative optimization methods to minimize a function

subject to constraints
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Projections

I Any matrix U ∈ Rk×m can be viewed as a “projection”

I It is linear transformation U : Rn → Rk

I Any matrix P ∈ Rm×m that satisfies P2 = P is called a
projection matrix.

I It’s image or C (P) is a k-dimensional linear subspace of Rm,
e.g., a line, plane or hyperplane
I A projection Π (satisfying Π2 = Π) to a non-linear subset, e.g.

l2 unit ball, won’t be given by a matrix
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Orthogonal projections

I If U ∈ Rk×m has orthonormal rows (can happen only if
k ≤ m), then UUT = I

I P = UTU is a symmetric projection matrix

P2 = (UTU)UTU = UT IU = P

I The basis of the subspace is given by rows of U.

I Example U = [cos θ sin θ].
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Orthogonal projections

I Strang defines orthogonal projection as follows: “If

P2 = P = PT

then Pb is the orthogonal projection of b on the column space
of P.”

I Would this definition be equivalent if P = UTU for some
U ∈ Rk×m with orthonormal rows instead of PT = P? (One
direction is shown on the previous page).
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Orthogonal projections

I We can prove the other direction: i.e.,

P2 = P and PT = P ⇒ P = UTU

for some U ∈ Rk×m with orthonormal rows
I PT = P implies that P = V TΛV for an orthogonal V ∈ Rm

I P2 = (V TΛV )V TΛV = V TΛ2V = V TΛV = P,
I This in turn implies that Λ2 = Λ
I Therefore, Λ can only have 0 and 1 entries on the diagonal
I Take U to be V after removing the rows in the position

corresponding to the zero eigenvalues
I Then: P = UTU
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Projections

Theorem (Properties of orthogonal projections)

Every vector x ∈ Rm has a unique orthogonal projection Px onto
any subspace S ⊆ Rm of finite dimension. In particular x can be
expressed as

x = Px + (I − P)x (11)

I One can prove that (I − P) is also an orthogonal projection

I And it’s a projection on the orthogonal complement S⊥
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Projections

I Assume x ′1 ∈ S, x ′2 ∈ S⊥ such that x = x ′1 + x ′2
I Since (x1 − x ′1) + (x2 − x ′2) = 0, ‖(x ′1 − x1) + (x2 − x ′2)‖ = 0

I Then x1 − x ′1 ∈ S and x2 − x ′2 ∈ S⊥ implies

‖(x ′1 − x1) + (x2 − x ′2)‖2 = ‖(x ′1 − x1)‖2 + ‖(x2 − x ′2)‖2

I so the above expression is zero, i.e., orthogonal projection is
unique.
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Projections as optimization

Theorem
The orthogonal projection Px of a vector x onto a subspace S is
the closest vector to x in the l2 norm that belongs to S in , i.e. Px
solves the optimization problem

minimize
u

||x − u||

subject to u ∈ S.
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Projections as optimization

Proof.
I Take any point u ∈ S such that u 6= Px

||x − u||2 = ||(I − P)x + Px − u||2 (12)

= ||(I − P)x ||2 + ||Px − u||2 + 2 〈(I − P)x ,Px − u〉
(13)

= ||(I − P)x ||2 + ||Px − u||2 (14)

where (14) follows because (I − P)x belongs to S⊥ and
Px − u to S .

I If u 6= Px , then ||Px − u||2 > 0.

I Therefore, the optimal u = Px .
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Next steps

I Finish review of linear algebra: SVD

I Review probability and optimization

I PCA
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