
1/40

Math of Data Science: Lecture 5

Vlad Kobzar

APAM, Columbia

September 20, 2022

2/40

Course progress

I Last lecture:
I Basics of probability: Probabilistic inequalities
I Jointly distributed random variables: independence and

covariance

I This lecture:
I Finish probability review: LLNs, Gaussian RVs and CLT

I Presentation based on reference [1] and [3]

I Optimization review
I Presentation based on references [2], [4] and [5]

3/40

Motivation for expectation/LLN

I As with the sample mean, we can think of E [X] as indicating
where the values taken by X ’typically’ lie (even though E [X]
may not actually equal any of the possible values of X)

I There are plenty of other quantities that can be used this way
(such as ’median’ and ’mode’ in statistics).

I But the expectation has a better theory and more
computational tools available, making it more useful to solve
problems.

I For example, if the loss function depends on random inputs,
its expectation is is a natural choice of the thing to minimize
in machine learning problems

I The LLN connects expectations with long-run averages when
we perform an experiment many independent times

4/40

LLN

I One of our basic intuitions about probability is this: If we
perform an experiment independently many times, and E is an
event that can happen for each performance of the
experiment, then in the long-run average

frequency of occurrence of E ≈ P(E).

I For instance, if 37% (not a real statistic) of US citizens have
visible dandruff, and we randomly select a few thousand
citizens (a large number, but much less than US population),
then we expect about 37% of those sampled to have visible
dandruff.

I So this is saying that, under these long-run average
conditions, this ’frequency random variable’ settles down, in
some approximate sense, to the fixed value P(E).

5/40

LLN

I Instead of an event E , assume our basic experiment has a
random variable X , e.g.,1E indicator function of the event E

I Independent repeats of the experiment give independent
copies of this random variable, say X1,X2,

I In general, a sequence of RVs X1,X2, ... are independent and
identically distributed (’i.i.d.’) if (i) they are independent, and
(ii) they all have the same distribution. Let

µn =
1

n

∑

i

Xi

I (Weak Law of Large Numbers, ’WLLN’). For any ε > 0, we
have

P(|µn − E [X]| ≥ ε)→ 0 as n→∞
where µn is the sample mean defined previously

6/40

LLN

I (Weak) Law of Large Numbers:

I For any ε > 0, we have

P(|µn − E [X]| ≥ ε)→ 0 as n→∞

I We will justify this result subject to the extra assumption that
every X has a well-defined and finite variance (some RVs
don’t). This must be the same for every Xi - call it σ2.

I (LLN is actually true without this assumption.)

7/40

LLN justification
I By linearity of expectation, we have E [µn] = E [X]

I We’ve previously shown that

Var(aX) = Cov(aX , aX) = a2Cov(X ,X) = a2Var(X)

I Also since Xi s are independent,

Var(
n∑

i=1

Xi) =
n∑

i=1

Var(Xi) =
n∑

i=1

σ2
i

I Using these results and that Xi ’s have the same variance,

Var(µn) = Var(
1

n

n∑

i=1

Xi) =
σ2

n

Then, since E |µn − E [X]|2 = Var(µn), by Chebychev

P(|µn − E [X]| ≥ ε) = P(|µn − E [X]|2 ≥ ε2) ≤ σ2

nε2

8/40

LLN

I Let Xi ’s be i.i.d. with expectation E [X], the sample mean is

µn =
1

n

∑

i

Xi

I (Weak) Law of Large Numbers: Then for any ε > 0,

P(|µn − E [X]| ≥ ε)→ 0 as n→∞

I How large n has to be depends on how good an
approximation you want

I Our proof gave an explicit estimate for how long we have to
wait, given ε.

I Another way of visualizing the n Bernoulli-trials case: once n
is large, then 1

nbinom(p, n), PMF puts almost all of its mass
into a narrow window around the mean p.

9/40

LLN

I The WLLN does not say that Xn is guaranteed to be close to
p, only that this is very likely.

I Of course, if we’re very unlucky, we might toss a fair coin but
still get the outcome

HHHHHHHHHHHH or maybe

HHTHTTHHTHHH

I For these very unlikely outcomes, the sample mean takes the
values 1 and 2/3 respectively, far away from the true mean,
which is 1/2.

10/40

LLN

I If we consider our running sequence of sample means µn, then
WLLN says that, for each individual large value of n, µn is
unlikely be far away from E [X].

I But that’s an infinite sequence of unlikely events.

I Even though their individual probabilities are small, we can
still imagine that one of them occurs very occasionally.

I That is, it could be that µn mostly stays close to E [X], but as
n increases µn very occasionally makes a large deviation away
from µ.

I Strong LLN says this doesn’t happen.

P(lim
n→∞

µn = E [X]) = 1

I Proof is more difficult that WLLN (e.g., can use estimates of
the 4th moments E [µ4

n]/n4)

11/40

CLT

I Back to our dandruff example:
I If 37% of US citizens have visible dandruff, and we randomly

select a thousand citizens (a large number, but much less than
the US population), then we expect about 37% of those
sampled to have visible dandruff.

I Taking Xi = 1i−th person has dandruff

I Now SLLN ensures that

P(lim
n→∞

µn = E [X] = P(person has dandruff)) = 1

I But how confident can we be of this approximation? Is a
sample of a thousand large enough for the effect to be reliable?

12/40

CLT

I In the LLN context our question was: Pick two error
tolerances, ε > 0 and α > 0. How large does n have to be so
that

P(|µn − E [X]| ≥ ε) < α

I (There were really two kinds of error tolerance involved all
along: ε is how close you want µn to be to E [X] = p, and α is
the small probability of error that you allow.

I Our proof of the WLLN gave

P(|µn − E [X]| ≥ ε) ≤ σ2

nε2

I I.e., bound on the probability of the tails

13/40

CLT

I Now our question is: effectively how wide are spikes around
the mean as n→∞.

I E.g., for a Bernoulli X1,,Xn with p = 1/2, let

Sn =
n∑

i=1

Xi

I We want to approximate the ’shape’ of the PMF

P(Sn = k)

when k/n is close to 1/2, i.e. in a range

n/2− nε < k < n/2 + nε

14/40

Gaussian

I The normal distribution with mean m and variance σ2, or
N(m, σ2) is given by the Gaussian density

p(x) =
1

σ
√

2π
e−(x−m)2/(2σ2)

I The the CDF of standard normal N(0, 1) is

Φ(a) =
1√
2π

∫ a

−∞
e−x

2/2

15/40

CLT
I Let X1, ...,Xn be i.i.d with mean E [X] and Var(X) = σ2 and

µn =
1

n
(X1 + ...+ Xn)

I The Central Limit Theorem: The limiting distribution of√
n(µn − E [X]) is N(0, 1), in the following sense.

P(a <

√
n

σ
(µn − E [X]) < b)→ Φ (b)− Φ (a)

as n→∞.

I This implies

P(|µn − E [X]| < c√
n

)→ Φ
(c
σ

)
− Φ

(
− c

σ

)

I and taking ε = c√
n

P(|µn − E [X]| < ε)→ Φ

(
ε
√
n

σ

)
− Φ

(
−ε
√
n

σ

)

16/40

CLT

I Note that CLT gives

P(|µn − E [X]| < ε)→ Φ

(
ε
√
n

σ

)
− Φ

(
−ε
√
n

σ

)

I On the other hand, if we wanted to bound the probability
mass around the mean rather than the tails, the WLLN is not
informative as n→∞

P(|µn − E [X]| < ε) ≥ 1− σ2

nε2

I This follows from

1− P(|µn − E [X]| < ε) = P(|µn − E [X]| ≥ ε) ≤ σ2

nε2

17/40

Optimization review - convexity

I K is a convex set: if x , y ∈ K , then so is the line segment
from x to y , i.e.

px + (1− p)y ∈ K

for p ∈ [0, 1].

I f is a convex fcn if the set of points on and above the graph
of F is convex, i.e.

f (px + (1− p)y) ≤ pf (x) + (1− p)f (y)

for p ∈ [0, 1]

ORF 523 Lecture 7 Spring 2015, Princeton University

Instructor: A.A. Ahmadi

Scribe: G. Hall Tuesday, March 1, 2016

When in doubt on the accuracy of these notes, please cross check with the instructor’s notes,

on aaa. princeton. edu/ orf523 . Any typos should be emailed to gh4@princeton.edu.

In the previous couple of lectures, we’ve been focusing on the theory of convex sets. In this

lecture, we shift our focus to the other important player in convex optimization, namely,

convex functions. Here are some of the topics that we will touch upon:

• Convex, concave, strictly convex, and strongly convex functions

• First and second order characterizations of convex functions

• Optimality conditions for convex problems

1 Theory of convex functions

1.1 Definition

Let’s first recall the definition of a convex function.

Definition 1. A function f : Rn ! R is convex if its domain is a convex set and for all x, y

in its domain, and all � 2 [0, 1], we have

f(�x + (1 � �)y) �f(x) + (1 � �)f(y).

Figure 1: An illustration of the definition of a convex function

1

18/40

Convex optimization

I Convex optimization
min
x∈K

f (x)

where K is a convex set and f (x) is a convex function

I Thm: Any local minimum is global, and there will be no
isolated local min

I Justification: if that wasn’t true, then the line between two
local min would intersect with the graph of f

19/40

Gradient descent

I Let’s start with an unconstrained problem

min
x

f (x)

I Gradient descent algorithm is an iterative method given by

xk+1 = xk − sk∇f (xk)

I x0 is an initial (often random) guess

I We’ll discuss the step size (also called learning rate sk > 0)
shortly.

20/40

GD and learning

I Let’s look at our linear regression objective (typically scale the
loss by the number of data points in ML, but that shouldn’t
affect the minimization)

R(x) =
1

n
‖Ax − b‖2 =

1

n

n∑

i=1

(xTai − bi)
2

I To learn x , we can follow the GD descent algorithm

xk+1 = xk − sk∇R(x)

where

∇R(x) =
1

n
(2x>A>A− 2b>A) =

1

n

n∑

i=1

2(xTai − bi)ai

21/40

GD and learning
I Our linear regression objective uses a square loss to measures

the difference between the prediction of a linear model xTai
and the actual data bi

`i (x) = (xTai − bi)
2

I You can generalize this to other loss functions and learning
algorithms

`i (x) = `(F (x , ai)− bi)
2

I E.g., F can represent a neural network, which outputs a label
F (x , a) given features a and parameters x .

I The training, i.e., learning x given the data, can be done by
minimizing

L(x) =
1

n

n∑

i=1

`i (x)

I Sometimes the above term is called is called empirical risk,
and the training process is called empirical risk minimization

22/40

Learning rate
I Several ways to determine sk depending on the algorithm
I For GD, a convergence guarantee is available for a fixed step

size s ≤ 1/M where M is the Lipschitz constant of the
gradient

‖∇f (x)−∇f (y)‖ ≤ M‖x − y‖
uniformly over the domain

I If f is C 2, then M would be the bound of the eigenvalues λi
of the Hessian

|λi | ≤ M

for all i uniformly in x .
I Often M is not known, but we can extend the convergence

guarantees to exact line search

sk = arg min
s≥0

f (xk − s∇f (xk))

I And backtracking line search, which iteratively reduces sk until

f (xk+1) ≤ f (xk)− 1

2
sk‖∇f (xk)‖2

2

23/40

Gradient descent convergence - fixed step size

I Let G = ‖∇f (xk)‖2
2: the 2nd order Taylor expansion is

f (xk+1)

= f (xk) + 〈∇f (xk), xk+1 − xk〉+
1

2
(xk+1 − xk)TH(ξ)(xk+1 − xk)

= f (xk)− sG +
1

2
(xk+1 − xk)TH(ξ)(xk+1 − xk)

for some ξ on the segment between xk+1 and xk (mean value
form of the remainder)

I If the eigenvalues λi of H are |λi | ≤ M for all i uniformly in x

f (xk+1) ≤ f (xk)− sG +
s2M

2
G = f (xk)− 1

2M
G

I The RHS is minimized taking the step size s = 1
M .

I But any s < 2
M will reduce f

24/40

Gradient descent convergence - fixed step size

I From the previous slide

f (xk+1) ≤ f (xk)− 1

2M
G

taking the step size s = 1
M where G = ‖∇f (xk)‖2

2.

I Assume that f is bounded below by f ∗ (reasonable in ML
since the loss function is typically nonnegative)

I Idea of a convergence argument
I Start at some f (x0) and at each step decrease f by at least

1
2MG

I We can’t decrease f (xk) below f ∗

I So G must be going to zero “fast enough”

25/40

Gradient descent convergence - fixed step size

I From the previous slide

f (xk+1) ≤ f (xk)− 1

2M
G

taking the step size s = 1
M where G = ‖∇f (xk)‖2

2.

I rearrange
G ≤ 2M(f (xk)− f (xk+1))

I sum over time periods

t∑

k=0

‖∇f (xk)‖2
2 ≤ 2M

t∑

k=0

[f (xk)− f (xk+1)]

26/40

Gradient descent convergence - fixed step size

I From the previous slide

t−1∑

k=0

‖∇f (xk)‖2
2 ≤ 2M

t−1∑

k=0

[f (xk)− f (xk+1)]

I Replacing ∇f (xk) with mink ∇f (xk) on the LHS, using the
telescoping sum on the RHS and then the fact that f (xt) ≥ f ∗

t min
0≤k≤t−1

‖∇f (xk)‖2
2 ≤ 2M[f (x0)− f (xt)] ≤ 2M[f (x0)− f ∗]

I Therefore

min
0≤k≤t−1

‖∇f (xk)‖2
2 ≤

2M[f (x0)− f ∗]
t

= O(1/t)

27/40

Gradient descent convergence - fixed step size

I From the previous slide

min
0≤k≤t−1

‖∇f (xk)‖2
2 ≤

2M[f (x0)− f ∗]
t

= O(1/t)

I So the norm is below ε if

2M[f (x0)− f ∗]
t

≤ ε

I This is guaranteed for

2M[f (x0)− f ∗]
ε

≤ t

I So GD requires t = O(1/ε) iterations to achieve
‖∇f (xk)‖2

2 ≤ ε

28/40

Gradient descent convergence - fixed step size

I The previous argument didn’t assume that f is convex, so the
GD was converging to a local minimum (theoretically could
also converge to a saddle point).

I Guaranteeing convergence to a global minimum of a
nonconvex function requires multiple random initializations or
grid search

I This requires t = O(1/εd) iterations to achieve
‖∇f (xk)‖2

2 ≤ ε for functions with Lipschitz continuous
gradients and x ∈ Rd

I In practice gradient-based methods work well for non-convex
functions used in ML/NN even though there are not
theoretical convergence guarantees

I If f is convex, then ∇f (x∗) = 0 at a global minimizer x∗

I Therefore the above argument guarantees convergence to the
global min at the above rate

29/40

Gradient descent convergence - fixed step size

I If f is strongly convex, i.e, the eigenvalues λi of the Hessian
H are also 0 < m ≤ λi uniformly in x , the convergence
O((1− m

M)k) for 0 < c < 1.

I This means that a bound of

f (xk)− f (x∗) ≤ ε

can be achieved using only O(log(1/ε)) iterations.

I This rate is called “linear convergence” for historic reasons
(the error lies below a line on a log-linear plot of the error vs
iteration number)

I Many loss functions in ML are not strongly convex, e.g., Relu
and softmax are convex but not strongly convex

I Adding an `2 regularization term will make them such and can
improve convergence

30/40

Gradient descent convergence
I Let G = ‖∇f (xk)‖2

2: the 2nd order Taylor expansion is

f (xk+1)

= f (xk) + 〈∇f (xk), xk+1 − xk〉+
1

2
(xk+1 − xk)TH(ξ)(xk+1 − xk)

= f (xk)− sG +
1

2
(xk+1 − xk)TH(ξ)(xk+1 − xk)

for some ξ on the segment between xk+1 and xk (mean value
form of the remainder)

I If the eigenvalues λi of H are m ≤ λi ≤ M for all i

f (xk+1) ≤ f (xk)− sG +
s2M

2
G = f (xk)− 1

2M
G

taking s = 1
M (exact line search)

I For the optimal x∗,

f (xk+1)− f (x∗) ≤ f (xk)− f (x∗)− 1

2M
G

31/40

Gradient descent convergence

I By a similar argument

f (x∗)

= f (xk) + 〈∇f (xk), x∗ − xk〉+
1

2
(x∗ − xk)TH(ξ)(x∗ − xk)

≥ f (xk) + 〈∇f (xk), x̃ − xk〉+
m

2
‖x̃ − xk‖2

= f (xk)− 1

2m
G

where x̃ = xk − 1
m∇f (xk) is determined by minimizing the

above expression with respect to x̃

I we get

f (xk+1)− f (x∗) ≤ (1− m

M
)(f (xk)− f (x∗))

32/40

Learning rate-GD line search
I The previous discussion suggested a fixed step size of 1/M
I In practice, the Lipschitz of constant of the gradient is not

known
I so “try a big step-size, and decrease it if isn’t satisfying a

progress bound.”
I Another alternative is exact line search:

sk = arg min
s

f (xk − s∇f (xk))

I The previous bounds relied on

f (xk+1) ≤ f (xk)− 1

2M
G

where xk+1 is determined using a fixed step size s = 1
M .

I For x∗k+1 determined by an exact line search

f (x∗k+1) ≤ f (xk+1)

so all the convergence guarantees still hold

33/40

Learning rate-GD backtracking line search
I Exact line search can be also computationally expensive since

we need to optimize f in 1D
I For α ∈ (0, 0.5), β ∈ (0, 1), initial t = 1, backtracking line

search entails iteratively reducing s = αt via

t = βt

until f (xk+1) ≤ f (xk)− αt‖∇f (xk)‖2
2

9.2 Descent methods 465

t

f(x + t∆x)

t = 0 t0

f(x) + αt∇f(x)T ∆xf(x) + t∇f(x)T ∆x

Figure 9.1 Backtracking line search. The curve shows f , restricted to the line
over which we search. The lower dashed line shows the linear extrapolation
of f , and the upper dashed line has a slope a factor of α smaller. The
backtracking condition is that f lies below the upper dashed line, i.e., 0 ≤
t ≤ t0.

The line search is called backtracking because it starts with unit step size and
then reduces it by the factor β until the stopping condition f(x + t∆x) ≤ f(x) +
αt∇f(x)T ∆x holds. Since ∆x is a descent direction, we have ∇f(x)T ∆x < 0, so
for small enough t we have

f(x + t∆x) ≈ f(x) + t∇f(x)T ∆x < f(x) + αt∇f(x)T ∆x,

which shows that the backtracking line search eventually terminates. The constant
α can be interpreted as the fraction of the decrease in f predicted by linear extrap-
olation that we will accept. (The reason for requiring α to be smaller than 0.5 will
become clear later.)

The backtracking condition is illustrated in figure 9.1. This figure suggests,
and it can be shown, that the backtracking exit inequality f(x + t∆x) ≤ f(x) +
αt∇f(x)T ∆x holds for t ≥ 0 in an interval (0, t0]. It follows that the backtracking
line search stops with a step length t that satisfies

t = 1, or t ∈ (βt0, t0].

The first case occurs when the step length t = 1 satisfies the backtracking condition,
i.e., 1 ≤ t0. In particular, we can say that the step length obtained by backtracking
line search satisfies

t ≥ min{1,βt0}.

When dom f is not all of Rn, the condition f(x+ t∆x) ≤ f(x)+αt∇f(x)T ∆x
in the backtracking line search must be interpreted carefully. By our convention
that f is infinite outside its domain, the inequality implies that x + t∆x ∈ dom f .
In a practical implementation, we first multiply t by β until x + t∆x ∈ dom f ;

Figure: The backtracking condition is that f lies below the upper
dashed line Fig 9.1 from [5]

I Since −∇f (xk) is a descent direction, the backtracking
condition is satisfied for a sufficiently small t ∈ (0, t0].

I Therefore, the line search stops with t = 1 or t ∈ (βt0, t0].

34/40

Learning rate-GD backtracking line search

I From previous the line search stops with t = 1 or t ∈ (βt0, t0].
t ≥ min(t, βt0)

I By convexity of g(t) = −t + Mt2/2

g(x/M + (1− x) · 0)) ≤ xg(1/M)− (1− x)g(0)

I This implies
−t + Mt2/2 ≤ −t/2

35/40

Learning rate-GD backtracking line search

I By the previous slide

−t + Mt2/2 ≤ −t/2

I By an earlier computation, for G = ‖∇f (xk)‖2
2

f (xk+1) ≤ f (xk)− tG +
t2M

2
G

≤ f (xk)− t

2
G

≤ f (xk)− αtG

I Since the first inequality holds with equality for t = 1/M, the
backtracking line search terminates with t = 1 or t ≥ β/M:

f (xk+1) ≤ f (xk)−min{α, βα/M}G

36/40

Learning rate-GD backtracking line search

I By the previous slide

f (xk+1) ≤ f (xk)−min{α, βα/M}G

I We can repeat the earlier argument with a different constant
prefactor

min
0≤k≤t−1

‖∇f (xk)‖2
2 ≤

[f (x0)− f ∗]
min{α, βα/M}t = O(1/t)

37/40

Nesterov accelerated descent
I If f is convex (but not necessarily strongly convex) is the

t = O(1/ε) “sublinear convergence” optimal?

I So called Nesterov accelerated descent

xk+1 = yk − s∇f (yk)

yk+1 = xk+1 + βk(xk+1 − xk)

achieves error of O(1/t2) after t iterations.

I Can use s = 1/M and βk = (k − 1)/(k + 2)

I So only needs t = O(1/
√
ε) to get within ε of the solution

I It not straightforward to understand why this method works
better

I One observation is that this is not a descent method, i.e., the
steps may overshoot the minimum and oscillate around it,
rather than converging from one direction.

I Used in practice to optimize convex and nonconvex function
in ML

38/40

Second order methods: Newton’s method
I A second order approximation of a convex C 2 function is

g(y) = f (x) +∇f (y − x) +
1

2
(y − x)T∇2f (x)(y − x)

I If the Hessian is positive definite,

arg min
y

g(y) = x − (∇2f (x))−1∇f (x)

I This idea leads to Newton’s method

xk+1 = xk − (∇2f (xk))−1∇f (xk)

which has quadratic convergence under certain assumptions

Figure 14: Newton’s method applied to a one-dimensional convex function. The quadratic approxima-
tions to the function at each iteration are depicted in red.

the closed-form solution for least squares derived in Theorem 2.1 of Lectures Notes 6. This is
illustrated in Figure 15, along with another example where the function is convex but not quadratic.
Newton’s method can provide significant acceleration for problems of moderate sizes where the
quadratic approximation is accurate, but often inverting the Hessian may be computationally
expensive.

Example 3.21 (Newton’s method for logistic regression). The following lemma derives the Hes-
sian of the logistic regression log-likelihood cost function (58).

Lemma 3.22. The Hessian of the function f in equation (58) equals

r2f(~�) = �XT G(~�)X, (100)

where the rows of X 2 Rn⇥p contain the feature vectors ~x (1), . . .~x (n) and G is a diagonal matrix
such that

G(~�)ii := g(h~x (i), ~�i)
⇣
1 � g(h~x (i), ~�i)

⌘
, 1 i n. (101)

Proof. By the identities (60) and (61) and the chain rule we have

@2f (~x)

@~x[j]@~x[l]
= �

nX

i=1

g(h~x (i), ~�i)
⇣
1 � g(h~x (i), ~�i)

⌘
~x(i)[j]~x(i)[l] (102)

for 1 j, l p. 4

Corollary 3.23. The logistic regression log-likelihood cost function (58) is concave.

24

Figure: Quadratic approximation of 1D convex function (Fig14 from [4])

39/40

Next steps

I PCA (Sec I.9)

I Conjugate gradients (Sec. II.1) and least squares (Sec. II.2)

40/40

References I

[1] Tim Austin, Theory of Probability unpublished lecture
notes, 2016

[2] Strang, Linear Algebra and Learning from Data, Wellesley
Cambridge Press, 2019 and

[3] Ross, A First Course in Probability (9th ed., 2014)

[4] Carlos Fernandez-Granda, DS-GA 1013 / MATH-GA 2821
Optimization-based Data Analysis, Lecture Notes, 2017
https://math.nyu.edu/˜cfgranda/pages/OBDA_
fall17/index.html

[5] Boyd, Vandenberghe, Convex Optimization

https://math.nyu.edu/~cfgranda/pages/OBDA_fall17/index.html
https://math.nyu.edu/~cfgranda/pages/OBDA_fall17/index.html

