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I Course overview

I A few motivating examples
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I Combine theory and computation
I Theory tells us about solutions and how to find them
I Computation allows us to find solutions
I They are related: understanding computational methods is a

type of theory
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Tools

I The main math tools for this course are linear algebra and
probability/statistics

I The main computational tool is optimization
I Probability and statistics will come in two forms:

I Randomized models: data is modeled by some unknown
distribution; the problem would entail estimating that
distribution

I Randomized algorithms, e.g., stochastic gradient descent
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Supervised learning and linear models

I Linear models
I regression, such as OLS
I classification, including perceptron, logistic regression and

SVMs
I focus on geometric and probabilistic interpretations and

computational solutions

I Fitting models to training data, such as empirical risk
minimization

I Performance on unseen (test) data and regularization
techniques

I Sparse models and compressed sensing
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Regression example

Data points (a1, b1), . . . , (an, bn) ∈ Rd ×R organized as

I Features A =


−a1−
−a2−

...
−an−

 and response b =


b1
b2
...
bn


I E.g., NOAA publishes hourly observation of temperature at

various stations across the US
I The Yellowstone sensor fails at time τ
I Can we predict the temperature b̂τ there from the

contemporaneous observations at other stations aτ ?
I Use the observations A and b from the other periods to “fit”

to the data a simple linear model

f (a) = x>a.

I CONCEPT CHECK: Can you “solve” Ax = b when n >> d
(“big data” regime)?
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OLS

I The least-squares fit between the data and the model

x̂ = arg min
x

R(x)

where

R(x) =
n∑

t=1

(bt − a>t x)2 = ‖b − Ax‖22

= x>A>Ax − 2b>Ax + b>b

I If A is full rank and n ≥ d , A>A is positive definite

I By the 2nd derivative test

x̂ =
(
A>A

)−1
A>b
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Stats interpretation

I If the data is given by a probabilistic model

b ∼ Ax + N(0, σ2I )

OLS provides weights that make the data most probable, i.e.

xMLE = arg max
x

L(x , σ2) = arg min
x

R(x) = x̂

where the log of the likelihood function is

L(x , σ2) = p(b|Ax , σ2) =
1√

2πσ2
e−
‖b−Ax‖2

2σ2

I Pf: Maximizing L(x , σ2) w.r.t. x is the same as minimizing

R(x) = ‖b − Ax‖22.
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Geometric interpretation

x̂ = arg min
x

R(x)

where

R(x) = ‖b − Ax‖22

I Ax̂ = UUTb - orthogonal projection of b on the span of the
columns of A

I Prove using the SVD: A = UΣV T .
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Computational aspects

x̂ = arg min
x

R(x) =
(
A>A

)−1
A>b

I But if d is large, inverting A>A is computationally expensive.

I The factorization A = QR avoids inversion

I First solve for λ = Rx = Q−1b = Q>b

I Then back-substitution to solve λ = Rx for x

I For sparse data, use iterative optimization methods (e.g.,
gradient descent and conjugate gradients)

I Since R is convex, convergence is guaranteed; can study rates

I For very large data use randomized algorithms
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Overfitting

I Small error on the training set, but high error on a test set
because x̂ will fit the features that may not be relevant (e.g.,
sensors very far from Yellowstone)

I Can we find a sparse linear model?
I E.g., predict the Yellowstone temperatures based on

observations from a small subset of the stations
I This subset is “learned” from the training data



12/27

Sparse regression (LASSO)

I l0 penalty: ‖x‖0 = # of nonzero entries of x

I This regularization enforces sparsity: for λ > 0

x0 = arg min
x

(
R(x) + λ‖x‖0

)
I But is intractable (the objective not convex; l0 not a norm)

I Would a ”relaxation” to the l1 norm also promote sparsity?
I LASSO

I Penalized form

x1 = arg min
x

(
R(x) + λ‖x‖1

)
I Equivalent to constrained form

x1 = arg min
‖x‖1≤r

R(x)

I Pf. by a Lagrange multiplier-type calculation
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LASSO
I Constrained form

x1 = arg min
‖x‖1≤r

R(x)

I By completing the squares,

R(x) = (x − ŵ)>AAT (x − ŵ) + R(ŵ)

where the OLS solution ŵ of the unconstrained problem is the
center of the ellipsoid OLS level sets

Figure: Level sets of R(x) in red and the area satisfying ‖x‖1 ≤ r in blue
(Fig 3.11 from [6]).
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Solving LASSO numerically

I No general closed form solution
I Even for OLS, the closed form solution is not used for large

data sets due to computation cost of matrix inversion

I Use computational solutions
I LASSO can be reduced to a convex optimization problem

(quadratic program), can use standard iterative solvers
I Can be more efficient to use other methods that exploit the

structure of the lasso objective, e.g., the linear separability of
the l1 norm
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Sparse inverse problems
I Now we have n < d for A ∈ Rn×d - “inverse problem”

regime, e.g. MRI

I CONCEPT CHECK: If b in column space of A, can you solve
Ax = b?

I With sparsity and other technical assumptions, l1
minimization can exactly recover a sparse vector x .

I (Candes, Tao, Donoho) For

x∗ = arg min ‖x‖1
s.t. b = Ax

if (a) the row of A are not too localized so that they won’t
miss the entries of S-sparse x and (b) there is enough data
n ≥ O(S log d).

I key idea entails recovering the support of x (i.e., indices of
nonzero entries) and therefore reducing it to a well-posed
problem.



16/27

Course intro cont’d

I Unsupervised learning/dimensionality reduction
I Principal component analysis (PCA)
I Matrix completion and the Netflix problem
I Clustering and graph-based learning
I Ranking and the PageRank algorithm

I High-dimensional data: randomized LA and random
projections

I Nonlinear models
I Kernel methods and representer theorem
I Mathematical aspects of deep learning, including universal

approximation, backprop and vanishing gradients
I CNNs and neural models for sequential data and graphs

I Generative models and semi-supervised learning
I comparison to discriminative models in high dimensions
I generalizations to diffusion models
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Matrix completion
I Low rank models are common when only a few factors explain

the variance in data organized in the matrix.
I Motivation: Netflix competition

Bob Molly Mary Larry


The Dark Knight −10 −10 10 5
Spiderman 3 −7 −10 8 10
Love Actually 8 10 −5 −9
Bridget Jones’s Diary 10 4 −6 −10
Pretty Woman 8 9 −9 −4
Superman 2 −9 −8 9 10

:= A,

I To make a recommendation, estimate missing entries

Bob Molly Mary Larry
( )X-Men 7: Mutant Mosquito −10 ? 8 10

I Fit a low rank model using the SVD: A = UΣV T

I a truncated rank-k SVD is the best rank-k approximation of A
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Matrix completion

I Low rank structure implies correlation between entries

I Netflix problem: How do we exploit it to predict missing
entries?

I E.g. where a user is going to like a new movie

I E.g., if the below matrix is rank 1, then we must have 1 in
place of the missing entry.1 ? 1

1 1 1
1 1 1

 = 11
T

I This seems like an easy matrix to complete.
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Matrix completion

I On the other hand, if a matrix is sparse or its rows correlate
with the canonical basis, it seems much harder to complete0 0 0

0 0 0
0 0 ?

 =

0
0
?

 [0 0 ?
]

Therefore differences in the structure of a low rank matrix
may determine how hard or difficult it is to complete.

I Coherence (or localization of non-zero values of rows and
columns) is relevant here

I For example, if the left singular vectors (columns of U)
correlate with the canonical basis vectors, matrix will hard to
complete.
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Nuclear norm minimization

I Since rank is not a convex function, minimization of the rank
subject to known entries A0 = {(i , j), aij} is not
computationally tractable.

(N) min rank(A)

A ∈ Rm×n

Aij = aij for (i , j) ∈ A0

I Note that rank is an l0 “norm” of Σ for A = UΣV T .
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Nuclear norm minimization

I Instead use a “convex relaxation” based on minimization of
the nuclear norm:

(N) min ‖A‖N
A ∈ Rm×n

Aij = aij for (i , j) ∈ A0

where

‖A‖N =
r∑

i=1

σi

and σi are singular values and r is rank of A

I Note that rank is an l1 “norm” of Σ.
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From predictions to actions

I Sequential decision making and Kalman filtering

I Interaction with adversarial environments – online learning
I Incomplete information and exploration-exploitation trade-offs

I Bandit problems and mathematical aspects of reinforcement
learning
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Modern example - movie ratings

I Let a feature vector x describe a user

I We choose 1 out of 5 hit movies and recommend it to x
I If we could figure out what movie this user would have liked

the best (whether or not it’s the one we chose)
I “Full information” in the sense that we know what was the

best action
I Next time we have a similar user x ′ ≈ x , we know what to do
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Movie ratings - partial information

I Instead we only get the feedback on the movie recommended
to x
I Let’s say 3 out of 5 stars
I Next time we have a similar user x ′ ≈ x , should we

recommend the same movies
I Or try a different one to get 5 stars??
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Next steps

I Review of linear algebra, probability, statistics and
optimization

I PCA, least squares
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