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» Background and motivation

» Optimal transport
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» Frequency domain/Fourier basis

» Fourier-based bounds on W,
» Resolution of frequencies in W, mismatch minimization

» Future directions



What is optimal transport?

> A geometric framework for comparing probability measures
» Rich history of applications

» Construction of fortifications under Napoleon (Monge, 1781)
» Optimization of production in the USSR (Kantorovich, 1942)
» Promising recent applications in ML and inverse problems

P> Led to many discoveries in geometry, analysis and optimization
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Monge (1781)
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» Optimal transport map T is the minimizer of

MP(is, ptt) := min

M= TﬁMs

[ et T6)dne

> s, iy are a.c. = A of vars. for assoc. densities f, g

» Nonconvex problem even if ¢ is convex

» Original Monge's cost c(x,y) =[x — y|

pe = Typs & g(x)dx = f(T(x))| det O T(x)|dx



Kantorovich (1942)
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» Look for an optimal assignment (coupling) of masses

» Allows to split mass, in contrast to transport map T



Kantorovich (1942)
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» The optimal transport plan v is a minimizer of
KP(us, pie) :== min B, c(x, y)
YEP
» P are all joint probability measures v with
fis = /'y(-,y)dy and pe = /v(x,-)dx

» This problem is convex (for discrete measures it's an LP)



Transport plans

., =N o — N

> A few examples of transport plans between uniform and
discrete measures in 1D



Wasserstein distances

» When c is a p-th moment of a distance, KP is also a distance

» Focus on the Euclidean case: c¢(x,y) = |[x — y|P
W;f(:u'ta fis) = ;nelg Eq[x —y|P

> We'll consider only p =1 vs 2 for simplicity



W, mismatch
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» Using a mismatch functional ®, fit model f(m) to data g

min ®(f(m), g)

m

» W, mismatch meaningful even if

» f(m) and g have non-overlapping support, or
» g isin a low-dim. manifold or shifted relative to f(m)

» Wi is used in ML, stats inference and inverse problems



W, in 1D

» Explicit form

Wa(p,v) = /R |CDF(u) — CDF(v)|dx

1
We () = [ |COF () — COF 1 (v)| e

» Does not extend to higher dimensions



Kantorovich-Rubinstein Theorem

» Wi has a dual formulation

Wi(p,v) = max Eup—Eyp
pELip—1

where

Lip— K ={¢: |o(x) — o) < K|x—y|}

» Used in ML applications, like WGANs

maX*ZSﬁw X: — Pw g@(zl))

where
> ¢, is a Lip — K neural network (critic),
> gy(z) is a generative neural network (actor)
» xi,...,Xn are real data
» z's are sampled from a fixed distribution



Kantorovich-Rubinstein Norm

» Generalizes W to unbalanced signed measures

KR(p,v) = max E,o—E,p
p€ELip—1
lello<1

» Used in inverse problems, like seismic imaging/FWI Lellmann

et al. (2014); Métivier et al. (2016a,b); Métivier et al. (2022)

» Wi and KR are challenging to analyze because the cost
|x — y| is not smooth or strictly convex



W, mismatch minimization

» When f is highly nonconvex and m is high-dimensional, it is
not computationally tractable to accurately solve

min ®(f(-, m), g)

m
even if g is in the range of f.
» How does using W, impact an approximate solution?

Wp(f('v m),g) <0

» What is the impact of different values of p?

» To study this, we bound W,(f,g) in terms of the Fourier
coefficients of f and g



Fourier series
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P> Represent periodic signals with Fourier series

F(x) =Y atwp,(x)
k

3

where
V.0, (x) = cos(2mkx + 0y)

> Not convenient because v g, (x) depends nonlinearly on 6



Fourier basis

» We define the complex sinusoid with frequency k € 7 as
Yi(x) := exp(i2mkx) = cos(2mwkx) + i sin(2mkx)

» A real sinusoid with frequency k can be represented as

PO o) + Z2 0y

> Now the phase is encoded in the complex amplitudes.

cos(2mft + 0) =



Multivariate Fourier series

Space Frequency

G

For f:[0,1)9 - R
F(x) =D htbu(x)
k

where
Yi(x) = exp (i2m(k, x))



Multivariate Fourier series
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where

<

k(x) = exp (i2m(k,x))



Assumptions

1. @ and v are a.c., and therefore are associated with their
densities f and g

WP(f7g) = WP(:“’? V)

2. The domain Q is flat torus T9 := [0, 1)

» Our analysis also works on hypercube HY := [0, 1]¢ where f
and g must satisfy symmetric boundary condition

3. For k € Z9, the Fourier series

f=> fbkand g = Bt
k

k

converge in L2(Q) where

Vi (X) — e27ri<k,x>



Existing Fourier-based bounds on W,

> Peyre (2018):
Wa(f,8) = If = gl

where the Sobolev norm
fo — 50\ 2
I = glfys = 3 (P
k

> Led to frequency resolution analysis in W, mismatch
minimization (Engquist et al., 2020)




Existing W, bounds

» No previously known Fourier-based bounds for W, when
p # 2, except in special cases:

> Measures on a circle (Steinerberger, 2021)
> Measures on a finite discrete grid (Auricchio et al., 2020)
» Trivial bound W, < W, < |If — gll4;-1
» Open problem (Steinerberger, 2021)
» To establish a Fourier-based I.b. on W, that T as p 1
» Applications in measure theoretic discrepancy
» Our work resolves this open problem (Hong et al., 2023)

» We adapt arguments used to establish wavelet-based bounds
on W, (Niles-Weed and Berthet, 2022)



Lower bounds

[
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where

2 2
5—51 € (00,2) and ¢’ = . > €(1,2)

q:

and

P gl =3
17 - 215, Z%W,

over k € Z9\ 0



Lower bounds

p=1and?2 d72[|F = 2l com

Lo lia o
p=2 |Ifllllgll, <M, se(l,00) | d2=M72f —&llg e

R ~
p=2 |Iflle llglle <M M=zt — &llo,we

» Tradeoff between

1 . .

» M~z decreasing as s increases, and
1 . . . .

» d~ %, increasing with as s increases

> ||f — gll, wa increases as s increases

» The first bound works for unbounded densities



Upper bounds on W,(f, g)

p=1 I~ &llo,u2

N T
p=1f gl <z | O(Valf -2allZ.,.)
p=2frg2¢>0 | O(¢H|F—gloue)

> We require 3 > % — 1 for
If = gl2;, = > (IkI°(h — &0))?
k

» The p = 1 bounds works for densities that are not uniformly
bounded from below.



Early stopping in computational inversion

» Assume the forward model
f: M—P(Q)

is invertible as a function of its parameters

> Approximate the exact solution of

f(m)=g
by an approximation m; s.t.

WP(f(m5)7g) <9



Low-pass approximation of the inverse

» Denote the noisy data and the noise by
g’ :=1f(m;) and n:=g° —g
» We cut-off frequencies |k| > k. of the approximate solution
ms = f}(g’)

» The approximate bandwidth-limited solution is

where B =Lof 1 and L: M — M is the corresponding
low-pass filter

> What is he optimal cut-off threshold k.?
» How does it depend on p and §7?



Approximation error
> If me H forr>0,

lm = m§ll2 < llm— Lo f~ o f(m)] 2+ |80 f(m) — m§|2

< |lm = L(m)ll 2 + 115(g) — B(gs)ll.2
< (2mke) " [Imllyy + [15(8) — B(gs)ll 2

» Assume for some a > 0,

1B0) = Bz = ke lI% = Fl1€g,me

i.e., B is a de-smoothing operator

» Then the bound is minimized by

(2m)~"r

a+r _
kot <
«

-SNR

where
SNR := M
dq



De-smoothing inversion

» Assume ||n||,;5 < z, and for some constants o/, ¢ > 0 and
function h > 0.

18() = B2 = ke h(2)[1% = 7IlZ_
> If r >0,
ke'tr = BT g,
(6

where
[[m|ly
h(z)dg

SNR;, =



/
Lower bounds on k2" or k&7,

p=1 (. SNR)
p=1 [[F(m) —gl.;, <z | UELE-SNR,)

p

2, f(m)hng>£>0

» « and o may depend on d, p, s

» o/ may also depend on .




Upper bounds on k2"

p=1 o(d%(Z’“) s SNR)

p=2 [f(m)lL,llgll <M, s € (1,00) OM(d*i@ ~SNR)

p=2|If(mi..lgl. <M oM(@ﬂ v SNR)

» As before, g = 52_—51
» Here too o may depend on d, p, s



Diagonal operators in Fourier domain

> If f = ||k|; ", then

> Forp=2,g=2

14 ify>-1
o =
0 if v< -1



Diagonal operators in Fourier domain
- <
If HnHHB < z, then

’
1Ball, iz S /2

O/:{l—i-Zy—B—i-g—Z ify>3/2—1/2
d
2

—d if v < B/2—1/2
> Forp=1
a,:{1+2y—5+g ify>B/2—1/2
g if y < B/2-1/2
» For p=2

v 1r2 =B iy >p5/2-172
0 if y<3/2-1/2

» We assume that 7, d and g and if applicable 5 are such that

a>0orad >0



Diagonal operators in Fourier domain - W, vs HP

» Engquist et al. (2020) showed that in the context of using
the H® matching

ke = SNRT777,
» Taking 8 = 0, corresponds to the Ly norm matching

» Leads to lower resolution (smoother reconstruction) than the
W, metric minimization

» Using the negative 5 = % — % leads to the same resolution for

HP and W, matching for p € [1,2] (in each case, assuming
that the early stopping thresholds are the same).



Qualitative results for diagonal operators in Fourier domain

Holding the early stopping threshold § constant,
» all p: bounds on k. constant or increase if p 1
» depends on regularity of the data g
» p € [1,2]: bounds on k. constant or decrease if d 1
> also depends on regularity of g

» p € (2,00): bounds on k. increase if d 1



More qualitative results

Now holding the noise n constant,
> As we | p, by the monotonicity of £ 2, [|A w2 |

» We show k. T when p | by constructing specific
high-frequency noise



Generalizations

» Upper bounds on Y have additional terms due to boundary
condition
» We also provide similar Fourier based bounds for generalized
W, for unbalanced measures Piccoli and Rossi (2000); Piccoli
et al. (2023)
» The only difference is appearance of constant frequency k =0
» for p =1, this is the KR norm used in FWI experiments
mentioned earlier



LLower bounds proof

1. Construct a test function h € W9 from f — g and Fourier
basis functions

> We adapt this idea from Niles-Weed and Berthet (2022)
establishing wavelet based bounds on W,

2. Bound [[Vh||1 (a) using Hausdorff-Young inequality

3. Responsible for K;, vs £, for wavelets

Maury et al. (2010) For all h € W9, if y and v € P(Q) N
L5(Q2) and ||v|| s, || @]l s < M and

then

/Qh d(p—v) < MYP ||V hl| () Wo(p, v)




Upper bounds proof

1. Construct feasible (p, E) using f — & and Fourier basis
> Also adapt this idea from Niles-Weed and Berthet (2022)
2. Develop Sobolev-like embedding of sequences
» Higher regularity of f — g allows to embed ¢, 2 in a space
with a stronger norm ¢, ,» for g > 2.

Fluid dynamics formulation Benamou and Brenier (2000);
Brenier (2003): For p € [1,00),

4 —— of- = . =
W, v) = inf {Bp(p, E) (1) = i p(,0) = v

where

Jaxio H%(X, t)||Pdp(x,t) if E<p
AFES otherwise.

By(p,E) = {




Dynamic formulation

 —
 ——

VoV v




Conclusion

» Offer a fresh Fourier-based perspective on Wasserstein-p
distance resolving an open problem in analysis and probability

» Determine resolution of frequencies in computational inversion
using W), as the mismatch functional

» Our analysis extends to nonlinear inverse problems

» Our bounds provide a leading order approximation of W,
» Current work on understanding the higher order effects
> convexity of W, mismatch minimization
> regularity of iterative solutions in discrete-time W,
minimization schemes
» Fundamental relationship between W, and Fourier-based
norms

» Expect many other connections in analysis, probability and
applied fields
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