Measuring T_1 and T_2 in the Presence of B_0 Inhomogeneities

Vladimir A. Kobzar¹ joint work with Carlos Fernandez-Granda¹² and Jakob Assländer³⁴

¹NYU Center for Data Science

²Courant Institute of Mathematical Sciences

³Center for Biomedical Imaging, Dept. of Radiology, NYU School of Medicine

⁴Center for Advanced Imaging Innovation and Research, NYU School of Medicine

May 16, 2019

<□ → < @ → < E → < E → E の Q @ 1/18

Declaration of Financial Interests or Relationships

Speaker Name: Vladimir Kobzar I have no financial interests or relationships to disclose with regard to the subject matter of this presentation.

<□ ▶ < @ ▶ < E ▶ < E ▶ E の < C 2/18

Banding artifacts in bSSFP

B₀ map without "wrapping"

Banding artifacts in bSSFP

 B_0 map with "wrapping"

bSSFP Magnetization Trajectory

Transverse magnetization is smooth and nonzero everywhere except near the "stopping bands".

Summary

Since balanced hybrid-state free precession (bHSFP) sequences have the same issue with banding artifacts, we address it as follows:

- Incorporate B₀ inhomogeneities bias into a measure of T_{1,2}-encoding quality of the signal (Cramer-Rao Bound or CRB);
- Vary flip angles and phase offsets of the driving field (sweeping); and
- Optimize the CRB over the set of possible flip angles.

Cramer-Rao Bound (CRB)

A simplified illustrative model of the signal: $S = r(T_i, B_0) + N$ where

- r_i is magnetization during the *i*th read-out period;
- $r \in \mathbb{R}^{Npulse}$ where *Npulse* is the number of pulses;
- $N \sim N(0, \sigma I)$.

If B_0 is known,

the CRB bounds the mean squared error (MSE) of any unbiased estimator t(S) of T_i:

$$MSE(t(S)) \geq rac{\sigma^2}{\|\partial_{T_i} r\|^2}$$

- Thus, the MSE of an efficient estimator is
 - proportional to the noise, and
 - inversely proportional to the sensitivity of the magnerization to T_i .

Cramer-Rao Bound (CRB)

If B_0 is not known,

the CRB provides that

$$MSE(t(S)) \ge \frac{\sigma^2}{(1 - \cos^2 \theta) \|\partial_{\mathcal{T}_i} r\|^2}$$

where $\cos \theta$ is the correlation between the derivatives $\partial_{T_i} r$ and $\partial_{B_0} r$.

► Thus, if the magnetization trajectory r can be designed to reduce the correlation, this CRB will be close to the CRB where B₀ is known.

Optimal bHSFP sequence

- Assländer et al. (2018): $r(\alpha, \phi^{nom}, B_0, T_i)$ controlled by α, ϕ^{nom} .
- ▶ Thus, we can control $\partial_{T_i} r$ and $\partial_{B_0} r$, and therefore the CRB.

Optimal bHSFP sequence duration

- The optimal duration $T_C = 3.8$ s of a pulse sequence is comparable to that for the case where B_0 variations are known.
- ▶ In each period of length T_C , a different phase offset ϕ^{nom} is introduced, with ϕ^{nom} uniformly distributed between $-\pi$ and π .
- ► See, generally, Benkert (2015) and Scherbakova (2018) (phase-cycling in bSSFP).

rCRB as a function of B_0 and B_1

 ΔB_0 need not be determined separately (B_1 is assumed to be determined separately)

In vivo experiments

- Flip angles α_{nom} are determined by numerical optimization discussed above;
- Acquire the data in 20 cycles, each 3.8 s long;
- ▶ Phase offset of the driving field ϕ_{nom} varied over ("sweeps") $[-\pi, \pi]$ from cycle to cycle; and
- Other parameters are the same as in Assländer et al. (2018), *id*.

MRF with standard shim

・ ・ 一 ・ ・ 三 ・ ・ 三 ・ つ へ へ 13/18

MRF with corrupted shim (sweeping)

 T_1 artifacts arise due to the inversion pulse fading at extreme off-resonance frequencies 12×12^{-3} 3×3^{-3} 14/18

MRF with corrupted shim (sweeping)

 T_1 artifacts arise due to the inversion pulse fading at extreme off-resonance frequencies 12×10^{-3} $3 \times 10^{-15/18}$

MRF with corrupted shim (B_0 corrected externally)

 T_1 artifacts arise due to the inversion pulse fading at extreme off-resonance frequencies (E , E , $C \sim 16/18$

Future work

- More robust inversion or omit inversion
- ► 3D sequence for efficient sampling

Questions: vkobzar@cims.nyu.edu Acknowledgements

- ► V.A.K. is supported by the Moore-Sloan Data Science Environment at NYU
- C.F. is supported by NSF award DMS-1616340.
- J.A. is supported by the research grants NIH/NIBIB R21 EB020096 and NIH/NIAMS R01 AR070297, and this work was performed under the rubric of the Center for Advanced Imaging Innovation and Research (CAI2R, www.cai2r.net), a NIBIB Biomedical Technology Resource Center (NIH P41 EB017183).