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Background on prediction with expert advice

I Fixed horizon version

I At each round, the predictor (player) uses guidance from a
collection of experts with the goal of minimizing the
difference (regret) between the player’s loss and that of the
best performing expert in hindsight

I Adversarial model (no distributional assumptions)

I Player strategies often use potentials (e.g., exp. weights)

I Adversary strategies are randomized (e.g., i.i.d. coin flips)
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Our contribution

I Rakhlin et al. [2012]: Potentials arise as relaxations of the
minimax value

I Rokhlin [2017]: A related PDE-based viewpoint on player
potentials

I Our conceptual advances

1. This viewpoint extends to adversaries, leading to lower bounds
2. More technically: Finding better regret bounds ≡ finding

“better” solutions of certain PDEs
3. Practical impact: Understanding how potentials work gives

guidance on choosing good potentials

I Applying these advances, we obtain not only a fresh
perspective, but also improved bounds
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Prediction with expert advice

In each period t ∈ [T ],

I the player determines the mix of N experts to follow -
distribution pt ∈ ∆N ;

I the adversary allocates losses to them - distribution at
over [−1, 1]N ; and

I expert losses qt ∈ [−1, 1]N are sampled from at ,
player’s choice of expert It ∈ [N] is sampled from pt ,
and both samples are revealed to both parties.

Instantaneous (vector-valued) regret: rτ = qIτ ,τ1− qτ
Accumulated (vector-valued) regret: xt =

∑
τ<t rτ

Final-time regret: RT (p, a) = Ep,a [maxi xi ,T ]
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Potential-based player strategies are familiar

I Exponential weights potential: Φ(x) = 1
η log(

∑
i e
ηxi )

I Bounds the regret: maxi xi ≤ Φ(x) for all x .

I The player pe controls the increase in Φ as the game proceeds

I pe = ∇Φ eliminates the 1st-order Taylor term in the expansion
of Φ, as the regret evolves, for all adversary’s choices of q.
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Our viewpoint on potentials uses the value function

I Convention: T < 0 is the starting and 0 is the final time

I Assume p is Markovian: at time t can depend only on t and x

I Value function vp: expected final-time regret achieved by p if
the game starts at time t with realized regret x (assuming the
adversary behaves optimally)

I Characterized by a dynamic program

vp(x , 0) = max
i

xi

vp(x , t) = max
a

Ea,pt vp(x + r , t + 1) for t ≤ −1
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Upper bound potential and associated player

I General def’n: an upper bound potential is a function
w : RN × R≤0 → R, nondecr. in xi , which solves

wt +
1

2
max

q∈[−1,1]N
〈D2w · q, q〉 ≤ 0 (1a)

w(x , 0) ≥ max
i

xi (1b)

w(x + c1, t) = w(x , t) + c (1c)

I The associated player p = ∇w
I Leads to an upper bound vp ≤ w (will sketch the proof next)

I Bounds regret above since vp(0,T ) = maxaRT (a, p).

I Exponential weights: w e(x , t) = Φ(x)− 1
2ηt where

Φ(x) = 1
η log(

∑
i e
ηxi ).
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Proof of vp ≤ w : step 1 - controlling increase of w

x

t

(x, t)

(x, t+ 1) (x+ r, t+ 1)

I Due to ∆x = r : By the linearity along 1 and Taylor’s thm,

Ept ,a [w(x + r , t + 1)]− w(x , t + 1)

≤ 1

2
max

q∈[−1,1]N
〈D2w · q, q〉 [≤ η/2 for w e ]

where p eliminated 1st-order term for all q: pt · q−∇w · q = 0

I Due to ∆t is:
wt [= −η/2 for w e ]

I By the PDE, maxa Ept ,a [w(x + r , t + 1)]− w(x , t) ≤ 0
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Proof of vp ≤ w : step 2

Show vp ≤ w by induction

I Initialization: vp(x , 0) ≤ w(x , 0) by the final value of w

I Inductive hypothesis: vp(x + r , t + 1) ≤ w(x + r , t + 1)

w(x , t) ≥ w(x , t) + [max
a

Ept ,a w(x + r , t + 1)− w(x , t)] [by step 1]

≥ max
a

Ept ,avp(x + r , t + 1) [by the hypothesis]

= vp(x , t) [by the DP]

I Exp. weights: w e(0,T ) = 1
η logN + 1

2η|T | =
√

2|T | logN

for η =
√

2 logN
|T | (best known regret bound for [−1, 1]N losses)
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Our framework also works for lower bounds
I Adversary a is Markovian & “balanced” (Eatqi = Eatqj)

I Value function va for the adversary a has a similar DP
characterization

I Lower bound potential is also a very similar
object—u : RN × R≤0 → R which solves

ut +
1

2
Ea〈D2u · q, q〉 ≥ 0 (2a)

u(x , 0) ≥ max
i

xi (2b)

u(x + c1, t) = u(x , t) + c (2c)

I Since a is balanced, 1st-order Taylor term is eliminated:

Ep,at [qI −∇u · q] = 〈p −∇u,Eatq〉 = 0

I We used ∇u · 1 = 1 by (2c) and p · 1 = 1 since p ∈ ∆N

I u ≤ va (modulo error E from higher order terms)

I Regret bound u(0,T )− E (T ) ≤ va(0,T ) = minp RT (a, p)
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Classic randomized adversary ar

I ar : each qi ∼ i.i.d. Rademacher r.v.

I Potential is the sol’n of the linear heat equation{
ut + κ∆u = 0

u(x , 0) = maxi x
u(x , t) = α

∫
e−

‖y‖2

2σ2 max
k

(xk − yk)dy

where α = (2πσ2)−
N
2 and σ2 = −2κt.

I Ear 〈D2u · q, q〉 = Ear [
∑

i ,j ∂iju qiqj ] = ∆u

I Satisfies the def’n of potential for κ = 1
2 .

I Same leading order regret as in the classic CLT-based proof:

u(0,T ) =
√
−2κTEG maxGi =

√
|T |EG maxGi

I But we give a new nonasymptotic guarantee
u(0,T )− E (T ) ≤ var (0,T ) where
E (T ) = O(N

√
N ∧
√
N logN +

√
N log |T |)
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Comb adversary ac

I Ranks the experts by their losses and advances even-ranked
experts with prob. 1/2 and odd-ranked experts with prob. 1/2

I Gravin et al. [2016] conjectured ac is optimal for general N
I Abbasi-Yadkori et al. [2017] and Bayraktar et al. [2020]

confirmed that for N = 3 and 4, respectively.

I We do not resolve this conjecture for general N

I But we show that for the same heat potential with κ = 1/2,
Eac 〈D2u · q, q〉 ≥ ∆u

I Thus, the ac is at least as powerful as ar , in particular ac is
doubly asymptotically optimal in T and N

I Previously, this was only known for ar
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Improved heat-based adversary ah

I ah is a uniform distribution over the following set S{
q ∈ {±1}N |

∑N
i=1 qi = ±1

}
for N odd or{

q ∈ {±1}N |
∑N

i=1 qi = 0
}

for N even

I Best known leading order (in T ) constant: improved from 1
2 to

κh =


1 if N = 2
1
2 + 1

2N if N is odd
1
2 + 1

2N−2 otherwise.

I Asymptotically optimal for N = 2
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Another class of potentials: max potential

I Explicit sol’n of

{
ut + κmaxi ∂

2
i u = 0

u(x , 0) = maxi x
I Asymptotically optimal for N = 2 and 3
I For N = 3, improve the best known nonasymptotic bound
I Obtain lower and upper bound potentials for different κ’s
I For small N and large T , the max-based player outperforms pe
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Figure: CN is regret normalized by
√
−T .
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Extension

I The discussion here focused on a fixed horizon problem

I In a separate paper Kobzar et al. [2020], we extended this
framework to the geometric stopping problem where the final
time T is sampled from a geometric distribution
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Conclusion

I Offer a fresh PDE-based perspective on how to find potentials
and why they work

I It applies to lower as well as upper bounds

I Solutions of certain PDEs are good potentials

Questions? vladimir.kobzar@nyu.edu
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