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Banding artifacts in bSSFP
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Banding artifacts in bSSFP
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bSSFP Magnetization Trajectory
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Transverse magnetization is smooth and nonzero everywhere except near the ”stopping
bands”.
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Summary

Since balanced hybrid-state free precession (bHSFP) sequences have the same issue
with banding artifacts, we address it as follows:

I Incorporate B0 inhomogeneities bias into a measure of T1,2-encoding quality of
the signal (Cramer-Rao Bound or CRB);

I Vary flip angles and phase offsets of the driving field (sweeping); and

I Optimize the CRB over the set of possible flip angles.
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Cramer-Rao Bound (CRB)

A simplified illustrative model of the signal: S = r(Ti ,B0) + N where

I ri is magnetization during the ith read-out period;

I r ∈ RNpulse where Npulse is the number of pulses;

I N ∼ N(0, σI ).

If B0 is known,

I the CRB bounds the mean squared error (MSE) of any unbiased estimator t(S) of
Ti :

MSE (t(S)) ≥ σ2

‖∂Ti
r‖2

I Thus, the MSE of an efficient estimator is
I proportional to the noise, and
I inversely proportional to the sensitivity of the magnerization to Ti .
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Cramer-Rao Bound (CRB)
R

Npulse ∂Ti
r

θ

∂B0r

If B0 is not known,

I the CRB provides that

MSE (t(S)) ≥ σ2

(1− cos2 θ)‖∂Ti
r‖2

where cos θ is the correlation between the derivatives ∂Ti
r and ∂B0r .

I Thus, if the magnetization trajectory r can be designed to reduce the correlation,
this CRB will be close to the CRB where B0 is known.
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Optimal bHSFP sequence
I Assländer et al. (2018): r(α, φnom,B0,Ti ) controlled by α, φnom.
I Thus, we can control ∂Ti

r and ∂B0r , and therefore the CRB.
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Optimal bHSFP sequence duration

I The optimal duration TC = 3.8s of a pulse sequence is comparable to that for the
case where B0 variations are known.

I In each period of length TC , a different phase offset φnom is introduced, with
φnom uniformly distributed between −π and π.

I See, generally, Benkert (2015) and Scherbakova (2018) (phase-cycling in bSSFP).
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rCRB as a function of B0 and B1
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In vivo experiments

I Flip angles αnom are determined by numerical optimization discussed above;

I Acquire the data in 20 cycles, each 3.8 s long;

I Phase offset of the driving field φnom varied over (”sweeps”) [−π, π] from cycle to
cycle; and

I Other parameters are the same as in Assländer et al. (2018), id.
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MRF with standard shim
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MRF with corrupted shim (sweeping)
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T1 artifacts arise due to the inversion pulse fading at extreme off-resonance frequencies
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MRF with corrupted shim (sweeping)

N
o

sw
ee

p
in

g

D
u

al
G

ra
d

ie
n

t
E

ch
o

−1000 0 300
γ
2∆B0 (Hz)

S
w

ee
p

in
g

.1 .5 3

T1 (s)

.05 .3 .5

T2 (s)

−1 0 1

(γ2∆B0TR mod 2π)/π

T1 artifacts arise due to the inversion pulse fading at extreme off-resonance frequencies



16/18

MRF with corrupted shim (B0 corrected externally)
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Future work

I More robust inversion or omit inversion

I 3D sequence for efficient sampling
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Questions: vkobzar@cims.nyu.edu
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