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Maximal clique of the Paley graphs

• Paley graph Gp, for prime p ≡ 1 mod 4, is a graph with the vertex set V (Gp) = Fp, where two
vertices are connected if their difference is a quadratic residue in Fp

• A subset of vertices in a graph G forms a clique if every pair in that subset is adjacent. Write
K(G) as the set of all cliques in G.

• The clique number ω(G) is the size of a largest clique in G

• For a clique K in G, the localization GK is the subgraph of G induced on all vertices (excluding
those in K) that are adjacent to every vertex in K.

• Examples: G13 and G41 below with the largest cliques marked in red

Background and Motivations

• Determining ω(G) of G = (V, E), and even approximating it up to an O(|V |1−ϵ) factor, is a
classic NP-hard problem

• Paley graphs Gp in some aspects, pseudorandom, behave like the Erdos-Renyi (ER) graphs
G(1/2, p) (where E[ω(G(1/2, p)] ∼ 2 log p)

• Gp’s are conjectured to lead to deterministic restricted isometries in compressed sensing
• The spectral u.b. and Lovasz θ / SOS2 yield ω(Gp) ≤ √

p

• The SOTA u.b. by Hanson and Petridis [5] improves on the above by a constant prefactor

ω(Gp) ≤ HP (Gp) ∼
√

p
√

2
• The SOTA l. b. is

ω(Gp) ≥ log p log log log p

• Numerical evidence supports conjectured ω(Gp) = O(polylog(p))

• Achieving an O
(

p
1
2−ϵ

)
u.b. for ϵ > 0, i.e., breaking the so-called

√
p bottleneck for ω(Gp) is

regarded as a difficult open problem in additive combinatorics and TCS
• For random graphs G ∼ G(1

2, n), convex relaxations (Lovasz-Schriver and SOS hierarchies) do
not break the

√
n bottleneck

• However, numerical evidence suggests that SOS4(Gp) and the block diagonal L3(Gp)
relaxation of [4] [1, 2] do break this bottleneck

• The values of the block-diagonal L2 relaxation bound from above the SOS-4 values
• Therefore, the Ω(p1/3) l.b. for SOS4 in [1] also applies to the L2 relaxations
• Thus, it was previously unclear if the L2 relaxation, which is sandwiched between SOS2 and

SOS4 may break the
√

p bottleneck

Integer program and SDP relaxations

• Given a graph G = (V, E), with n = |V |:

ω(G) = max
∑
i∈V

xi, s.t. x ∈ Rn, x2
i = xi ∀i ∈ V, xixj = 0 ∀{i, j} /∈ E

• For a vector y ∈ RP2t and I, J in the power set P2t(V ) of V with 2t elements, the moment
matrix Mt(y) is given by Mt(y)I,J = yI∪J

• The SOS2t relaxation of the maximal clique number of G, is given by:

SOS2t(G) := max
∑
i∈V

yi,∅ s.t. y ∈ RP2t, with y∅ = 1, yS,T = 0 ∀S ∪T /∈ K, Mt(y) ⪰ 0

where K is the set of all cliques of G

• The block-diagonal hierarchy Lt further relaxed SOS2t by replacing Mt(y) ⪰ 0 with PSD
conditions for principal submatrices of Mt(y) indexed by

A(T ) :=
⋃
S⊆T

AS, where AS := {S} ∪ {S ∪ {i} | i ∈ V }.

• For any G, Lt for it’s clique number problem is

Lt(G) :=


max

∑
i∈V

y{i}

s.t. y ∈ RPt+1, y∅ = 1, y{i,j} = 0, ∀{i, j} /∈ E

A(S, T )(y) ⪰ 0 for all S ⊆ T and T ∈ P=t−1


where

A(S, T )(y) :=
∑

S′:S⊆S′⊆T

(−1)|S′\S|AS′(y)

with

AS(y)∅,∅ = yS, AS(y)∅,i = yS∪{i}, AS(y)i,j = yS∪{i,j} (i, j ∈ V, where |V | = n)

Main result: Lower bound on Lt(Gp,K)

• We proved the following lower bound on Lt(Gp,K) for any t and K of arbitrary size a := |K|:

Lt(Gp,K) ≥
√

p

2a+t−1 + O
( a

2t

)
• This shows for any fixed t and a, Lt and Lovász-Shrijver does not break

√
p bottleneck.

• However, our bound leaves open the possibility (supported by numerical evidence) that Lt

could improve the constant prefactor relative to the HP (Gp) SOTA u.b.
• Since the lower bound is a function of a + t, it’s consistent with the relaxation-localization

trade-off conjectured in [3].
• We also plot the model of the form a

√
p for t = 2, 3

Proof techniques

• We construct a feasible point of Lt(Gp,K) using Feige-Krauthgamer (FK) pseudomoments,
similar to such construction in [1] for SOS2t, restricting our attention to

α|S| := 1S∈K(Gp,K)yS

where α0 = 1
• After removing duplicated rows and columns and possibly removing/padding zero columns, it’s

enough to consider Â(S, T )(y), which is the first two levels of the alternating sum in
A(S, T )(y). This allows the positive-definiteness condition to be tractable

• For each Â(S, T )(α), the PSDness is proved by considering it’s Schur complement DS

• The minimum eigenvalue λmin(DS) of DS can be lower-bounded by analyzing the matrices
appeared in the matrices in the first two levels of the alternating sum in A(S, T )(y), using
decomposition techniques and characteristic sum estimates

• We assume αi = cip
−i/p and proved that by choosing

2 >
2√

p
√

p + 1
≥ ct+1

ct
= 2ct

ct−1
= 4ct−1

ct−2
= ... = 2t−1c2

c1
= 2tc1

c0
= 2tc1

we have a lower bound for λmin(DS), which is non-negative
• Therefore, the condition Â(S, T )(α) ⪰ 0 holds for any ∅ ⊆ S ⊆ T ∈ P=t−1. Showing our

choice of αi leads to a feasible point to Lt(Gp,K)
• These feasible ci’s lead to the lower bound specified above, with an error term of O( a

2t)
• For t = 1 and certain a’s, the above error can be more accurately computed

Extensions and future works

• Our result also leave open the possibility that the block-diagonal relaxations may improve the
constant prefactor of the Hanson-Petridis upper bound

• Such upper bounds may be obtained by constructing feasible points of the corresponding dual
programs

• Rather than considering fixed a, t, let a, t be slowly growing functions of p, say ϵ log(p), it could
be possible that Lt(Gp,K) still break the

√
p-barrier
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