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» Last time - course intro

> Today - linear algebra review: diagonalization, projections



Linear

algebra - motivation

Data is naturally represented by linear algebra objects

P vectors represent, e.g., features of the data or biases of a
neural network

» matrices represent multiple observations of the features or
weights of a neural network

Understanding the structure of a matrix can reveal structure
in the data, e.g, PCA

Projections allow us to reduce dimensionality/denoise the data

Numerical linear algebra allows us to perform matrix
computations



Eigendecomposition

An eigenvector x of a square matrix A satisfies
Ax = Ax

for scalar A which is the corresponding eigenvalue. Even if A is
real, in general its eigenvectors and eigenvalues can be complex.



Eigendecomposition

If a square matrix A € R™" has n linearly independent
eigenvectors xi, ..., x, (with eigenvalues A1,...,\,), it can be
expressed in terms of a matrix X, whose columns are the
eigenvectors, and a diagonal matrix containing the eigenvalues,

M 0 - 0
A=l e x0T M e e x)
0 0 - A
= XAX!
Pf:
AX = [Axl Axy - AX,,}
=1 Aaxa o0 Apxn)



Example: computing matrix powers

Assume that we want to compute
AA- .. Ax = Akx, (1)
If A has an eigendecomposition,

A = XAXTIXAXL. o XAXT

= XNx1
Moo
_x 0 X .- 0 X1,

0 0 - A



Computing eigenvalues
» In your linear algebra course, you probably computed
eigenvalues by solving the characteristic polynomial
det(A—A)=0
» In practice, this is not feasible due to numerical stability issues
> Let g(\) = det A, and note that g’(A\) = 9t24. Then a linear
approximation of the determinant:

det A
A

Ax =det(A— (A + AN)) = detA— (A + AN)

» Thus if we have a numerical error of Ax when we evaluate the
characteristic polynomial, it translates into error

A

A=——""A
A= G At

for the particular eigenvalue, which is blows up if the other
eigenvalues are small.



Computing eigenvectors - power method

>

>

Let A € R™" be a matrix with eigendecomposition XAX ™!
and let v be an arbitrary vector in R”.

Since the columns of X are linearly independent, they form a
basis for R", so

n
v=> c¢Xi GER 1<i<n (2)
i=1

Then,

Akv = Zn: C,'AkX,' = zn: CiA;(X:I'
i=1 i=1

Assume that [A1| > |A2| > ..., and ¢ # 0 (the latter happens
with probability 1 if we draw a random v)

Then as k grows, the term cl)\’l‘X:l will dominate the other
terms.



Power method

> C1)\lfx;1 — oo or 0 unless we normalize before applying A.

Algorithm 1: Power method

Input: A matrix A.

Output: An estimate of the eigenvector of A corresponding to the
largest eigenvalue.

Initialization: Set vi := v/ ||v||,, where v contains random entries.
Fori=1,...,k, compute

Avi_y
[[Avi_1]]2”

Vi =

» This method has been reportedly used in Google's PageRank
algorithm and industrial recommendation systems

» Mainly used for non-symmetric matrices



Symmetric matrices

> S € R™"is symmetricif ST = S (or equivalently S;j = Sj;.
> These matrices arise naturally in data science

> If, for example, S;; corresponds to some similarity measure,
like covariance or distance between features / and j.



Symmetric matrices: eigendecomposition

If S € R™"™ is real symmetric, then it has an eigendecomposition
of the form

S=QAQT (3)

where A is a real diagonal matrix and Q = [ql g - q,,] is an
orthogonal matrix.
P It turns out that every n x n symmetric matrix has n linearly
independent vectors.
» The proof of this fact is not very instructive, so we'll just
assume it as true.
» Then we can show that the eigenvalues are real and the
eigenvectors are real and orthonormal



Symmetric matrices: real eigenvalues

v

The conjugate transpose of a complex vector is x* := X, i.e.,

the imaginary part of each component of the transpose x' of
X is negated.

One can see that x*x = (x, x) = ||x||3.
Conjugation distributes over multiplication,e.g., (Ax)* = Ax*
Assuming an eigenvector x has norm 1
xX*Sx = Mx*x = A
and at the same time

x*Sx = (Sx)*'x = (Ax)*x = A

Thus, A = X and therefore its imaginary part is zero



Symmetric matrices: real eigenvalues

> If an eigenvector is complex, then its real and/or imaginary
parts y,z € R" are also eigenvector(s) to the extent they are
nonzero

Sly+iz) =Xy +iz) = Sy =Ay,5z= Az

» And at least one of them must be nonzero since the complex
eigenvector is nonzero



Symmetric matrices: eigenvectors are orthonormal

» If m linearly independent eigenvectors correspond to the same
eigenvalue )\, then their linear combination is also an
eigenvector corresponding to A.

» Therefore, they can be orthonormalized by Gram-Schmidt (see
p. 128 of Strang)

» The resulting orthonormal set will also be m linearly
independent eigenvectors corresponding to A



Symmetric matrices: eigenvectors are orthonormal

> If two eigenvectors correspond to different eigenvalues, first
assume one of them is zero and the other X is not:

Sx=Mxand Sy =0

» For any matrix A,the nullspace N(A) is orthogonal to the
column space C(AT) of its transpose (see, e.g., p.31 of
Strang)

» And for a symmetric matrix S, C(ST) = C(S)
» Since x € C(S) and y € N(S) , we have x L y.



Symmetric matrices: eigenvectors are orthonormal

> |f two eigenvectors correspond to two different nonzero

eigenvalues:
Sx = Ax and Sy = ay
then
(S—al)y=0
and
(S —al)x=(\—a)x
for \—a#0

» Since x € C(S —al) and y € N(S — al), we again have
x Ly.



Eigendecomposition of S as an optimization problem

» The eigenvalues Ay > \» > ... > A\, of a symmetric matrix S,
determine the quadratic form:

n 2
fF(x)=x"Sx=x"QANQ"x = Z Ai (XTq,-) (4)
i=1
» )\; is the maximum attained by f if ||x|[> =1

> )\, is the maximum if we restrict x to be normalized and
orthogonal to the first eigenvector g;, and so on.



Eigendecomposition of S as an optimization problem

Theorem
For any symmetric matrix S € R" with normalized eigenvectors

g1, q2, - .., qn With corresponding eigenvalues A1 > Mo > ... > Ay

A = max ¢g'Sq,
llqll2=1
g =arg max q'Sq,
llqll2=1
max q' Sq,

||q||2 1,91q1,-,qk—1

gk = arg max q' Sq.
llall2=1,9Lq1,....qk—1



Eigendecomposition of S as an optimization problem

» The eigenvectors are an orthonormal basis (they are mutually
orthogonal and we assume that they have been normalized)

P> so we can represent any unit-norm vector hy that is
orthogonal to q1,...,qk_1 as

he = Z a;q; 9)
i—k

where
3= af =1, (10)
i=k

Note that hp is just an arbitrary unit-norm vector.



Eigendecomposition of S as an optimization problem

» Now we will show that the value of f(hy) when the
normalized hy is restricted to be orthogonal to g1,...,qk_1
cannot be larger than g,

hi Shic=>_Xi(>_ejal ¢5)* by (4) and (9)
i=1 i=k
= Z)\;a,? because qi, ..., gm is an orthonormal basis
i=1

m
< /\kZa? because Ay > Agp1 > ... 2> Ay
i=k



Eigendecomposition of S as an optimization problem

» To prove the theorem we just need to show that g, achieves
the maximum:

ai Sak =>_ Nila] ak)?
i=1
= .



Projections - motivation

» Data is naturally represented by vectors and matrices
» Projections allow us to:

» reduce dimensionality/denoise data;
P use iterative optimization methods to minimize a function
subject to constraints



Projections

v

Any matrix U € R¥*™ can be viewed as a “projection”
It is linear transformation U : R” — R¥

Any matrix P € R™*™ that satisfies P? = P is called a
projection matrix.

It's image or C(P) is a k-dimensional linear subspace of R,
e.g., a line, plane or hyperplane
> A projection M (satisfying M? = M) to a non-linear subset, e.g.
12 unit ball, won't be given by a matrix



Orthogonal projections

> If U € RK*™ has orthonormal rows (can happen only if
k < m), then uuT =1

» P = UTU is a symmetric projection matrix
P2=(UTOYUTU=UTIU=P

» The basis of the subspace is given by rows of U.
» Example U = [cos @ sinf)].



Orthogonal projections

» Strang defines orthogonal projection as follows: “If
PP=p=pP"
then Pb is the orthogonal projection of b on the column space

of P."

» Would this definition be equivalent if P = UT U for some
U € RkXm with orthonormal rows instead of PT = P? (One
direction is shown on the previous page).



Orthogonal projections

» We can prove the other direction: i.e.,

PP=Pand PT=P=P=U"U

for some U € RK*™ with orthonormal rows

>

>
>
>
>

>

PT = P implies that P = VTAV for an orthogonal V € R™
P2 =(VTAV)VTAV = VTA2V = VTAV = P,

This in turn implies that A = A

Therefore, A can only have 0 and 1 entries on the diagonal
Take U to be V after removing the rows in the position
corresponding to the zero eigenvalues

Then: P=UTU



Projections

Theorem (Properties of orthogonal projections)

Every vector x € R™ has a unique orthogonal projection Px onto
any subspace S C R™ of finite dimension. In particular x can be
expressed as

x=Px+ (I —P)x (11)

» One can prove that (I — P) is also an orthogonal projection

» And it's a projection on the orthogonal complement S+



Projections

> Assume x{ € S, x5 € ST such that x = x{ + x}
> Since (a1 —x1) + (2 —x) =0, [(xg —x) + (2 = %) =0
» Then x; — x] €S and x2 — x5 € St implies

10xq = x1) + (2 = )12 = [10xq = x)[* + (| = x5) 12

P so the above expression is zero, i.e., orthogonal projection is
unique.



Projections as optimization

Theorem

The orthogonal projection Px of a vector x onto a subspace S is
the closest vector to x in the I? norm that belongs to S in , i.e. Px
solves the optimization problem

minimize [|x — ul]
u

subject to uesS.



Projections as optimization

Proof.
» Take any point u € § such that u # Px
[ = ull? = [|(1 = P)x + Px — ul[? (12)
— [(/ = P)XII? + [|Px — ull® + 2 ((1 = P)x, Px — u)
(13)
= [|(1 = P)x[[* + || Px — ul|? (14)

where (14) follows because (/ — P)x belongs to S* and
Px —uto S.

> If u# Px , then ||Px — ul|* > 0.
» Therefore, the optimal u = Px.



Next steps

» Finish review of linear algebra: SVD
» Review probability and optimization
> PCA
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