Fourier-Based Bounds for Wasserstein Distances and Their Implications for Data-Driven Problems

Vlad Kobzar¹ joint work with Wanli Hong² and Kui Ren¹

¹Columbia, ²NYU

Outline

Background and motivation

- Optimal transport
- ► W_p distances
- Frequency domain/Fourier basis
- ▶ Fourier-based bounds on W_p
- ▶ Resolution of frequencies in W_p mismatch minimization
- Future directions

What is optimal transport?

- A geometric framework for comparing probability measures
- Rich history of applications
 - Construction of fortifications under Napoleon (Monge, 1781)
 - Optimization of production in the USSR (Kantorovich, 1942)
 - Promising recent applications in ML and inverse problems
- Led to many discoveries in geometry, analysis and optimization

Kantorovich Koopmans Monge

Nobel '75

Dantzig

Figalli Fields '18

Otto

Brenier

McCann

Monge (1781)

Optimal transport map T is the minimizer of

$$MP(\mu_s,\mu_t) := \min_{\mu_t=T_{\sharp}\mu_s} \int c(x,T(x))d\mu_s$$

• μ_s , μ_t are a.c. $\Rightarrow \Delta$ of vars. for assoc. densities f, g

 $\mu_t = T_{\sharp}\mu_s \Leftrightarrow g(x)dx = f(T(x))|\det \partial_x T(x)|dx$

Nonconvex problem even if c is convex
 Original Monge's cost c(x, y) = |x - y|

Kantorovich (1942)

Look for an optimal assignment (coupling) of masses
 Allows to split mass, in contrast to transport map T

Kantorovich (1942)

• The optimal *transport plan* γ is a minimizer of

$$KP(\mu_s,\mu_t) := \min_{\gamma \in \mathcal{P}} \mathbb{E}_{\gamma} c(x,y)$$

 $\blacktriangleright \ \mathcal{P}$ are all joint probability measures γ with

$$\mu_s = \int \gamma(\cdot, y) dy$$
 and $\mu_t = \int \gamma(x, \cdot) dx$

This problem is convex (for discrete measures it's an LP)

Transport plans

 A few examples of transport plans between uniform and discrete measures in 1D

Wasserstein distances

When c is a p-th moment of a distance, KP is also a distance
 Focus on the Euclidean case: c(x, y) = |x - y|^p

$$W_p^p(\mu_t,\mu_s) := \min_{\gamma \in \mathcal{P}} \mathbb{E}_{\gamma} |x-y|^p$$

• We'll consider only p = 1 vs 2 for simplicity

W_p mismatch

Using a mismatch functional Φ, fit model f(m) to data g

$$\min_m \Phi(f(m),g)$$

W_p mismatch meaningful even if
 f(m) and g have non-overlapping support, or
 g is in a low-dim. manifold or shifted relative to f(m)
 W₁ is used in ML, stats inference and inverse problems

 W_p in 1D

PDF ····· CDF⁻¹

Explicit form

$$\begin{split} W_1(\mu,\nu) &:= \int_{\mathbb{R}} |\mathsf{CDF}(\mu) - \mathsf{CDF}(\nu)| dx \\ W_p^p(\mu,\nu) &:= \int_0^1 |\mathsf{CDF}^{-1}(\mu) - \mathsf{CDF}^{-1}(\nu)|^p dx \end{split}$$

Does not extend to higher dimensions

Kantorovich-Rubinstein Theorem

▶ W₁ has a dual formulation

$$W_1(\mu,
u) = \max_{\varphi \in \mathsf{Lip}-1} \mathbb{E}_{\mu} \varphi - \mathbb{E}_{
u} \varphi$$

where

$$Lip - K = \{ \varphi : |\varphi(x) - \varphi(y)| \le K|x - y| \}$$

Used in ML applications, like WGANs

$$\max_{w} \frac{1}{m} \sum_{i=1}^{m} \varphi_{w}(x_{i}) - \varphi_{w}(g_{\theta}(z_{i}))$$

where

- φ_w is a Lip K neural network (critic),
- $g_{\theta}(z_i)$ is a generative neural network (actor)
- \blacktriangleright x_1, \ldots, x_m are real data
- z_i's are sampled from a fixed distribution

Kantorovich-Rubinstein Norm

• Generalizes W_1 to unbalanced signed measures

$$\mathit{KR}(\mu,
u) := \max_{\substack{arphi\in\mathsf{Lip}-1\ \|arphi\|_\infty\leq 1}} \mathbb{E}_\muarphi - \mathbb{E}_
uarphi$$

- Used in inverse problems, like seismic imaging/FWI Lellmann et al. (2014); Métivier et al. (2016a,b); Métivier et al. (2022)
- ▶ W₁ and KR are challenging to analyze because the cost |x y| is not smooth or strictly convex

W_p mismatch minimization

When f is highly nonconvex and m is high-dimensional, it is not computationally tractable to accurately solve

$$\min_m \Phi(f(\cdot, m), g)$$

even if g is in the range of f.

▶ How does using *W_p* impact an approximate solution?

 $W_p(f(\cdot, m), g) < \delta$

- What is the impact of different values of p?
- To study this, we bound W_p(f, g) in terms of the Fourier coefficients of f and g

Fourier series

Represent periodic signals with Fourier series

$$f(x) = \sum_{k} a_k \psi_{k,\theta_k}(x)$$

where

$$\psi_{k,\theta_k}(x) := \cos(2\pi k x + \theta_k)$$

▶ Not convenient because $\psi_{k,\theta_k}(x)$ depends nonlinearly on θ_k

Fourier basis

• We define the complex sinusoid with frequency $k \in \mathbb{Z}$ as

$$\psi_k(x) := \exp(i2\pi kx) = \cos(2\pi kx) + i\sin(2\pi kx)$$

A real sinusoid with frequency k can be represented as

$$\cos(2\pi ft + \theta) = \frac{\exp(i\theta)}{2}\psi_k(x) + \frac{\exp(-i\theta)}{2}\psi_{-k}(x)$$

Now the phase is encoded in the complex amplitudes.

Multivariate Fourier series

For
$$f:[0,1)^d o \mathbb{R}$$

$$f(x) = \sum_{k} \hat{f}_{k} \psi_{k}(x)$$

where

$$\psi_k(x) = \exp\left(i2\pi\langle k, x\rangle\right)$$

Multivariate Fourier series

For
$$f:[0,1)^d o \mathbb{R}$$
 $f(x) = \sum_k \widehat{f}_k \psi_k(x)$

where

$$\psi_k(x) = \exp\left(i2\pi\langle k, x\rangle\right)$$

Assumptions

1. μ and ν are a.c., and therefore are associated with their densities f and g

$$W_p(f,g) := W_p(\mu,\nu)$$

- 2. The domain Ω is flat torus $\mathbb{T}^d := [0,1)^d$
 - Our analysis also works on hypercube H^d := [0,1]^d where f and g must satisfy symmetric boundary condition
- 3. For $k \in \mathbb{Z}^d$, the Fourier series

$$f = \sum_k \hat{f}_k \psi_k$$
 and $g = \sum_k \hat{g}_k \psi_k$

converge in $L^2(\Omega)$ where

$$\psi_k(x) := e^{2\pi i \langle k, x \rangle}$$

Existing Fourier-based bounds on W_2

$$W_2(f,g) \asymp \|f-g\|_{\dot{\mathcal{H}}^{-1}}$$

where the Sobolev norm

$$\|f - g\|_{\dot{\mathcal{H}}^{-1}}^2 = \sum_k \left(\frac{\hat{f}_k - \hat{g}_k}{|k|}\right)^2$$

 Led to frequency resolution analysis in W₂ mismatch minimization (Engquist et al., 2020)

Existing W_p bounds

No previously known Fourier-based bounds for W_p when $p \neq 2$, except in special cases:

- Measures on a circle (Steinerberger, 2021)
- Measures on a finite discrete grid (Auricchio et al., 2020)
- Trivial bound $W_p \leq W_2 \lesssim \|f-g\|_{\dot{\mathcal{H}}^{-1}}$
- Open problem (Steinerberger, 2021)
 - To establish a Fourier-based l.b. on W_p that \uparrow as $p \uparrow$
 - Applications in measure theoretic discrepancy
- Our work resolves this open problem (Hong et al., 2023)
 - We adapt arguments used to establish wavelet-based bounds on W_p (Niles-Weed and Berthet, 2022)

Lower bounds

$$p = 1 \text{ and } 2$$

$$d^{-\frac{1}{2}} \|\hat{f} - \hat{g}\|_{\infty, w^{1}}$$

$$p = 2, \quad \|f\|_{L_{s}}, \|g\|_{L_{s}} \le M, \quad s \in (1, \infty)$$

$$d^{-\frac{1}{2s}} M^{-\frac{1}{2}} \|\hat{f} - \hat{g}\|_{q, w^{q'}}$$

$$p = 2, \quad \|f\|_{L_{\infty}}, \|g\|_{L_{\infty}} \le M$$

$$M^{-\frac{1}{2}} \|\hat{f} - \hat{g}\|_{2, w^{2}}$$

where

$$q=rac{2s}{s-1}\in(\infty,2)$$
 and $q'=rac{2s}{s+1}\in(1,2)$

 $\quad \text{and} \quad$

$$\|\hat{f} - \hat{g}\|_{q,w^r}^q = \sum_k \left|\frac{\hat{f}_k - \hat{g}_k}{2\pi |k|_r}\right|^q$$

over $k \in \mathbb{Z}^d \setminus 0$

Lower bounds

p=1 and 2	$d^{-rac{1}{2}}\ \hat{f}-\hat{g}\ _{\infty,w^1}$
$p = 2, f _{L_s}, g _{L_s} \le M, s \in (1,\infty)$	$d^{-\frac{1}{2s}}M^{-\frac{1}{2}}\ \hat{f}-\hat{g}\ _{q,w^{q'}}$
$p = 2, f _{L_{\infty}}, g _{L_{\infty}} \leq M$	$M^{-rac{1}{2}}\ \hat{f}-\hat{g}\ _{2,w^2}$

- Tradeoff between
 - $M^{-\frac{1}{2}}$, decreasing as *s* increases, and
 - $d^{-\frac{1}{2s}}$, increasing with as *s* increases
- $\|\hat{f} \hat{g}\|_{q,w^{q'}}$ increases as *s* increases
- The first bound works for unbounded densities

Upper bounds on $W_p(f,g)$

$$\begin{array}{c|c} p = 1 & \|\hat{f} - \hat{g}\|_{2,w^2} \\ \hline p = 1, \ \|f - g\|_{\dot{\mathcal{H}}^{\beta}} \leq z & O\left(\sqrt{z}\|\hat{f} - \hat{g}\|_{\infty,w^2}^{\frac{1}{2}}\right) \\ \hline p = 2, \ f \wedge g \geq \xi > 0 & O\left(\xi^{-\frac{1}{2}}\|\hat{f} - \hat{g}\|_{2,w^2}\right) \end{array}$$

• We require
$$\beta > \frac{d}{2} - 1$$
 for

$$\|f-g\|^2_{\dot{\mathcal{H}}^eta} := \sum_k (|k|^eta(\hat{f}_k - \hat{g}_k))^2$$

The p = 1 bounds works for densities that are not uniformly bounded from below. Early stopping in computational inversion

Assume the forward model

$$f:\mathcal{M}\mapsto\mathcal{P}(\Omega)$$

is invertible as a function of its parameters

Approximate the exact solution of

$$f(m) = g$$

by an approximation m_{δ} s.t.

 $W_p(f(m_{\delta}),g) \leq \delta$

Low-pass approximation of the inverse

Denote the noisy data and the noise by

$$g^\delta:=f(m_\delta)$$
 and $n:=g^\delta-g$

• We cut-off frequencies $|k| > k_c$ of the approximate solution

$$m_{\delta}=f^{-1}(g^{\delta})$$

The approximate bandwidth-limited solution is

$$m^{c}_{\delta} := \beta(g^{\delta})$$

where $\beta = L \circ f^{-1}$ and $L : \mathcal{M} \to \mathcal{M}$ is the corresponding low-pass filter

- What is he optimal cut-off threshold k_c?
- How does it depend on p and δ ?

Approximation error

► If
$$m \in \dot{\mathcal{H}}^r$$
 for $r > 0$,
 $\|m - m_{\delta}^c\|_{L^2} \le \|m - L \circ f^{-1} \circ f(m)\|_{L^2} + \|\beta \circ f(m) - m_{\delta}^c\|_{L^2}$
 $\le \|m - L(m)\|_{L^2} + \|\beta(g) - \beta(g_{\delta})\|_{L^2}$
 $\le (2\pi k_c)^{-r} \|m\|_{\dot{\mathcal{H}}^r} + \|\beta(g) - \beta(g_{\delta})\|_{L^2}$

• Assume for some $\alpha > 0$,

$$\|\beta(\mathbf{x}) - \beta(\mathbf{y})\|_{L^2} \asymp k_c^{\alpha} \|\hat{\mathbf{x}} - \hat{\mathbf{y}}\| \ell_{q, w^2}$$
(1)

i.e., β is a *de-smoothing operator*▶ Then the bound is minimized by

$$k_c^{\alpha+r} \asymp \frac{(2\pi)^{-r}r}{lpha} \cdot \mathsf{SNR}$$

where

$$\mathsf{SNR} := rac{\|m\|_{\dot{\mathcal{H}}^r}}{\delta_q}$$

De-smoothing inversion

• Assume $\|n\|_{\dot{\mathcal{H}}^{\beta}} \leq z$, and for some constants $\alpha', \epsilon > 0$ and function h > 0.

$$\|\beta(x) - \beta(y)\|_{L^2} \asymp k_c^{\alpha'} h(z) \|\hat{x} - \hat{y}\|_{\ell_{q,w^2}}^{\epsilon}$$

► If
$$r > 0$$
,
 $k_c^{\alpha'+r} \asymp \frac{(2\pi)^{-r}r}{\alpha'} \cdot SNR_z$
where

$$\mathsf{SNR}_z := \frac{\|m\|_{\dot{\mathcal{H}}^r}}{h(z)\delta_q^\epsilon}$$

Lower bounds on $k_c^{\alpha+r}$ or $k_c^{\alpha'+r}$,

$$p = 1 \qquad \qquad \Omega\left(\frac{(2\pi)^{-r}r}{\alpha} \cdot \mathsf{SNR}\right)$$
$$p = 1, \ \|f(m) - g\|_{\dot{\mathcal{H}}^{\beta}} \le z \qquad \qquad \Omega\left(\frac{(2\pi)^{-r}r}{\alpha'} \cdot \mathsf{SNR}_z\right)$$
$$p = 2, \ f(m) \land g \ge \xi > 0 \qquad \qquad \Omega_{\xi}\left(\frac{(2\pi)^{-r}r}{\alpha} \cdot \mathsf{SNR}\right)$$

▶ α and α' may depend on *d*, *p*, *s*

• α' may also depend on β .

Upper bounds on $k_c^{\alpha+r}$

$$p = 1 \qquad \qquad O\left(d^{\frac{1}{2}} \frac{(2\pi)^{-r}r}{\alpha} \cdot SNR\right)$$

$$p = 2, ||f(m)||_{L_s}, ||g||_{L_s} \le M, s \in (1, \infty) \qquad O_M\left(d^{-\frac{1}{2s}} \frac{(2\pi)^{-r}r}{\alpha} \cdot SNR\right)$$

$$p = 2, ||f(m)||_{L_{\infty}}, ||g||_{L_{\infty}} \le M \qquad O_M\left(\frac{(2\pi)^{-r}r}{\alpha} \cdot SNR\right)$$

• As before,
$$q = \frac{2s}{s-1}$$

• Here too α may depend on *d*, *p*, *s*

Diagonal operators in Fourier domain

• If
$$\hat{f}_k = ||k||_2^{-\gamma}$$
, then

$$\alpha = \begin{cases} 1 + \gamma + \frac{d}{2} - \frac{d}{q} & \text{if } \gamma > -1 \\ \frac{d}{2} - \frac{d}{q} & \text{if } \gamma \leq -1 \end{cases}$$
• For $p = 1$, $q = \infty$

$$\alpha = \begin{cases} 1 + \gamma + \frac{d}{2} & \text{if } \gamma > -1 \\ \frac{d}{2} & \text{if } \gamma \leq -1 \end{cases}$$
• For $p = 2$, $q = 2$

$$\alpha = \begin{cases} 1+\gamma & \text{if } \gamma > -1 \\ 0 & \text{if } \gamma \leq -1 \end{cases}$$

Diagonal operators in Fourier domain

• If
$$\|n\|_{\dot{\mathcal{H}}_{\beta}} \leq z$$
, then

$$\|Bn\|_{\ell_{1,w^2} o L^2} \lesssim k_c^{lpha'} \sqrt{z\delta_q}$$

where

$$\alpha' = \begin{cases} 1 + 2\gamma - \beta + \frac{d}{2} - \frac{d}{q} & \text{if } \gamma > \beta/2 - 1/2\\ \frac{d}{2} - \frac{d}{q} & \text{if } \gamma \le \beta/2 - 1/2 \end{cases}$$
(2)

For
$$p = 1$$

$$\alpha' = \begin{cases} 1 + 2\gamma - \beta + \frac{d}{2} & \text{if } \gamma > \beta/2 - 1/2 \\ \frac{d}{2} & \text{if } \gamma \le \beta/2 - 1/2 \end{cases}$$
For $p = 2$

$$\alpha' = \begin{cases} 1 + 2\gamma - \beta & \text{if } \gamma > \beta/2 - 1/2 \\ 0 & \text{if } \gamma \le \beta/2 - 1/2 \end{cases}$$

We assume that γ, d and q and if applicable β are such that α > 0 or α' > 0 Diagonal operators in Fourier domain - W_p vs \mathcal{H}^{β}

 Engquist et al. (2020) showed that in the context of using the H^β matching

$$k_c \asymp SNR^{rac{1}{1+r+\gamma-eta}}$$

- Taking $\beta = 0$, corresponds to the L_2 norm matching
 - Leads to lower resolution (smoother reconstruction) than the W_p metric minimization
- Using the negative β = d/2 − d/p leads to the same resolution for H^β and W_p matching for p ∈ [1,2] (in each case, assuming that the early stopping thresholds are the same).

Qualitative results for diagonal operators in Fourier domain

Holding the early stopping threshold δ constant,

- ▶ all *p*: bounds on k_c constant or increase if $p \uparrow$
 - depends on regularity of the data g
- ▶ $p \in [1,2]$: bounds on k_c constant or decrease if $d \uparrow$
 - also depends on regularity of g
- ▶ $p \in (2,\infty)$: bounds on k_c increase if $d \uparrow$

More qualitative results

Now holding the noise n constant,

- ► As we $\downarrow p$, by the monotonicity of ℓ_{q,w^2} , $\|\hat{n}\|_{p',w^2} \downarrow$
- We show k_c ↑ when p ↓ by constructing specific high-frequency noise

Generalizations

- Upper bounds on H^d have additional terms due to boundary condition
- We also provide similar Fourier based bounds for generalized *W_p* for unbalanced measures Piccoli and Rossi (2000); Piccoli et al. (2023)
 - The only difference is appearance of constant frequency k = 0
 - for p = 1, this is the KR norm used in FWI experiments mentioned earlier

Lower bounds proof

- 1. Construct a test function $h \in W^{1,q}$ from $\hat{f} \hat{g}$ and Fourier basis functions
 - We adapt this idea from Niles-Weed and Berthet (2022) establishing wavelet based bounds on W_p
- 2. Bound $\|\nabla h\|_{L_q(\Omega)}$ using Hausdorff-Young inequality
- 3. Responsible for ℓ'_p vs ℓ_p for wavelets

Maury et al. (2010) For all $h \in W^{1,q}$, if μ and $\nu \in \mathcal{P}(\Omega) \cap L^{s}(\Omega)$ and $\|\nu\|_{L^{s}}, \|\mu\|_{L^{s}} \leq M$ and

$$\frac{1}{q} + \frac{1}{p} + \frac{1}{s} = 1 + \frac{1}{ps}$$

then

$$\int_{\Omega} h \ d(\mu - \nu) \leq M^{1/p'} \|\nabla h\|_{L_q(\Omega)} W_p(\mu, \nu)$$

Upper bounds proof

- 1. Construct feasible (ρ, E) using $\hat{f} \hat{g}$ and Fourier basis
 - Also adapt this idea from Niles-Weed and Berthet (2022)
- 2. Develop Sobolev-like embedding of sequences
 - ► Higher regularity of f g allows to embed l_{2,w²} in a space with a stronger norm l_{q,w²} for q > 2.

Fluid dynamics formulation Benamou and Brenier (2000); Brenier (2003): For $p \in [1, \infty)$,

$$W_{\rho}^{p}(\mu,\nu) = \inf_{(\rho,E)} \left\{ \mathcal{B}_{\rho}(\rho,E) : \rho(\cdot,1) = \mu, \rho(\cdot,0) = \nu \\ \partial_{t}\rho + \nabla_{x} \cdot E = 0 \right\}$$

where

$$\mathcal{B}_{p}(\rho, E) := \begin{cases} \int_{\Omega \times [0,1]} \|\frac{dE}{d\rho}(x,t)\|^{p} d\rho(x,t) & \text{if } E \ll \rho \\ +\infty & \text{otherwise.} \end{cases}$$

Dynamic formulation

Conclusion

- Offer a fresh Fourier-based perspective on Wasserstein-p distance resolving an open problem in analysis and probability
- Determine resolution of frequencies in computational inversion using W_p as the mismatch functional
 - Our analysis extends to nonlinear inverse problems
- Our bounds provide a leading order approximation of W_p
- Current work on understanding the higher order effects
 - convexity of W_p mismatch minimization
 - regularity of iterative solutions in discrete-time W_p minimization schemes
- Fundamental relationship between W_p and Fourier-based norms
- Expect many other connections in analysis, probability and applied fields

Acknowledgements

- We thank the anonymous referees for their useful comments (NeurIPS OTML 2023).
- This work is partially supported by the NSF grants DMS-1937254 and DMS-2309802.
- V.A.K. is grateful to Robert Kohn for his fruitful suggestion to explore wavelet analysis in this context.
- V.A.K. thanks Sinan Gunturk, James Scott and Stefan Steinerberger for helpful input at critical points in this project.

Image credits: Flamary and Courty (2019)

Image credits Fernandez-Granda (2020)

Image credits

References I

- Auricchio, G., CodeGoni, A., Gualandi, S., Toscani, G., and Veneroni, M. (2020). The equivalence of Fourier-based and Wasserstein metrics on imaging problems. arXiv:2005.06530v1.
- Benamou, J.-D. and Brenier, Y. (2000). A computational fluid mechanics solution to the monge- kantorovich mass transfer problem. *Numer. Math.*, 84(3):375–393.
- Brenier, Y. (2003). Extended Monge-Kantorovich theory. In Franca, M., editor, *Optimal transportation and applications*, volume 1813 of *Lecture Notes in Math.*, pages 91–121. Springer, Berlin.
- Engquist, B., Ren, K., and Yang, Y. (2020). The quadratic Wasserstein metric for inverse data matching. *Inverse Problems*, 36:055001. arXiv:1911.06911.
- Fernandez-Granda, C. (2020). Ds-ga 1013 / math-ga 2821
 mathematical tools for data science, lecture notes.
 https://cims.nyu.edu/~cfgranda/pages/MTDS_spring19/.

References II

- Flamary, R. and Courty, N. (2019). Optimal transport for machine learning: Introduction to optimal transport, tutorial isbi 2019, venice, italy. https://remi.flamary.com/cours/otml/OTML_ ISBI_2019_OTintro.pdf.
- Hong, W., Kobzar, V., and Ren, K. (2023). Fourier-based bounds for Wasserstein distances and their implications in computational inversion. In *NeurIPS 2023 Workshop Optimal Transport and Machine Learning*.
- Kantorovich, L. V. (1942). On the translocation of masses. 37(7–8):227–229.
- Lellmann, J., Lorenz, D., Schönlieb, C., and Valkonen, T. (2014). Imaging with Kantorovich-Rubinstein discrepancy. *SIAM J. Imag. Sci.*, 7:2833–2859.
- Maury, B., Roudneff-Chupin, A., and Santambrogio, F. (2010). A macroscopic crowd motion model of gradient flow type. *Math. Models Methods Appl. Sci.*, 10(20):1787—1821.

References III

- Métivier, L., Brossier, R., Mérigot, Q., Oudet, E., and Virieux, J. (2016a). Measuring the misfit between seismograms using an optimal transport distance: application to full waveform inversion. *Geophys. J. Int.*, 205:345–377.
- Métivier, L., Brossier, R., Mérigot, Q., Oudet, E., and Virieux, J. (2016b). An optimal transport approach for seismic tomography: application to 3D full waveform inversion. *Inverse Probl.*, 32. 115008.
- Monge, G. (1781). *Mémoire sur la théorie des déblais et des remblais*. Histoire de l'Académie Royale des Sciences de Paris, avec les Mémoires de Mathématique et de Physique pour la même année.
- Métivier, L., Brossier, R., Kpadonou, F., Messud, J., and Pladys, A. (2022). A review of the use of optimal transport distances for high resolution seismic imaging based on the full waveform.

References IV

- Niles-Weed, J. and Berthet, Q. (2022). Minimax estimation of smooth densities in Wasserstein distance. Annals of Statistics, (3):1519–1540.
- Peyre, R. (2018). Comparison between W_2 distance and \dot{H}^{-1} norm, and localization of wasserstein distance. *ESAIM: COCV*, 24(4):1489–1501.
- Peyré, G. and Cuturi, M. (2018). *Computational Optimal Transport*. ArXiv:1803.00567.
- Piccoli, B. and Rossi, F. (2000). On properties of the generalized Wasserstein distance. Archive for Rational Mechanics and Analysis, 222(3):1339–1365.
- Piccoli, B., Rossi, F., and Tournus, M. (2023). A Wasserstein norm for signed measures, with application to non-local transport equation with source term.
- real gl (2013). pdf, cdf, inverse cdf, lecture notes. http: //realgl.blogspot.com/2013/01/pdf-cdf-inv-cdf.html.

References V

Steinerberger, S. (2021). Wasserstein distance, Fourier series and applications. *Monatshefte für Mathematik*, 194:305–338.