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What is optimal transport?

I A geometric framework for comparing probability measures
I Rich history of applications

I Construction of fortifications under Napoleon (Monge, 1781)
I Optimization of production in the USSR (Kantorovich, 1942)
I Promising recent applications in ML and inverse problems

I Led to many discoveries in geometry, analysis and optimization

What is optimal transport ?

The natural geometry of probability measures

4 / 48
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Monge (1781)

What is optimal transport ?

The natural geometry of probability measures
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The origins of optimal transport

Problem [Monge, 1781]

• How to move dirt from one place (déblais) to another (remblais) while

minimizing the e↵ort ?

• Find a mapping T between the two distributions of mass (transport).

• Optimize with respect to a displacement cost c(x, y) (optimal).
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I Optimal transport map T is the minimizer of

MP(µs , µt) := min
µt=T]µs

∫
c(x ,T (x))dµs

I µs , µt are a.c. ⇒ ∆ of vars. for assoc. densities f , g

µt = T]µs ⇔ g(x)dx = f (T (x))| det ∂xT (x)|dx

I Nonconvex problem even if c is convex

I Original Monge’s cost c(x , y) = |x − y |
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Kantorovich (1942)

What is optimal transport ?

The natural geometry of probability measures
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Kantorovich relaxation

• Leonid Kantorovich (1912–1986), Economy nobelist in 1975

• Focus on where the mass goes, allow splitting [Kantorovich, 1942].

• Applications mainly for resource allocation problems
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I Look for an optimal assignment (coupling) of masses

I Allows to split mass, in contrast to transport map T
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Kantorovich (1942)
Optimal transport (Kantorovich formulation)

• The Kantorovich formulation [Kantorovich, 1942] seeks for a probabilistic

coupling � 2 P(⌦s ⇥ ⌦t) between ⌦s and ⌦t:

�0 = argmin
�

Z

⌦s⇥⌦t

c(x,y)�(x,y)dxdy, (2)

s.t. � 2 P =

⇢
� � 0,

Z

⌦t

�(x,y)dy = µs,

Z

⌦s

�(x,y)dx = µt

�

• � is a joint probability measure with marginals µs and µt.

• Linear Program that always has a solution.
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I The optimal transport plan γ is a minimizer of

KP(µs , µt) := min
γ∈P

Eγc(x , y)

I P are all joint probability measures γ with

µs =

∫
γ(·, y)dy and µt =

∫
γ(x , ·)dx

I This problem is convex (for discrete measures it’s an LP)
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Transport plans

18 Theoretical Foundations

torovich problem (2.11) is then generalized as

Lc(–,—) def.= min
fiœU(–,—)

⁄

X◊Y
c(x, y)dfi(x, y). (2.15)

This is an infinite-dimensional linear program over a space of measures. If (X ,Y)
are compact spaces and c is continuous, then it is easy to show that it always
has solutions. Indeed U(–,—) is compact for the weak topology of measures (see
Remark 2.2), fi ‘æ s

cdfi is a continuous function for this topology and the con-
straint set is nonempty (for instance, – ¢ — œ U(–,—)). Figure 2.6 shows examples
of discrete and continuous optimal coupling solving (2.15). Figure 2.7 shows other
examples of optimal 1-D couplings, involving discrete and continuous marginals.

�

�

� �

�

�

Figure 2.6: Left: “continuous” coupling fi solving (2.14) between two 1-D measures with density. The
coupling is localized along the graph of the Monge map (x, T (x)) (displayed in black). Right: “discrete”
coupling T solving (2.11) between two discrete measures of the form (2.3). The positive entries Ti,j are
displayed as black disks at position (i, j) with radius proportional to Ti,j .
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Figure 2.7: Four simple examples of optimal couplings between 1-D distributions, represented as
maps above (arrows) and couplings below. Inspired by Lévy and Schwindt [2018].I A few examples of transport plans between uniform and

discrete measures in 1D
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Wasserstein distances

I When c is a p-th moment of a distance, KP is also a distance

I Focus on the Euclidean case: c(x , y) = |x − y |p

W p
p (µt , µs) := min

γ∈P
Eγ |x − y |p

I We’ll consider only p = 1 vs 2 for simplicity
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Wp mismatchWasserstein distance

Wasserstein distance

W p
p (µs, µt) = min

�2P

Z

⌦s⇥⌦t

kx� ykp�(x,y)dxdy = E
(x,y)⇠�

[kx� ykp] (10)

In this case we have c(x,y) = kx� ykp

• A.K.A. Earth Mover’s Distance (W 1
1 ) [Rubner et al., 2000].

• Do not need the distribution to have overlapping support.

• Works for continuous and discrete distributions (histograms, empirical).
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Data

Model

g(x)

f(x-m)

x m

Mismatch

I Using a mismatch functional Φ, fit model f (m) to data g

min
m

Φ(f (m), g)

I Wp mismatch meaningful even if
I f (m) and g have non-overlapping support, or
I g is in a low-dim. manifold or shifted relative to f (m)

I W1 is used in ML, stats inference and inverse problems
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Wp in 1D
http://realgl.blogspot.com/2013/01/pdf-cdf-inv-cdf.html

PDF [CDF] CDF-1

I Explicit form

W1(µ, ν) :=

∫

R
|CDF(µ)− CDF(ν)|dx

W p
p (µ, ν) :=

∫ 1

0
|CDF−1(µ)− CDF−1(ν)|pdx

I Does not extend to higher dimensions
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Kantorovich-Rubinstein Theorem

I W1 has a dual formulation

W1(µ, ν) = max
ϕ∈Lip−1

Eµϕ−Eνϕ

where

Lip− K = {ϕ : |ϕ(x)− ϕ(y)| ≤ K |x − y |}

I Used in ML applications, like WGANs

max
w

1

m

m∑

i=1

ϕw (xi )− ϕw (gθ(zi ))

where
I ϕw is a Lip− K neural network (critic),
I gθ(zi ) is a generative neural network (actor)
I x1, . . . , xm are real data
I zi ’s are sampled from a fixed distribution
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Kantorovich-Rubinstein Norm

I Generalizes W1 to unbalanced signed measures

KR(µ, ν) := max
ϕ∈Lip−1
‖ϕ‖∞≤1

Eµϕ−Eνϕ

I Used in inverse problems, like seismic imaging/FWI Lellmann
et al. (2014); Métivier et al. (2016a,b); Métivier et al. (2022)

I W1 and KR are challenging to analyze because the cost
|x − y | is not smooth or strictly convex
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Wp mismatch minimization

I When f is highly nonconvex and m is high-dimensional, it is
not computationally tractable to accurately solve

min
m

Φ(f (·,m), g)

even if g is in the range of f .

I How does using Wp impact an approximate solution?

Wp(f (·,m), g) < δ

I What is the impact of different values of p?

I To study this, we bound Wp(f , g) in terms of the Fourier
coefficients of f and g
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Fourier series
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I Represent periodic signals with Fourier series

f (x) =
∑

k

akψk,θk (x)

where
ψk,θk (x) := cos(2πkx + θk)

I Not convenient because ψk,θk (x) depends nonlinearly on θk
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Fourier basis

Figure 1: Complex sinusoid (dark red) as a function of time. The real part (green) is a cosine
function. The imaginary part (blue) is a sine function.

cosine (or sine) function as in Eq. (4) is not very convenient. The function depends nonlinearly on
the phase ✓, so there are infinite possible basis functions associated to each frequency. An elegant
solution is to use complex-valued sinusoids instead.

Definition 1.1 (Complex sinusoid). The complex sinusoid with frequency f 2 R is given by

exp(i2⇡ft) := cos(2⇡ft) + i sin(2⇡ft). (5)

Figure 1 shows a complex sinusoid, along with its real and imaginary parts. Note that com-
plex sinusoids can have negative frequencies. This just changes their imaginary component to
� sin(2⇡ft), instead of sin(2⇡ft). Any real sinusoid with frequency f can be represented as the
sum of two complex sinusoids with frequencies f and �f respectively:

cos(2⇡ft + ✓) =
exp(i2⇡ft + i✓) + exp(�i2⇡ft � i✓)

2
(6)

=
exp(i✓)

2
exp(i2⇡ft) +

exp(�i✓)

2
exp(�i2⇡ft). (7)

Crucially, the phase is now encoded in the complex amplitude of the sinusoid. As a result, from a
linear-algebra perspective, the subspace spanned by the two complex sinusoids with frequencies f
and �f contains all possible real sinusoids with frequency f . In particular, if we add two sinusoids
with the same frequency, but di↵erent amplitudes and phases, the result is a sinusoid with that
frequency. It therefore makes sense to interpret sinusoids as basis functions, each representing a
particular frequency.

If we are interested in obtaining a representation for functions restricted to an interval, working
with orthogonal basis functions makes life much easier. The following lemma shows that for any
fixed positive T 2 R, complex sinusoids with frequency equal to k/T– where k is an integer– are
all orthogonal.

2

I We define the complex sinusoid with frequency k ∈ Z as

ψk(x) := exp(i2πkx) = cos(2πkx) + i sin(2πkx)

I A real sinusoid with frequency k can be represented as

cos(2πft + θ) =
exp(iθ)

2
ψk(x) +

exp(−iθ)

2
ψ−k(x)

I Now the phase is encoded in the complex amplitudes.
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Multivariate Fourier series
Space Frequency
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Figure 12: Spatial (left) and frequency (right) representation of real-valued 2D sinusoids with
di↵erent 2D frequencies.
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For f : [0, 1)d → R

f (x) =
∑

k

f̂kψk(x)

where
ψk(x) = exp (i2π〈k , x〉)
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Multivariate Fourier series

Space Frequency
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Figure 12: Spatial (left) and frequency (right) representation of real-valued 2D sinusoids with
di↵erent 2D frequencies.
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For f : [0, 1)d → R

f (x) =
∑

k

f̂kψk(x)

where
ψk(x) = exp (i2π〈k , x〉)
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Assumptions

1. µ and ν are a.c., and therefore are associated with their
densities f and g

Wp(f , g) := Wp(µ, ν)

2. The domain Ω is flat torus Td := [0, 1)d

I Our analysis also works on hypercube Hd := [0, 1]d where f
and g must satisfy symmetric boundary condition

3. For k ∈ Zd , the Fourier series

f =
∑

k

f̂kψk and g =
∑

k

ĝkψk

converge in L2(Ω) where

ψk(x) := e2πi〈k,x〉
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Existing Fourier-based bounds on W2

I Peyre (2018):
W2(f , g) � ‖f − g‖Ḣ−1

where the Sobolev norm

‖f − g‖2
Ḣ−1 =

∑

k

( f̂k − ĝk
|k |

)2

I Led to frequency resolution analysis in W2 mismatch
minimization (Engquist et al., 2020)
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Existing Wp bounds

I No previously known Fourier-based bounds for Wp when
p 6= 2, except in special cases:
I Measures on a circle (Steinerberger, 2021)
I Measures on a finite discrete grid (Auricchio et al., 2020)
I Trivial bound Wp ≤W2 . ‖f − g‖Ḣ−1

I Open problem (Steinerberger, 2021)
I To establish a Fourier-based l.b. on Wp that ↑ as p ↑
I Applications in measure theoretic discrepancy

I Our work resolves this open problem (Hong et al., 2023)
I We adapt arguments used to establish wavelet-based bounds

on Wp (Niles-Weed and Berthet, 2022)
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Lower bounds

p = 1 and 2 d−
1
2 ‖f̂ − ĝ‖∞,w1

p = 2, ‖f ‖Ls , ‖g‖Ls ≤ M, s ∈ (1,∞) d−
1
2s M−

1
2 ‖f̂ − ĝ‖q,wq′

p = 2, ‖f ‖L∞ , ‖g‖L∞ ≤ M M−
1
2 ‖f̂ − ĝ‖2,w2

where

q =
2s

s − 1
∈ (∞, 2) and q′ =

2s

s + 1
∈ (1, 2)

and

‖f̂ − ĝ‖qq,w r =
∑

k

∣∣∣ f̂k − ĝk
2π|k |r

∣∣∣
q

over k ∈ Zd \ 0
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Lower bounds

p = 1 and 2 d−
1
2 ‖f̂ − ĝ‖∞,w1

p = 2, ‖f ‖Ls , ‖g‖Ls ≤ M, s ∈ (1,∞) d−
1
2s M−

1
2 ‖f̂ − ĝ‖q,wq′

p = 2, ‖f ‖L∞ , ‖g‖L∞ ≤ M M−
1
2 ‖f̂ − ĝ‖2,w2

I Tradeoff between
I M−

1
2 , decreasing as s increases, and

I d−
1
2s , increasing with as s increases

I ‖f̂ − ĝ‖q,wq′ increases as s increases

I The first bound works for unbounded densities
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Upper bounds on Wp(f , g)

p = 1 ‖f̂ − ĝ‖2,w2

p = 1, ‖f − g‖Ḣβ ≤ z O
(√

z‖f̂ − ĝ‖
1
2

∞,w2

)

p = 2, f ∧ g ≥ ξ > 0 O
(
ξ−

1
2 ‖f̂ − ĝ‖2,w2

)

I We require β > d
2 − 1 for

‖f − g‖2

Ḣβ
:=
∑

k

(|k |β(f̂k − ĝk))2

I The p = 1 bounds works for densities that are not uniformly
bounded from below.
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Early stopping in computational inversion

I Assume the forward model

f :M 7→ P(Ω)

is invertible as a function of its parameters

I Approximate the exact solution of

f (m) = g

by an approximation mδ s.t.

Wp(f (mδ), g) ≤ δ
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Low-pass approximation of the inverse

I Denote the noisy data and the noise by

g δ := f (mδ) and n := g δ − g

I We cut-off frequencies |k | > kc of the approximate solution

mδ = f −1(g δ)

I The approximate bandwidth-limited solution is

mc
δ := β(g δ)

where β = L ◦ f −1 and L :M→M is the corresponding
low-pass filter

I What is he optimal cut-off threshold kc?

I How does it depend on p and δ?
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Approximation error
I If m ∈ Ḣr for r > 0,

‖m −mc
δ‖L2 ≤ ‖m − L ◦ f −1 ◦ f (m)‖L2 + ‖β ◦ f (m)−mc

δ‖L2

≤ ‖m − L(m)‖L2 + ‖β(g)− β(gδ)‖L2

≤ (2πkc)−r‖m‖Ḣr + ‖β(g)− β(gδ)‖L2

I Assume for some α > 0,

‖β(x)− β(y)‖L2 � kαc ‖x̂ − ŷ‖`q,w2 (1)

i.e., β is a de-smoothing operator

I Then the bound is minimized by

kα+r
c � (2π)−r r

α
· SNR

where

SNR :=
‖m‖Ḣr

δq



27/48

De-smoothing inversion

I Assume ‖n‖Ḣβ ≤ z , and for some constants α′, ε > 0 and
function h > 0.

‖β(x)− β(y)‖L2 � kα
′

c h(z)‖x̂ − ŷ‖ε`q,w2

I If r > 0,

kα
′+r

c � (2π)−r r

α′
· SNRz

where

SNRz :=
‖m‖Ḣr

h(z)δεq
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Lower bounds on kα+r
c or kα

′+r
c ,

p = 1 Ω
(

(2π)−r r
α · SNR

)

p = 1, ‖f (m)− g‖Ḣβ ≤ z Ω
(

(2π)−r r
α′ · SNRz

)

p = 2, f (m) ∧ g ≥ ξ > 0 Ωξ

(
(2π)−r r

α · SNR
)

I α and α′ may depend on d , p, s

I α′ may also depend on β.
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Upper bounds on kα+r
c

p = 1 O
(
d

1
2

(2π)−r r
α · SNR

)

p = 2, ‖f (m)‖Ls , ‖g‖Ls ≤ M, s ∈ (1,∞) OM

(
d−

1
2s

(2π)−r r
α · SNR

)

p = 2, ‖f (m)‖L∞ , ‖g‖L∞ ≤ M OM

(
(2π)−r r

α · SNR
)

I As before, q = 2s
s−1

I Here too α may depend on d , p, s
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Diagonal operators in Fourier domain

I If f̂k = ‖k‖−γ2 , then

α =

{
1 + γ + d

2 − d
q if γ > −1

d
2 − d

q if γ ≤ −1

I For p = 1, q =∞

α =

{
1 + γ + d

2 if γ > −1
d
2 if γ ≤ −1

I For p = 2, q = 2

α =

{
1 + γ if γ > −1

0 if γ ≤ −1
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Diagonal operators in Fourier domain
I If ‖n‖Ḣβ ≤ z , then

‖Bn‖`1,w2→L2 . kα
′

c

√
zδq

where

α′ =

{
1 + 2γ − β + d

2 − d
q if γ > β/2− 1/2

d
2 − d

q if γ ≤ β/2− 1/2
(2)

I For p = 1

α′ =

{
1 + 2γ − β + d

2 if γ > β/2− 1/2
d
2 if γ ≤ β/2− 1/2

I For p = 2

α′ =

{
1 + 2γ − β if γ > β/2− 1/2

0 if γ ≤ β/2− 1/2

I We assume that γ, d and q and if applicable β are such that
α > 0 or α′ > 0
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Diagonal operators in Fourier domain - Wp vs Hβ

I Engquist et al. (2020) showed that in the context of using
the Hβ matching

kc � SNR
1

1+r+γ−β .

I Taking β = 0, corresponds to the L2 norm matching
I Leads to lower resolution (smoother reconstruction) than the

Wp metric minimization

I Using the negative β = d
2 − d

p leads to the same resolution for

Hβ and Wp matching for p ∈ [1, 2] (in each case, assuming
that the early stopping thresholds are the same).
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Qualitative results for diagonal operators in Fourier domain

Holding the early stopping threshold δ constant,
I all p: bounds on kc constant or increase if p ↑

I depends on regularity of the data g

I p ∈ [1, 2]: bounds on kc constant or decrease if d ↑
I also depends on regularity of g

I p ∈ (2,∞): bounds on kc increase if d ↑
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More qualitative results

Now holding the noise n constant,

I As we ↓ p, by the monotonicity of `q,w2 , ‖n̂‖p′,w2 ↓
I We show kc ↑ when p ↓ by constructing specific

high-frequency noise
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Generalizations

I Upper bounds on Hd have additional terms due to boundary
condition

I We also provide similar Fourier based bounds for generalized
Wp for unbalanced measures Piccoli and Rossi (2000); Piccoli
et al. (2023)
I The only difference is appearance of constant frequency k = 0
I for p = 1, this is the KR norm used in FWI experiments

mentioned earlier
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Lower bounds proof

1. Construct a test function h ∈W 1,q from f̂ − ĝ and Fourier
basis functions
I We adapt this idea from Niles-Weed and Berthet (2022)

establishing wavelet based bounds on Wp

2. Bound ‖∇h‖Lq(Ω) using Hausdorff-Young inequality

3. Responsible for `′p vs `p for wavelets

Maury et al. (2010) For all h ∈ W 1,q, if µ and ν ∈ P(Ω) ∩
Ls(Ω) and ‖ν‖Ls , ‖µ‖Ls ≤ M and

1

q
+

1

p
+

1

s
= 1 +

1

ps

then
∫

Ω
h d(µ− ν) ≤ M1/p′‖∇h‖Lq(Ω)Wp(µ, ν)
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Upper bounds proof
1. Construct feasible (ρ,E ) using f̂ − ĝ and Fourier basis

I Also adapt this idea from Niles-Weed and Berthet (2022)

2. Develop Sobolev-like embedding of sequences
I Higher regularity of f − g allows to embed `2,w2 in a space

with a stronger norm `q,w2 for q > 2.

Fluid dynamics formulation Benamou and Brenier (2000);
Brenier (2003): For p ∈ [1,∞),

W p
p (µ, ν) = inf

(ρ,E)

{
Bp(ρ,E ) :ρ(·, 1) = µ, ρ(·, 0) = ν

∂tρ+∇x · E = 0
}

where

Bp(ρ,E ) :=

{∫
Ω×[0,1] ‖dEdρ (x , t)‖pdρ(x , t) if E � ρ

+∞ otherwise.
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Dynamic formulation

𝑾𝟏

𝑾𝟐
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Conclusion

I Offer a fresh Fourier-based perspective on Wasserstein-p
distance resolving an open problem in analysis and probability

I Determine resolution of frequencies in computational inversion
using Wp as the mismatch functional
I Our analysis extends to nonlinear inverse problems

I Our bounds provide a leading order approximation of Wp

I Current work on understanding the higher order effects
I convexity of Wp mismatch minimization
I regularity of iterative solutions in discrete-time Wp

minimization schemes

I Fundamental relationship between Wp and Fourier-based
norms

I Expect many other connections in analysis, probability and
applied fields
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Image credits: Flamary and Courty (2019)

What is optimal transport ?

The natural geometry of probability measures

4 / 48

The origins of optimal transport

Problem [Monge, 1781]

• How to move dirt from one place (déblais) to another (remblais) while

minimizing the e↵ort ?

• Find a mapping T between the two distributions of mass (transport).

• Optimize with respect to a displacement cost c(x, y) (optimal).
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Kantorovich relaxation

• Leonid Kantorovich (1912–1986), Economy nobelist in 1975

• Focus on where the mass goes, allow splitting [Kantorovich, 1942].

• Applications mainly for resource allocation problems

9 / 48

Optimal transport (Kantorovich formulation)

• The Kantorovich formulation [Kantorovich, 1942] seeks for a probabilistic

coupling � 2 P(⌦s ⇥ ⌦t) between ⌦s and ⌦t:

�0 = argmin
�

Z

⌦s⇥⌦t

c(x,y)�(x,y)dxdy, (2)

s.t. � 2 P =

⇢
� � 0,

Z

⌦t

�(x,y)dy = µs,

Z

⌦s

�(x,y)dx = µt

�

• � is a joint probability measure with marginals µs and µt.

• Linear Program that always has a solution.

10 / 48

Wasserstein distance

Wasserstein distance

W p
p (µs, µt) = min

�2P

Z

⌦s⇥⌦t

kx� ykp�(x,y)dxdy = E
(x,y)⇠�

[kx� ykp] (10)

In this case we have c(x,y) = kx� ykp

• A.K.A. Earth Mover’s Distance (W 1
1 ) [Rubner et al., 2000].

• Do not need the distribution to have overlapping support.

• Works for continuous and discrete distributions (histograms, empirical).

21 / 48
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Image credits Fernandez-Granda (2020)

Figure 1: Complex sinusoid (dark red) as a function of time. The real part (green) is a cosine
function. The imaginary part (blue) is a sine function.

cosine (or sine) function as in Eq. (4) is not very convenient. The function depends nonlinearly on
the phase ✓, so there are infinite possible basis functions associated to each frequency. An elegant
solution is to use complex-valued sinusoids instead.

Definition 1.1 (Complex sinusoid). The complex sinusoid with frequency f 2 R is given by

exp(i2⇡ft) := cos(2⇡ft) + i sin(2⇡ft). (5)

Figure 1 shows a complex sinusoid, along with its real and imaginary parts. Note that com-
plex sinusoids can have negative frequencies. This just changes their imaginary component to
� sin(2⇡ft), instead of sin(2⇡ft). Any real sinusoid with frequency f can be represented as the
sum of two complex sinusoids with frequencies f and �f respectively:

cos(2⇡ft + ✓) =
exp(i2⇡ft + i✓) + exp(�i2⇡ft � i✓)

2
(6)

=
exp(i✓)

2
exp(i2⇡ft) +

exp(�i✓)

2
exp(�i2⇡ft). (7)

Crucially, the phase is now encoded in the complex amplitude of the sinusoid. As a result, from a
linear-algebra perspective, the subspace spanned by the two complex sinusoids with frequencies f
and �f contains all possible real sinusoids with frequency f . In particular, if we add two sinusoids
with the same frequency, but di↵erent amplitudes and phases, the result is a sinusoid with that
frequency. It therefore makes sense to interpret sinusoids as basis functions, each representing a
particular frequency.

If we are interested in obtaining a representation for functions restricted to an interval, working
with orthogonal basis functions makes life much easier. The following lemma shows that for any
fixed positive T 2 R, complex sinusoids with frequency equal to k/T– where k is an integer– are
all orthogonal.

2
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Figure 12: Spatial (left) and frequency (right) representation of real-valued 2D sinusoids with
di↵erent 2D frequencies.
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18 Theoretical Foundations

torovich problem (2.11) is then generalized as

Lc(–,—) def.= min
fiœU(–,—)

⁄

X◊Y
c(x, y)dfi(x, y). (2.15)

This is an infinite-dimensional linear program over a space of measures. If (X ,Y)
are compact spaces and c is continuous, then it is easy to show that it always
has solutions. Indeed U(–,—) is compact for the weak topology of measures (see
Remark 2.2), fi ‘æ s

cdfi is a continuous function for this topology and the con-
straint set is nonempty (for instance, – ¢ — œ U(–,—)). Figure 2.6 shows examples
of discrete and continuous optimal coupling solving (2.15). Figure 2.7 shows other
examples of optimal 1-D couplings, involving discrete and continuous marginals.

�

�

� �

�

�

Figure 2.6: Left: “continuous” coupling fi solving (2.14) between two 1-D measures with density. The
coupling is localized along the graph of the Monge map (x, T (x)) (displayed in black). Right: “discrete”
coupling T solving (2.11) between two discrete measures of the form (2.3). The positive entries Ti,j are
displayed as black disks at position (i, j) with radius proportional to Ti,j .
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��

Figure 2.7: Four simple examples of optimal couplings between 1-D distributions, represented as
maps above (arrows) and couplings below. Inspired by Lévy and Schwindt [2018].

Peyré and Cuturi (2018)
http://realgl.blogspot.com/2013/01/pdf-cdf-inv-cdf.html

PDF [CDF] CDF-1 real gl (2013)
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