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Course progress

» Last time - diagonalization of square matrices, projections

» Today - singular value decomposition (SVD)



SVD - motivation

» Last time we studied diagonalization (eigendecomposition) of
symmetric square matrices

S=QAQT

» Non-symmetric square matrices

» can be also diagonalized if they have n linearly independent

eigenvectors,
A= XANX"1

P but eigenvectors may not be orthogonal and the
eigenvalues/eigenvectors may be complex-valued
» To avoid these issues use SVD

» More generally use SVD for A € R™*" of arbitrary dimension
A=UzVvT

where U € R™*™ and V € R™" are orthogonal and
Y € R™*" is “diagonal”.



Background - LU factorization

» Previously encountered other factorizations of nonsquare
matrices.

» For A€ R™" with m < n, Ax = b can be solved by LU
factorization

» Elimination leads to Ux = L~'x = c where L € R™"™ is the
lower triangular matrix of multipliers of pivot rows,

1 0 0 O
w10 0
B hk 1 0
by ho Iz 1

and h; = 321/311, b1 = 321/311, lay = 341/311, etc., and
U € R™*" is an upper triangular matrix of pivot rows.
» Backsubstitution of Ux = c leads to x
> We have factored A= LU

> Not commonly used in practice when the system is
underdetermined (m < n).
» Instead use regularization (will study later) to fix a solution



Background - QR factorization

> A full rank A= QR where Q € R™*™ is orthogonal
andR € R™*™ is triangular
» Achieved by orthogonalizing col(A) (Gram-Schmidt)

> g1 =a .
A~ 1—
> Gi=ai— ) ;1(qj,a)q
> g = Gi/l gl
» Therefore, each a; is a linear combination of g1,...,qgj_1, i.e.

R is upper triangular
» QR factorization can be generalized to nonsquare matrices

» Commonly used for least squares and related problems (if A is
sparse, there are better algorithms) - will also study later



SVD -reduced form

» Another factorization A = CR with rank r
» The shape of CR is (m by n) = (m by r)(r by n)
» C with r orthogonal columns, and
» R with r orthogonal rows

» Normalization leads to the reduced form of the SVD

cp 0 --- O Vi
Al w oow] |0 01

o 0 - o, v,
=Ux, Vv

» where C = U,/X, and R = \/Z,V,T, and o; >0

» If you choose o to be in descending order, then X, is unique
(but U and V are not necessarily unique)



Full SVD

» Add the m — r orthogonal vectors that span C(A)* as
columns to U,

» Add the n — r orthogonal vectors that span N(A) as columns
of V,

» Add o,41,...,0p =0t0 X,

o -
o2 0 Vi
V2
A= [ul up - um]
oy v,
- 0 O -
= Uzv’

where X is a R™*" rather than a square R™*" matrix.
» For symmetric PSD matrices U = V by the

eigendecomposition, so it's a special case of the SVD
» For other symmetric matrices, the SVD generalizes

eigendecomposition modulo the sign(s) of o}, v;, u;.



SvD

» The proof of the SVD existence is constructive and based on
the eigendecomposition of symmetric matrices

» ATA and AAT which are positive semidefinite and have the
same nonzero eigenvalues

ATA=VAVT = (vzuT)(UZVT)
AAT = UNUT = (UzVT)(vETUT)

where o) = /A for Ay > 0 and the remaining entries of
are zero.



SvD

By the previous page
ATA=VAVT[=(vZUuT)(UZVT))

where o) = v/ Ak for Ax # 0 and the remaining entries of
are zero.

To determine uj, we require Avy = oy Uy

This would imply AV = XU, and therefore the existence of
SVvD

Avi = ogug = ug = M
Ok
Add the m — r orthogonal vectors u,1, ..., un, that span
C(A)* as columns to U
And add the n — r orthogonal vectors v,41,..., v, that span

N(A) as columns of V to get the full SVD



SvD

» To confirm that uy are eigenvectors of AAT e,
AAT = UNUT = (UzVvT)(vETUT)
we take

A ATA 2
AAT e = AAT Wk — p 720 W 0% _ 2,
Ok Ok Ok

» To confirm that uy are orthonormal:

J

= —V: V, =
J o “T o ifj£k

T T s
ul uy = (ﬂ)TAVk _ Y (ATAV) _ ok 7 1 ifj=k
Ok ojok j



Geometric interpretation of SVD

» SVD can be represented as rotation x stretching x rotation

A
T * Az
vT b3 U
V2 N
g2 AN
-
A4 o1U1

Figure: Fig 1.10 from [1]

» V or U can also entail reflections along an n — 1 dimensional
hyperplane (if det A < 0)



SVD and spectral norms

» For any matrix A € R™*" with left singular vectors
uy, U, ..., u, corresponding to the nonzero singular values
cp>0p>...>20, >0,

O']__H Hax HA ul|2,

u; = arg max HA ul|2,

or=max |[ATull, 2<k
[lull2=1
ulug,..,ue_q

| /\

ue=arg max ||[ATull, 2<k<r.
[lull2=1
ulug,..,uk—1



SVD and spectral norms

» Soln: If A= UXVT is a reduced form SVD then
AAT = UuzvTvzuT = uz?UT,
where Y2 is a diagonal R™*" matrix containing
0% > 0% > ... > O'E in its diagonal.
» The result now follows from applying the optimization-based

formulation of eigendecomposition we discussed in Lecture 2
to the quadratic form

uAAT u = ||AT ul]3.



SVD is the best k-rank approximation

» Unlike other matrix factorizations, SVD has a property that is
often exploited in data science applications

> Let A = a1u1v1T + ...+ akukva.
» It is the best k-rank approximation of A, i.e.,

A=Al < |A- B

for all B with rank k.



SVD is the best k-rank approximation in the spectral norm

P> Let's prove this for the spectral, or 2, norm:

[All2 = max [|Ax]| = o1
x||=1

> Note that A — Ay = ak+1uk+1vk7—+1 + ...+ arurv,T.
» Therefore taking x = viy1, we have ||A — Ag|| = o1

> Now we just need to show that
A= Bl < o)1

for all B with rank k.



SVD is the best k-rank approximation in the spectral norm

v

The nullspace of B has dim > n — k since B has rank < k.
Also vq, ..., Vvks+1 span a k + 1 dimensional subspace.

We have > n — k and k 4 1 dimensional subspaces in an n
dimensional space.

Then by standard linear algebra, span(vi, ..., vk+1) and N(B)
must intersect.



SVD is the best k-rank approximation

» Choose nonzero unit norm vector in this intersection

k+1
X = Z civi € N(B) Nspan(va, ..., Vkt1)

> Then since x € N(B) and ||x||> = 32K ¢? = 1, we have

I

k+1 k+1

I(A = B)x|I> = | Ax[| = | Y ciojvi |I* = Zc o? > 0%

i=1

for all B with rank k.



Next steps

» Review of probability and optimization
> PCA
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