Lower Bounds on Block-Diagonal SDP Relaxations for the Clique Number of the **Paley Graphs**

Yifan Wang, Yanling Shen, Vladimir A. Kobzar

Applied Physics and Applied Mathematics, Columbia University

Maximal clique of the Paley graphs

- Paley graph G_p , for prime $p \equiv 1 \mod 4$, is a graph with the vertex set $V(G_p) = \mathbb{F}_p$, where two vertices are connected if their difference is a quadratic residue in \mathbb{F}_p
- A subset of vertices in a graph G forms a *clique* if every pair in that subset is adjacent. Write $\mathcal{K}(G)$ as the set of all cliques in G.
- The *clique number* $\omega(G)$ is the size of a largest clique in G
- For a clique K in G, the localization G_K is the subgraph of G induced on all vertices (excluding those in K) that are adjacent to every vertex in K.
- *Examples*: G_{13} and G_{41} below with the largest cliques marked in red

Main result: Lower bound on $L^t(G_{p,K})$

• We proved the following lower bound on $L^t(G_{p,K})$ for any t and K of arbitrary size a := |K|:

 $L^{t}(\overline{G}_{p,K}) \ge \frac{\sqrt{p}}{2^{a+t-1}} + O\left(\frac{a}{2^{t}}\right)$

- This shows for any fixed t and a, L^t and Lovász-Shrijver does not break \sqrt{p} bottleneck.
- However, our bound leaves open the possibility (supported by numerical evidence) that L^t could improve the constant prefactor relative to the $HP(G_p)$ SOTA u.b.
- Since the lower bound is a function of a + t, it's consistent with the relaxation-localization trade-off conjectured in [3].
- We also plot the model of the form $a\sqrt{p}$ for t = 2, 3

Background and Motivations

- Determining $\omega(G)$ of G = (V, E), and even approximating it up to an $O(|V|^{1-\epsilon})$ factor, is a classic NP-hard problem
- Paley graphs G_p in some aspects, *pseudorandom*, behave like the *Erdos-Renyi* (*ER*) graphs $\mathcal{G}(1/2, p)$ (where $\mathbb{E}[\omega(\mathcal{G}(1/2, p)] \sim 2\log p)$
- G_p 's are conjectured to lead to deterministic restricted isometries in compressed sensing
- The spectral u.b. and Lovasz θ / SOS_2 yield $\omega(G_p) \leq \sqrt{p}$
- The SOTA u.b. by Hanson and Petridis [5] improves on the above by a constant prefactor

$$\omega(G_p) \le HP(G_p) \sim \frac{\sqrt{p}}{\sqrt{2}}$$

• The SOTA l. b. is

$$\omega(G_p) \ge \log p \log \log \log p$$

• Numerical evidence supports *conjectured* $\omega(G_p) = O(\text{polylog}(p))$

- Achieving an $O\left(p^{\frac{1}{2}-\epsilon}\right)$ u.b. for $\epsilon > 0$, i.e., breaking the so-called \sqrt{p} bottleneck for $\omega(G_p)$ is regarded as a difficult open problem in additive combinatorics and TCS
- For random graphs $G \sim \mathcal{G}(\frac{1}{2}, n)$, convex relaxations (Lovasz-Schriver and SOS hierarchies) do *not* break the \sqrt{n} bottleneck
- However, numerical evidence suggests that $SOS_4(G_p)$ and the block diagonal $L^3(G_p)$ relaxation of [4] [1, 2] do break this bottleneck
- The values of the block-diagonal L^2 relaxation bound from above the SOS-4 values
- Therefore, the $\Omega(p^{1/3})$ l.b. for SOS_4 in [1] also applies to the L^2 relaxations
- Thus, it was previously unclear if the L^2 relaxation, which is sandwiched between SOS_2 and SOS_4 may break the \sqrt{p} bottleneck

Integer program and SDP relaxations

Proof techniques

• We construct a feasible point of $L^t(G_{p,K})$ using *Feige-Krauthgamer (FK) pseudomoments*, similar to such construction in [1] for SOS_{2t} , restricting our attention to

$$\alpha_{|S|} := \mathbb{1}_{S \in \mathcal{K}(G_{p,K})} y_S$$

where $\alpha_0 = 1$

- After removing duplicated rows and columns and possibly removing/padding zero columns, it's enough to consider $\hat{A}(S,T)(y)$, which is the first two levels of the alternating sum in A(S,T)(y). This allows the positive-definiteness condition to be tractable
- For each $\hat{A}(S,T)(\alpha)$, the PSDness is proved by considering it's Schur complement D_S
- The minimum eigenvalue $\lambda_{\min}(D_S)$ of D_S can be lower-bounded by analyzing the matrices appeared in the matrices in the first two levels of the alternating sum in A(S,T)(y), using decomposition techniques and characteristic sum estimates
- We assume $\alpha_i = c_i p^{-i/p}$ and proved that by choosing

$$2 > \frac{2\sqrt{p}}{\sqrt{p+1}} \ge \frac{c_{t+1}}{c_t} = \frac{2c_t}{c_{t-1}} = \frac{4c_{t-1}}{c_{t-2}} = \dots = \frac{2^{t-1}c_2}{c_1} = \frac{2^t c_1}{c_0} = 2^t c_1$$

we have a lower bound for $\lambda_{\min}(D_S)$, which is non-negative

- Therefore, the condition $\hat{A}(S,T)(\alpha) \succeq 0$ holds for any $\emptyset \subseteq S \subseteq T \in \mathcal{P}_{=t-1}$. Showing our choice of α_i leads to a feasible point to $L^t(G_{p,K})$
- These feasible c_i 's lead to the lower bound specified above, with an error term of $O(\frac{a}{2t})$
- For t = 1 and certain a's, the above error can be more accurately computed

Extensions and future works

• Our result also leave open the possibility that the block-diagonal relaxations may improve the constant prefactor of the Hanson-Petridis upper bound

• Given a graph G = (V, E), with n = |V|:

$$\omega(G) = \max \sum_{i \in V} x_i, \quad \text{s.t.} \quad x \in \mathbb{R}^n, \ x_i^2 = x_i \ \forall i \in V, \ x_i x_j = 0 \ \forall \{i, j\} \notin E$$

- For a vector $y \in \mathbb{R}^{\mathcal{P}_{2t}}$ and I, J in the *power set* $\mathcal{P}_{2t}(V)$ of V with 2t elements, the *moment matrix* $M_t(y)$ is given by $M_t(y)_{I,J} = y_{I\cup J}$
- The SOS_{2t} relaxation of the maximal clique number of G, is given by:

$$SOS_{2t}(G) := \max \sum_{i \in V} y_{i,\varnothing}$$
 s.t. $y \in \mathbb{R}^{\mathcal{P}_{2t}}$, with $y_{\varnothing} = 1$, $y_{S,T} = 0 \quad \forall S \cup T \notin K$, $M_t(y) \succeq 0$

where K is the set of all cliques of G

• The block-diagonal hierarchy L^t further relaxed SOS_{2t} by replacing $M_t(y) \succeq 0$ with PSD conditions for principal submatrices of $M_t(y)$ indexed by

$$A(T) := \bigcup_{S \subseteq T} A_S, \text{ where } A_S := \{S\} \cup \{S \cup \{i\} \mid i \in V\}$$

• For any G, L^t for it's clique number problem is

$$L^{t}(\overline{G}) := \begin{cases} \max \sum_{i \in V} y_{\{i\}} \\ \text{s.t. } y \in \mathbb{R}^{\mathcal{P}t+1}, \ y_{\varnothing} = 1, \ y_{\{i,j\}} = 0, \forall \{i,j\} \notin E \\ A(S,T)(y) \succeq 0 \text{ for all } S \subseteq T \text{ and } T \in \mathcal{P}_{=t-1} \end{cases}$$

where

$$A(S,T)(y) := \sum_{S':S \subseteq S' \subseteq T} (-1)^{|S' \setminus S|} A_{S'}(y)$$

with

$$A_{S}(y)_{\varnothing,\varnothing} = y_{S}, \ A_{S}(y)_{\varnothing,i} = y_{S\cup\{i\}}, \ A_{S}(y)_{i,j} = y_{S\cup\{i,j\}} \ (i,j \in V, \text{ where } |V| = n)$$

- Such upper bounds may be obtained by constructing feasible points of the corresponding dual programs
- Rather than considering fixed a, t, let a, t be slowly growing functions of p, say $\epsilon \log(p)$, it could be possible that $L^t(G_{p,K})$ still break the \sqrt{p} -barrier

Acknowledgements & References

V.A.K. is partially supported by the National Science Foundation through grants DMS-1937254 and DMS-2309802.

- [1] Dmitriy Kunisky and Xifan Yu A degree 4 sum-of-squares lower bound for the clique number of the Paley graph. *CCC 2023*,
- [2] Vladimir A. Kobzar and Krishnan Mody. Revisiting Block-Diagonal SDP Relaxations for the Clique Number of the Paley Graphs. SampTA 2023,
- [3] Dmitriy Kunisky.

Spectral pseudorandomness and the road to improved clique number bounds for Paley graphs. arXiv:2303.16475, 2023

[4] N. Gvozdenovic and M. Laurent and F. Vallentin.

Block-diagonal semidefinite programming hierarchies for 0/1 programming. Operations Research Letters 37:27-31, 2009

[5] Brandon Hanson and Giorgis Petridis.

Refined estimates concerning sumsets contained in the roots of unity. Proceedings of the London Mathematical Society, 122(3):353–358, 2021