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Symmetric Two-Armed Bernoulli Bandit

» Background
> Minimax optimal player
» PDE-based characterization of regret



Slot machine

Round 1 2 3 45 6 7 8 9 10| Total
Left (arm 1) | O 1 0 0 1 ]G =2
Right (arm 2) 1 1 1 00 Gy =3

*The distribution of the arms is not directly revealed to the player

Image: (LS20)



A/B testing

y
~ i
» Let s; be the sample size for i-th ‘arm’ (drug 1 vs placebo 2).
T=s51+%
» For the expected probability of recovery m;,
Ho = {my < mo}
> A test statistic
z= (rﬂl — n'12>/\/6%/51 +53/s2
where the sample mean & variance for Bernoulli r.v.’s are resp.
mj = Gi/s; and 52 = m;(1 — m;)
» Reject Hp if, e.g.,
z> ¢ 1(.95) = 1.645

Image: (LS20)



Thompson, 1933
» The data so far suggests that the new drug is better, but is
not “conclusive” (as defined by p — value < 0.05)
» Should we adjust our actions to minimize the administration
of the inferior treatment?
» If 90% confident, allocate 90% of the trials to the new drug
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Exploration /exploitation trade-off

P Exploitation: choose the best action given the revealed data

» Exploration: choose the best action to improve our knowledge
about the values of different actions

» Bandit selection entails a trade-offs between these extremes
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Two-armed bandit

» One of the oldest learning problems (Tho33; Rob52)

» The distributions of the arms a := (a1, a2) is secret

> The player selects the arm according to a policy (pt)¢e[7]

» Each p; is based on information revealed earlier, at each 7 < t

In each t € [T]
1l gt~a
2. It ~ p; (independently of g;)

3. Iy and gy, + are revealed to the player




Pseudoregret

» The gap between the arms’ means:
€E=m — my

» The final-time expected pseudoregret:

Rr(p,a) := €Epa
where s, = sample size for 2nd (suboptimal) arm
» The expected loss from choosing the suboptimal arm

» Drop the subscript in s, for simplicity going forward



Regret
E(rewards of the best arm in hindsight)—(rewards of the chosen arms)

» Formalized as

R —E _
7(p;a) = Epa e Zt:(gk,t h.t)

» Equivalently

Rr(p,a) :=Epa kg\{?é} Xk,0

where

Xei=) & — &1

T<t

» (Denote the starting time by -T and final time by 0)



Pseudoregret vs regret

» We have

Rr(p,a) < Rr(p, a)

» From the previous slide

Rr(p,a) :=E max X
7(p,a) p’ak€{1,2} k,0

» Also

R7(p,a) = €Ep a5

=Epa ) (m—m)l,—
t

= max E —E
kelis) azt:gk,t p,azt:glt,t

= max E,axko
k€{1,2} P )



Minimax (pseudo) regret

» The minimax regret

RT = mpin max R7(p, a) (1)
» Similarly, the minimax pseuodregret

Ry = mpin max R1(p, a) (2)
» Even when the arms are iid Bernoulli, these quantities (or any

minimax optimal player that attains them) are not known
exactly.



Bernoulli two-armed bandits - fixed gap

> Fixed gap regime
. = 1
min R7(a, p) = o<, log T)
p €
» The bound is vacuous when

e—0

fast enough

> |.e., the difficulty of detecting the gap increases as the sample
size increases



Bernouilli two-armed bandits - minimax setting

» Asymptotic bounds (Bat83; Vog60)

0.306 < lim inf R%/VT < lim sup R%/V/T <0.376
T—o0 T—o0
» Nonasymptotic bounds (BCB12; RVR14; LG21)

R*(T) < .832V/T

0.07VT < {R*(T) <7.762V'T

» The exact constants in front of v/ T are still unknown.

» The nonasymptotic |.b. is achieved by the symmetric
Bernoulli bandit

» The only known lower bound for k-armed bandits too



Symmetric two-armed Bernoulli bandit

» Optimal arm a;: for 0 < e < 1,

1-— 1
P(ai =-1) = € and P(a; =1) = te
2 2
» Suboptimal arm a;:
1 1-—
Plai=—1)= 1 and Par=1)= "

independently from arm 1 and the history

» The arms are statistically equivalent
dyp = —az

» l.e., samples from one arm can be converted into samples
from the other one by flipping the sign



Myopic player

» In general good players balance sampling of the arms
(exploration) with choosing the arm with the highest expected
reward (exploitation).

» But in the symmetric case, the distribution of arms 1 and 2
are statistically equivalent

dyp = —ao

» Thus, the player will get the same information about the
means of both arms by sampling either one

» While exploration is not needed, this symmetric problem has
not been fully understood previously



Previous results - symmetric case

> (Bat83) considered a Bayesian version of the symmetric
two-armed bandit problem

P> Same as above except that the index of the optimal arm j is
sampled from a uniform distribution over {1, 2}
» The Bayes optimal player is myopic = chooses the arm with

the highest posterior probability of being the safe one given
the revealed rewards.



Previous results - symmetric case

» The Bayes optimal (myopic) policy can be computed explicitly.

(].,0) if Gi — G, >0
pm: (%,%) ifGl—GQZO
(0,1)if G — G <0

where the revealed cumulative rewards of arm i are

G = Z 8+l =i,

T<t

> (Bat83) determined the leading order of Bayesian
pseudoregret under the worst case (uniform) prior

R® ~ 530VT




Our advances - symmetric two-armed bandit

» Prove the minmax optimality of p™

» Associate the leading order term of RT and R’i} with explicit
solutions of linear heat equations

» Make progress towards unifying the analyses of

» Bayesian and minimax regret, on the one hand, and
» regret and pseudoregret, on the other hand.



Main ideas - minimax optimality of p™

» Centering the arms helps simplify the state space (eliminate
dependence of s;)

P As noted an optimal strategy can depend on all available
information at time t > —T, i.e., p = pt(H;—1) where

Ht—l = (I—T7 ceey It—lu gI,T,—Tu seey glt_l,t—l)a (3)

» Unlike the Bayesian setting where the posterior depends on
cumulative statistics, in the minimax setting we need to show
that the minimax optimal player depends on the cumulative
and not entire history

> We show that if the optimal player depends on the full history,
it can be modified to depend on cumulative statistics only
while preserving optimality



Main ideas - PDE characterization of (pseudo)regret

> “Numerical analysis in reverse”
» Characterize the regret and pseudoregret by dynamic programs
» Find the PDEs that are discretized by these DPs



State variables

» The centered revealed rewards are

§:= Z (817111 — &2, 11, =2) — €t

T<t

» The final pseudoregret is proportional to the number of times
the suboptimal arm was sampled

2es

» —T is the starting time and 0 is the final time



Discrete iterative scheme

» Expected final-time regret achieved by the player p if the
prediction process starts at time t w/given £ and s:

v(&,s,0) = 2es (4a)
v(&,s,t) =E,p v(§+dE,s+ds, t+1) fort < -1 (4b)

where
ds=1,=2 and d§ = g1lj=1 —glj=2 — €

» The PDE comes from the heuristics that the definition of v
should be a consistent numerical scheme for the PDE



PDE associated with the discrete scheme
Let u be the C° solution on R3 x Rg of

ur+Lu=gq (5a)
u(§,s,0) = 2es (5b)
where

K
2
and the stationary source is

Lu= ~ug and Kk =1 — €,

alE + et) = {—26 !f§+et<0
0 if E4+et>0

» [ is obtained by computing the leading terms of the Taylor
expansion of E; , v({ + d&,s + ds, t + 1) around v(§, s, t)

> q is obtained by comparing E, , v(§,s + ds, t) with v(¢, s, t)
assuming v(&,s + ¢, t) = v(&, s, t) + ec like the final value

» uge (and possibly ue) are discontinuous at £ = 0 due to the
discontinuity of gq.



The PDE has a explicit solution

» The fundamental solution G of w; + Lw = 0 is explicit
> Let ¢ be a CO function of y = & + et satisfying

K
Lo=ep' + 5@” =q (6)

> |t is explicit, and we can choose constants to ensure at most
linear growth at oo

() = —2y if y <o
PYIZ Vbe2 — b ify >0

where b parametrizes the jump of ¢’ at £ + €t = 0.
> Then for w = u — ¢,

we+ Lw =20
W(f, 570) = w(ﬁ,s)

where ¥(§,s) = 2es — p(§).
» Therefore, u is also explicit:

u=G*xY+p=2es—Gxp+p



Backwards induction (verification argument)

» Initialization u(¢,s,0) = v(&,s,0)

» Hypothesis v(§,s, t+1) = u(§,s,t + 1)+ E(t + 1)

P The discretization error E is bounded by bounding the higher
order terms of the Taylor expansion of u

u(é, s, t) + E(t)

=Ep, u(§+df,s+ds, t+1)+ E(t + 1)[PDE+higher term bound]
=Ep, v({+dE,s+ds, t+1) [inductive hypothesis]
=v(¢,s,t) [DPP of v]



Discretization error

» How is Taylor expansion useful in a game where the rewards
are not small?

» As noted before
u=2es—G*xp+y

where G is a fundamental solution of a linear fixed coefficients
parabolic PDE w;y 4+ Lw =0

» G is a function of £/+/|t|. Therefore, when |t| is large, £ + d§
is only O(1//|t|) apart from ¢

» 3rd spatial derivatives of G * ¢ are O(\t]_%) —integrating
them with respect to t leads to an O(1) cumulative error

> Also (9 = O(be?), which is controlled by the rate at which
be — 0 approaches zero as T — oo



Medium gap
» Let e = /+/T for constant v > 0. Then

c(v) = 7'|Lmoo\/1TRT( ,a) = I|m \/ITU(O 0,-T)=

» Similarly compute the prefactor ¢ of the leading order of Rt

0.6 -

0.5

0.4+

0.3+

/ .
02r / o lim, o c(y) = ﬁ 1
K * max,.gc(y)
/
0.1F / c(7)
/ 0 max,sg(y)
-—c)

0 / 1 1
0 0.707 1.247




Other gap regimes

> We can also compute R7(p™, a) and R1(p™, a) when ¢
approaches zero faster and slower than 7/ﬁ

Small gap Medium gap Large gap: € €
e:o(T*%) c=~T 2 [w(T*%),o(l)}
Rr(p™, a) 172~ 564 T2 | c(y)T2(max 572 T2) 1/
min(Ex(=T), Eo(=T)) o(1) o(1) o(1)
Ry(p™, a) eT E('y)T%(max .530 T%) 1/e
min(Ey(=T), Eo(=T)) | O(elog T + €2 T) 0o(1) 0o(1)




Our advances - symmetric two-armed bandit

» Since p™ is discontinuous as a function of revealed gains when
G1 — Gy = 0, the spatial derivatives of the solution of the
relevant PDEs are discontinuous in that region.

» While this discontinuity does not affect the leading order
behavior, it affects the discretization error.
» \We optimize this discontinuity to minimize this error.

» We explicitly determine the leading order terms of R} and

R, i.e., the exact constants in front of VT, in the symmetric
bandit setting.
» Existing techniques rely on information theory to bound below
R’? in the Bernouilli bandit problems.
» This leads to the only known nonasymptotic lower bounds in
the general bandit problems.
» Our results lead to sharper nonasymptotic regret and
pseudoregret lower bounds in the 2-armed case
» They are established by more elementary methods.



Extensions

» Determining optimal policies in general bandits is more
challenging due to the exploration- exploitation trade-off

» But there are more realistic settings where exploration is not
needed, and therefore we expect that our work can be
extended, such as

» Bayesian k-armed bandit setting where the player knows that
one arm has an arbitrary distribution P (but does not know
which arm) while all the other arms have the same distribution
Q (Fel62; Rod78; Zab76).

» The only known lower bound for k-armed bandits is established
using such a distribution

» General bandit problems where a (possibly suboptimal) policy
is given (e.g., Thompson sampling)



Conclusion

» Offer a fresh PDE-based perspective on symmetric two-armed
bandit problem

» Provide minmax optimality of the myopic player and obtain
the leading order minimax optimal regret and pseudoregret
with explicit non-asymptotic error bounds

» This improves the corresponding lower bounds for the general
two-armed Bernoulli bandit

» Develop novel PDE-based techniques that could be used to
investigate bandit problems further

» For more details see our preprint (KK22) on arXiv
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