New Bounds for Geometric-Stopping Version of Prediction with Expert Advice

Prediction with expert advice

In each $t \in [T]$,

- the *player* determines the mix of N experts to follow - distribution $p_t \in \Delta_N$;
- the *adversary* allocates losses to them distribution a_t over $[-1, 1]^N$; and
- expert losses $q_t \sim a_t$, player's choice of expert $I_t \sim p_t$; these samples revealed to both parties.

Our contribution

Previously we developed a PDE viewpoint for the *fixed horizon* (FH) version of the problem where the stopping time T is fixed (COLT 2020)

This paper (MSML 2020) extends this viewpoint to the geometric stopping (GS) version where the stopping time $T \sim G$ and $G = \text{Geom}(\text{mean } \frac{1}{\delta})$

- Specifically, if an FH adversary does not depend on time (stationary), it can be used for GS
- *Technically*: Given a FH potential, its Laplace transform gives a GS potential
- *Intuition*: This transform is the expectation w/r/t the Exp distribution (limit of G when $\delta \rightarrow 0$)
- Key result: Obtain the first lower bounds for general N for GS

Definitions

- Instantaneous regret: $r_{\tau} = q_{I_{\tau},\tau} \mathbb{1} q_{\tau}$
- Accumulated regret: $x_t = \sum_{\tau < t} r_{\tau}$
- Final regret: $FH R_T(p, a) = \mathbb{E}_{p,a} \max_i x_{i,T};$ $\operatorname{GS} - R(p, a) = \mathbb{E}_G R_T(p, a)$

Acknowledgements

Vladimir A. Kobzar¹, Robert V. Kohn² and Zhilei Wang²

¹NYU Center for Data Science, ²Courant Institute of Mathematical Sciences

We use the value function

- Focus first on player strategies/upper bounds
- Assume player p is Markovian: depends only on x
- Value function v_p : expected final-time regret achieved by p if the game starts with realized regret x (and the adversary behaves optimally)
- Characterized by

 $v_p(x) = \delta \max_i x_i + (1 - \delta) \max_a \mathbb{E}_{a,p} v_p(x + r)$

Results

- Provide easily-checked conditions for a func. to be useful as a lower bound or an upper bound potential
- Using the Laplace transform, construct potentials for the geometric stopping problem from potentials used for the fixed horizon version
- Obtain the first known lower bound in the geometric setting for general N associated with a simple randomized strategy

FH exponential weights potential

 $w^e(x,t) = \Phi(x) + kt$ where $\Phi(x) = \frac{1}{\eta} \log(\sum_{i=1}^N e^{\eta x_i})$ • *Issue*: want to use induction backwards ("verification" argument), but don't know T• Associated with the player $p^e = \nabla w^e$ • Sol'n: introduce a new problem, which is the • The standard upper bound: same except that it ends at t_0 (if it doesn't end $\max_a R_T(a, p^e) \le \Phi(0) + \frac{1}{2}\eta T.$ earlier in accordance with the GS condition) • Thus, taking $k = \frac{1}{2}\eta$ ensures that • The difference in regret relative to the original $\max_a R_T(a, p^e) \le w^e(0, T)$ for FH problem $\rightarrow 0$ as $t_0 \rightarrow \infty$. • Suffices to bound the value g of the new problem. Laplace tr.: $FH \rightarrow GS$ potential • It is given by a dynamic program: $g(x, t_0) = \max_i x_i$ and, for $t \le t_0 - 1$, Illustrate by the exponential weights example: $\hat{w}^{e}(x) = \int_{0}^{\infty} e^{-t} w^{e}(x,t) dt = \Phi(x) + k$ g(• $\Phi(x) \ge \max_i x_i$ and $\langle D^2 \Phi \cdot q, q \rangle \le \eta$ • Also $\Phi(x + c_1) = \Phi(x) + c$ **Proof of** $v_p \leq \hat{w}$: "verification" arg. • Taking $k = \frac{1-\delta}{2\delta}\eta$ ensures \hat{w}^e satisfies our def'n of a GS upper bound potential **1** Control increase of \hat{w} as the game evolves: the • Since Φ is convex, $0 \leq \langle D^2 \Phi \cdot q, q \rangle$. Thus choice $p = \nabla \hat{w}$ eliminates the 1st-order Taylor $\hat{w}^e(x) - \max_i x_i \ge 0.$

Upper bound potentials/players

A function $\hat{w} : \mathbb{R}^N \to \mathbb{R}$, nondecr. in x_i , which solves $\hat{w}(x) \ge \max_i x_i + \frac{1-\delta}{2\delta} \max_{q \in [-1,1]^N} \langle D^2 \hat{w}(x) \cdot q, q \rangle$ $\hat{w}(x+c\mathbf{1}) = \hat{w}(x) + c$

• The associated player $p = \nabla \hat{w}$ • Leads to an upper bound on v_p if $\hat{w}(x) - \max_i x_i$ is uniformly bounded below • \Rightarrow regret upper bound since $v_p(0) = \max_a R(a, p)$

Proof of $v_p \leq \hat{w}$: Idea

$$(x,t) = \delta \max_{i} x_i + (1-\delta) \min_{p} \mathbb{E}_{a,p} g(x+r,t+1)$$

term in this evolution for all q

• Show $g \leq \hat{w}$ by induction (and thus $v_p \leq \hat{w}$)

• Adversary a Markovian & "balanced": $\mathbb{E}_a q_i = \mathbb{E}_a q_i$ • Use the value function v_a for this adversary • Lower bound potential is a function $\hat{u} : \mathbb{R}^N \to \mathbb{R}$ which solves $\hat{u} \leq \max_i x_i + \frac{1-\delta}{2\delta} \mathbb{E}_a \langle D^2 \hat{u}(x) \cdot q, q \rangle$ $\hat{u}(x+c\mathbf{1}) = \hat{u}(x) + c$ • $\hat{u} \leq v_a$ (modulo error E from higher order terms) • Regret bound $\hat{u}(0) - E \leq v_a(0) = \min_p R(a, p)$ • In estimating the expected value of u(x+r) - u(x), the dependence on p is in the 1st-order Taylor term, which gets eliminated since a is balanced • The dependence on a remains at the 2nd order

• a^h is a $S \ q \in$ $q \in \{$ • Potent; of the

> $u_t +$ u(x,

- where • Satisfie
- well-ch
- The lea $\hat{u}(0) =$ weight
- Optima
- Also gi $\hat{u}(0) -$

Lower bound potentials/adversaries

Heat-based adversary

uniform distribution over the following set
$\in \{\pm 1\}^N \mid \sum_{i=1}^N q_i = \pm 1\}$ for N odd or
$\{\pm 1\}^N \mid \sum_{i=1}^N q_i = 0$ for N even
tial \hat{u} is the Laplace transform of the sol'n
linear heat equation
$\kappa \Delta u = 0$ $u(x,t) = \alpha \int e^{-\frac{\ y\ ^2}{2\sigma^2}} \max_k (x_k - y_k) dy$
$\alpha = (2\pi\sigma^2)^{-\frac{N}{2}}$ and $\sigma^2 = -2\kappa t$.
es our def'n of a lower bound potential for a
nosen κ
ading order asymptotics of our lower bound
= $\Omega\left(\sqrt{\frac{\log N}{\delta}}\right)$ matches that of the exponential
s upper bound
al leading order term for $N = 2$
ive a nonasymptotic guarantee
$E \leq v_{a^h}(0)$

• The discretization error E is computed explicitly and is $O\left(N\sqrt{N} \wedge \sqrt{N}\left(1 + \log \frac{1}{\delta}\right)\right)$