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Symmetric Two-Armed Bernoulli Bandit

I Background

I Minimax optimal player

I PDE-based characterization of regret
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Slot machine

Introduction 9

plays a role in Monte Carlo Tree Search, an algorithm made famous by the recent
success of AlphaGo.

Finally, the mathematical formulation of bandit problems leads to a rich
structure with connections to other branches of mathematics. In writing this
book (and previous papers), we have read books on convex analysis/optimisation,
Brownian motion, probability theory, concentration analysis, statistics, di�erential
geometry, information theory, Markov chains, computational complexity and more.
What fun!

A combination of all these factors has led to an enormous growth in research
over the last two decades. Google Scholar reports less than 1000, then 2700 and
7000 papers when searching for the phrase ‘bandit algorithm’ for the periods of
2001–5, 2006–10, and 2011–15, respectively, and the trend just seems to have
strengthened since then, with 5600 papers coming up for the period of 2016 to
the middle of 2018. Even if these numbers are somewhat overblown, they are
indicative of a rapidly growing field. This could be a fashion, or maybe there is
something interesting happening here. We think that the latter is true.

A Classical Dilemma

Imagine you are playing a two-armed bandit machine and you already pulled
each lever five times, resulting in the following pay-o�s (in dollars):

Figure 1.2 Two-
armed bandit

Round 1 2 3 4 5 6 7 8 9 10

left 0 10 0 0 10

right 10 0 0 0 0

The left arm appears to be doing slightly better. The
average pay-o� for this arm is $4, while the average for the
right arm is only $2. Let’s say you have 10 more trials (pulls)
altogether. What is your strategy? Will you keep pulling
the left arm, ignoring the right? Or would you attribute the poor performance of
the right arm to bad luck and try it a few more times? How many more times?
This illustrates one of the main interests in bandit problems. They capture the
fundamental dilemma a learner faces when choosing between uncertain options.
Should one explore an option that looks inferior or exploit by going with the
option that looks best currently? Finding the right balance between exploration
and exploitation is at the heart of all bandit problems.

5

Round 1 2 3 4 5 6 7 8 9 10 Total

Left (arm 1) 0 1 0 0 1 G1 = 2
Right (arm 2) 1 1 1 0 0 G2 = 3

*The distribution of the arms is not directly revealed to the player

Image: (LS20)



4/38

A/B testing

This material will be published by Cambridge University Press as Bandit
Algorithms by Tor Lattimore and Csaba Szepesvari. This pre-publication version
is free to view and download for personal use only. Not for re-distribution, sale,
or use in derivative works. © Tor Lattimore and Csaba Szepesvari 2017.
The latest version is available at http://banditalgs.com. Feedback on any
aspect is very welcome: banditalgs@gmail.com

33 Pure Exploration

Figure 33.1 The mouse never
benefits from the experiment.

All the policies proposed in this book so far were
designed to maximise the cumulative reward. As
a consequence, the policies must carefully balance
exploration against exploitation. But what happens
if there is no price to be paid for exploring? Imagine,
for example, that a researcher has k configurations
of a new drug and a budget to experiment on
n mice. The researcher wants to find the most
promising drug configuration for subsequent human
trials, but is not concerned with the outcomes
for the mice. Problems of this nature are called
pure exploration problems. Although there are
similarities to the cumulative regret setting, there are also di�erences. This
chapter outlines a variety of pure exploration problems and describes the basic
algorithmic ideas.

33.1 Simple Regret

Let ‹ be a k-armed stochastic bandit and fi = (fit)n+1
t=1 be a policy. One way to

measure the performance of a policy in the pure exploration setting is the simple
regret,

Rsimple
n (fi, ‹) = E‹fi

#
�An+1(‹)

$
.

The action chosen in round n+1 has a special role. In the example with the mice,
it represents the configuration recommended for further investigation at the end
of the trial. We start by analysing the uniform exploration (UE) policy, which
explores deterministically for the first n rounds and recommends the empirically
best arm in round n + 1. The pseudocode is provided in Algorithm 20.

Theorem 33.1. Let fi be the policy of Algorithm 20 and ‹ œ EkSG(1) be a 1-
subgaussian bandit. Then, for all n Ø k,

Rsimple
n (fi, ‹) Æ min

�Ø0

Q
a� +

ÿ

i:�i(‹)>�

�i(‹) exp
3

≠Ân/kÊ �i(‹)2
4

4R
b .

I Let si be the sample size for i-th ‘arm’ (drug 1 vs placebo 2).

T = s1 + s2

I For the expected probability of recovery mi ,

H0 = {m1 ≤ m2}
I A test statistic

z =
(
m̄1 − m̄2

)/√
σ̄21/s1 + σ̄22/s2

where the sample mean & variance for Bernoulli r.v.’s are resp.

m̄i = Gi/si and σ̄2i = m̄i (1− m̄i )

I Reject H0 if, e.g.,

z > Φ−1(.95) = 1.645
Image: (LS20)
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Thompson, 1933
I The data so far suggests that the new drug is better, but is

not “conclusive” (as defined by p − value < 0.05)

I Should we adjust our actions to minimize the administration
of the inferior treatment?

I If 90% confident, allocate 90% of the trials to the new drug
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Exploration/exploitation trade-off

I Exploitation: choose the best action given the revealed data

I Exploration: choose the best action to improve our knowledge
about the values of different actions

I Bandit selection entails a trade-offs between these extremes
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Two-armed bandit

I One of the oldest learning problems (Tho33; Rob52)

I The distributions of the arms a := (a1, a2) is secret

I The player selects the arm according to a policy (pt)t∈[T ]

I Each pt is based on information revealed earlier, at each τ < t

In each t ∈ [T ]

1. gt ∼ a

2. It ∼ pt (independently of gt)

3. It and gIt ,t are revealed to the player
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Pseudoregret

I The gap between the arms’ means:

ε = m1 −m2

I The final-time expected pseudoregret:

R̄T (p, a) := εEp,as2

where s2 = sample size for 2nd (suboptimal) arm

I The expected loss from choosing the suboptimal arm

I Drop the subscript in s2 for simplicity going forward
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Regret

E(rewards of the best arm in hindsight)−(rewards of the chosen arms)

I Formalized as

RT (p, a) = Ep,a max
k∈{1,2}

∑
t

(gk,t − gIt ,t)

I Equivalently

RT (p, a) := Ep,a max
k∈{1,2}

xk,0

where

xt :=
∑
τ<t

gτ − gIτ ,τ1

I (Denote the starting time by -T and final time by 0)
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Pseudoregret vs regret

I We have
R̄T (p, a) ≤ RT (p, a)

I From the previous slide

RT (p, a) := Ep,a max
k∈{1,2}

xk,0

I Also

R̄T (p, a) := εEp,as

= Ep,a

∑
t

(m1 −m2)1It=2

= max
k∈{1,2}

Ea

∑
t

gk,t − Ep,a

∑
t

gIt ,t

= max
k∈{1,2}

Ep,axk,0
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Minimax (pseudo) regret

I The minimax regret

R∗T := min
p

max
a

RT (p, a) (1)

I Similarly, the minimax pseuodregret

R̄∗T := min
p

max
a

R̄T (p, a) (2)

I Even when the arms are iid Bernoulli, these quantities (or any
minimax optimal player that attains them) are not known
exactly.
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Bernoulli two-armed bandits - fixed gap

I Fixed gap regime

min
p

R̄T (a, p) = O
(1

ε
logT

)
I The bound is vacuous when

ε→ 0

fast enough

I I.e., the difficulty of detecting the gap increases as the sample
size increases
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Bernouilli two-armed bandits - minimax setting

I Asymptotic bounds (Bat83; Vog60)

0.306 ≤ lim
T→∞

inf R̄∗T/
√
T ≤ lim

T→∞
sup R̄∗T/

√
T ≤ 0.376

I Nonasymptotic bounds (BCB12; RVR14; LG21)

0.07
√
T ≤

{
R̄∗(T ) ≤ .832

√
T

R∗(T ) ≤ 7.762
√
T

I The exact constants in front of
√
T are still unknown.

I The nonasymptotic l.b. is achieved by the symmetric
Bernoulli bandit
I The only known lower bound for k-armed bandits too



14/38

Symmetric two-armed Bernoulli bandit

I Optimal arm a1: for 0 < ε < 1,

P(a1 = −1) =
1− ε

2
and P(a1 = 1) =

1 + ε

2

I Suboptimal arm a2:

P(ai = −1) =
1 + ε

2
and P(ai = 1) =

1− ε
2

independently from arm 1 and the history

I The arms are statistically equivalent

a1 = −a2

I I.e., samples from one arm can be converted into samples
from the other one by flipping the sign
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Myopic player

I In general good players balance sampling of the arms
(exploration) with choosing the arm with the highest expected
reward (exploitation).

I But in the symmetric case, the distribution of arms 1 and 2
are statistically equivalent

a1 = −a2

I Thus, the player will get the same information about the
means of both arms by sampling either one

I While exploration is not needed, this symmetric problem has
not been fully understood previously
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Previous results - symmetric case

I (Bat83) considered a Bayesian version of the symmetric
two-armed bandit problem

I Same as above except that the index of the optimal arm j is
sampled from a uniform distribution over {1, 2}

I The Bayes optimal player is myopic = chooses the arm with
the highest posterior probability of being the safe one given
the revealed rewards.
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Previous results - symmetric case

I The Bayes optimal (myopic) policy can be computed explicitly.

pm =


(1, 0) if G1 − G2 > 0(
1
2 ,

1
2

)
if G1 − G2 = 0

(0, 1) if G1 − G2 < 0

where the revealed cumulative rewards of arm i are

Gi =
∑
τ<t

gi ,τ1Iτ=i ,

I (Bat83) determined the leading order of Bayesian
pseudoregret under the worst case (uniform) prior

R̄B
T ≈ .530

√
T
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Our advances - symmetric two-armed bandit

I Prove the minmax optimality of pm

I Associate the leading order term of R∗T and R̄∗T with explicit
solutions of linear heat equations

I Make progress towards unifying the analyses of
I Bayesian and minimax regret, on the one hand, and
I regret and pseudoregret, on the other hand.
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Main ideas - minimax optimality of pm

I Centering the arms helps simplify the state space (eliminate
dependence of si )

I As noted an optimal strategy can depend on all available
information at time t > −T , i.e., pt ≡ pt(Ht−1) where

Ht−1 := (I−T , ..., It−1, gI−T ,−T , ..., gIt−1,t−1), (3)

I Unlike the Bayesian setting where the posterior depends on
cumulative statistics, in the minimax setting we need to show
that the minimax optimal player depends on the cumulative
and not entire history

I We show that if the optimal player depends on the full history,
it can be modified to depend on cumulative statistics only
while preserving optimality
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Main ideas - PDE characterization of (pseudo)regret

I “Numerical analysis in reverse”

I Characterize the regret and pseudoregret by dynamic programs

I Find the PDEs that are discretized by these DPs
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State variables

I The centered revealed rewards are

ξ :=
∑
τ<t

(g1,τ1Iτ=1 − g2,τ1Iτ=2)− εt

I The final pseudoregret is proportional to the number of times
the suboptimal arm was sampled

2εs

I −T is the starting time and 0 is the final time
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Discrete iterative scheme

I Expected final-time regret achieved by the player p if the
prediction process starts at time t w/given ξ and s:

v(ξ, s, 0) = 2εs (4a)

v(ξ, s, t) = Ea,p v(ξ + dξ, s + ds, t + 1) for t ≤ −1 (4b)

where

ds = 1I=2 and dξ = g11I=1 − g21I=2 − ε

I The PDE comes from the heuristics that the definition of v
should be a consistent numerical scheme for the PDE
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PDE associated with the discrete scheme
Let u be the C 0 solution on R3 × R<0 of

ut + Lu = q (5a)

u(ξ, s, 0) = 2εs (5b)

where
Lu =

κ

2
uξξ and κ = 1− ε2,

and the stationary source is

q(ξ + εt) =

{
−2ε if ξ + εt < 0

0 if ξ + εt > 0

I L is obtained by computing the leading terms of the Taylor
expansion of Ea,p v(ξ + dξ, s + ds, t + 1) around v(ξ, s, t)

I q is obtained by comparing Ea,p v(ξ, s + ds, t) with v(ξ, s, t)
assuming v(ξ, s + c , t) = v(ξ, s, t) + εc like the final value

I uξξ (and possibly uξ) are discontinuous at ξ = 0 due to the
discontinuity of q.
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The PDE has a explicit solution
I The fundamental solution G of wt + Lw = 0 is explicit
I Let ϕ be a C 0 function of y = ξ + εt satisfying

Lϕ = εϕ′ +
κ

2
ϕ′′ = q (6)

I It is explicit, and we can choose constants to ensure at most
linear growth at ∞

ϕ(y) =

{
−2y if y ≤ 0

be−2εy − b if y > 0

where b parametrizes the jump of ϕ′ at ξ + εt = 0.
I Then for w = u − ϕ,

wt + Lw = 0

w(ξ, s, 0) = ψ(ξ, s)

where ψ(ξ, s) = 2εs − ϕ(ξ).
I Therefore, u is also explicit:

u = G ∗ ψ + ϕ = 2εs − G ∗ ϕ+ ϕ
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Backwards induction (verification argument)

I Initialization u(ξ, s, 0) = v(ξ, s, 0)

I Hypothesis v(ξ, s, t + 1) = u(ξ, s, t + 1) + E (t + 1)

I The discretization error E is bounded by bounding the higher
order terms of the Taylor expansion of u

u(ξ, s, t) + E (t)

= Ep,a u(ξ + dξ, s + ds, t + 1) + E (t + 1)[PDE+higher term bound]

= Ep,a v(ξ + dξ, s + ds, t + 1) [inductive hypothesis]

= v(ξ, s, t) [DPP of v ]
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Discretization error

I How is Taylor expansion useful in a game where the rewards
are not small?

I As noted before
u = 2εs − G ∗ ϕ+ ϕ

where G is a fundamental solution of a linear fixed coefficients
parabolic PDE wt + Lw = 0

I G is a function of ξ/
√
|t|. Therefore, when |t| is large, ξ + dξ

is only O(1/
√
|t|) apart from ξ

I 3rd spatial derivatives of G ∗ ϕ are O(|t|−
3
2 ) –integrating

them with respect to t leads to an O(1) cumulative error

I Also ϕ(d) = O(bεd), which is controlled by the rate at which
bε→ 0 approaches zero as T →∞
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Medium gap
I Let ε = γ/

√
T for constant γ > 0. Then

c(γ) = lim
T→∞

1√
T
RT (pm, a) = lim

T→∞

1√
T
u(0, 0,−T ) =

=
1√
π
e−γ

2
+ γerf(γ) +

(
1

γ
− γ
)

erf

(
γ√
2

)
−
√

2

π
e−

γ2

2

I Similarly compute the prefactor c̄ of the leading order of R̄T

Figure
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Other gap regimes

I We can also compute RT (pm, a) and R̄T (pm, a) when ε
approaches zero faster and slower than γ/

√
T

Small gap Medium gap Large gap: ε ∈
ε = o

(
T−

1
2

)
ε = γT−

1
2

[
ω
(
T−

1
2

)
, o(1)

]
RT (pm, a) 1

πT
1
2 ≈ .564 T

1
2 c(γ)T

1
2 (max .572 T

1
2 ) 1/ε

min(E1(−T ),E0(−T )) O(1) O(1) O(1)

R̄T (pm, a) εT c̄(γ)T
1
2 (max .530 T

1
2 ) 1/ε

min(Ē1(−T ), Ē0(−T )) O(ε logT + ε2T ) O(1) O(1)
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Our advances - symmetric two-armed bandit

I Since pm is discontinuous as a function of revealed gains when
G1 − G2 = 0, the spatial derivatives of the solution of the
relevant PDEs are discontinuous in that region.
I While this discontinuity does not affect the leading order

behavior, it affects the discretization error.
I We optimize this discontinuity to minimize this error.

I We explicitly determine the leading order terms of R∗T and

R̄∗T , i.e., the exact constants in front of
√
T , in the symmetric

bandit setting.
I Existing techniques rely on information theory to bound below

R̄∗
T in the Bernouilli bandit problems.

I This leads to the only known nonasymptotic lower bounds in
the general bandit problems.

I Our results lead to sharper nonasymptotic regret and
pseudoregret lower bounds in the 2-armed case

I They are established by more elementary methods.
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Extensions

I Determining optimal policies in general bandits is more
challenging due to the exploration- exploitation trade-off

I But there are more realistic settings where exploration is not
needed, and therefore we expect that our work can be
extended, such as
I Bayesian k-armed bandit setting where the player knows that

one arm has an arbitrary distribution P (but does not know
which arm) while all the other arms have the same distribution
Q (Fel62; Rod78; Zab76).

I The only known lower bound for k-armed bandits is established
using such a distribution

I General bandit problems where a (possibly suboptimal) policy
is given (e.g., Thompson sampling)
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Conclusion

I Offer a fresh PDE-based perspective on symmetric two-armed
bandit problem

I Provide minmax optimality of the myopic player and obtain
the leading order minimax optimal regret and pseudoregret
with explicit non-asymptotic error bounds

I This improves the corresponding lower bounds for the general
two-armed Bernoulli bandit

I Develop novel PDE-based techniques that could be used to
investigate bandit problems further

I For more details see our preprint (KK22) on arXiv
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