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Background

Prediction with expert advice

» Focus on the geometric stopping (GS) version: the stopping time T is sampled

from a geometric distribution G with mean %

» At each round, the predictor (player) uses guidance from a collection of N experts
with the goal of minimizing the difference (regret) between the player’s loss and
that of the best performing expert in hindsight

> The expert losses are determined by the adversary

Strategies and bounds
» Player strategies (leading to upper bounds) are known and often based on
potentials (e.g., exp. weights)
» No previously known lower bounds for GS for general N



Our contribution

Previously, we developed a PDE-based viewpoint on player and adversary potentials
used for the fixed horizon (FH) version of the expert problem (where T is fixed)
[Kobzar et al., 2020]

This paper extends this viewpoint to the GS version

» Specifically, if an adversary for FH does not depend on time (stationary), it can be
used for GS

» Technically: Given a FH potential, its Laplace transform gives a GS potential

» Intuition: This transform is the expectation w/r/t the Exp distribution (limit of G
when § — 0)

> Key result: We obtain the first lower bounds for general N for GS



Definitions

Prediction with expert advice: In each period t € [T],
» the player determines the mix of N experts to follow - distribution p; € Ap;
> the adversary allocates losses to them - distribution a; over [~1,1]"; and

> expert losses g; € [—1, 1]V are sampled from a;, player's choice of expert
It € [N] is sampled from p;, and both samples are revealed to both parties.

Instantaneous regret: r, = q;, -1 — q;

Accumulated regret: x; = __.rr
Final regret
FH: Rr(p,a) = Ep,a max; x; 1
GS: R(p7 a) = EGRT(pv a)



Our viewpoint on potentials uses the value function

» Focus first on player strategies/upper bounds

» Assume player p is Markovian: depends only on the cumulative regret x

» Value function vp: expected final-time regret achieved by p if the game starts
with realized regret x (and the adversary behaves optimally)

» Characterized by

Vp(x) = 5mlaxx,- +(1-9) max Eap vp(x+r)



GS upper bound potentials/players

» Our upper bound potential is a function w : RV — R, nondecr. in x;, which solves

W(x) = maxx; + 127_56 qer[Tlalﬁ]N<D2VAV(X) *q,q) (1a)

w(x +cl) =w(x)+c (1b)

» The associated player p = Vw
» Leads to an upper bound on v, if Ww(x) — max; x; is uniformly bounded below

(we'll later sketch of the proof assuming w(x) — max; x; > 0 for simplicity)

» This upper bounds the regret since v,(0) = max,R(a, p)



Constructing a GS upper bound potential from a FH one

[llustrate by the exponential weights
> The FH potential w*(x, t) = ®(x) + kt where &(x) = 7 log(32N, &)
» Associated with the exponential weights player p¢ = Vw*®
> The standard FH upper bound: max, Rr(a, p¢) < ®(0) + nT.
> Thus, taking k = 17 ensures that max, R7(a, p®) < we(0, T)

The Laplace transform gives the GS potential
we(x) = / e twe(x, t)dt = d(x) + k
0

> ®(x) > max; x; and (D?We(x) - q,q) = (D?*®-q,q) <n

» Taking k = %n ensures Wwe(x) > max; x; + % maxge(—1,1v (D*We(X) - g, q)

> Also ®(x+ cl) = ®(x) + ¢; thus Ww* satisfies our definition of a GS upper bound potential
» Since ® is convex, 0 < (D?® - q, q). Therefore, W®(x) — max; x; > 0.



Proof of v, < w

>

v

Issue: want to use induction backwards (“verification” argument), but don't know
the final time T

Solution: introduce a new problem, which is the same as the original problem
except that it ends at tg (if it doesn’t end earlier in accordance with the GS
condition)

The difference in regret relative to the original problem— 0 as ty — oo.
Thus, it suffices to bound the value function g of the new problem.

It is given by a dynamic program
g(x, to) = maxx;
1

g(x,t) =0maxx;+ (1 —0)minE,p g(x+r, t+1)ift <tg—1
i P



Proof of v, < w: step 1 - controlling increase of w

> As a reminder r = q;1 —gq
» By the linearity along 1, Taylor's thm, and the PDE-based definition of w

<5 qe'[Tlaﬁ]N@zW -q,q) < m(v?/(x) — m?XX,.)

where the choice of p eliminated the 1lst-order term for all g: p-gq—Vw-qg=0
» Rearranging the foregoing,

—W(x) + dmaxx; + (1 —d)maxE,p, w(x+r) <0



Proof of v, < w: step 2 (“verification” argument)

Show g < W by induction (and therefore v, < W)
> Initialization: g(x, tp) < w(x) [since g(x,tp) = max; x and W(x)— max; x; > 0]
» Inductive hypothesis: g(x +r,t +1) < w(x +r)
W(x) > w(x) + (—w(x) + d maxx; + (1 — ) maxE, , w(x + r)) [by step 1]
> dmaxx; + (1 —0)maxE,, [g(x +r, t +1)] [by the hypothesis]
= g(x,t) [by the DP]

» Exp. weights: we¢(0) = I°§7N + %n =1/ 72(1_55) log N for n= \/Lllfgé’v

» This improves on the best known regret bound 4/ 2|°5gN [Gravin et al., 2017]




Our framework also works for lower bounds

» Adversary a is Markovian & “balanced” (E,q; = E,q;)

v

It's value function v, is similar to the player value function v,
» Lower bound potential is a function & : RV — R which solves

D) g, q) (23)

b(x + 1) = i(x) + ¢ (2b)

0 < maxxj +
1

» i < v, (modulo discretization error E)

Regret bound 4(0) — E < v,(0) = min, R(a, p)

» In estimating the expected value of u(x + r) — u(x), the dependence on p is in the
1st-order Taylor term, which gets eliminated since a is balanced

v

> The dependence on a remains at the 2nd order



Heat-based adversary a”

» a" is a uniform distribution over the following set S
{q e {+1}V |2V g = j:l} for N odd or {q e {+1V |2V g = 0} for N even

> Potential § is the Laplace transform of the sol'n of the linear heat equation

Iyl
u(x,t) = oa/efzyT? mfx(xk — yx)dy

us +kAu=20
u(x,0) = max; x

_N
2

where a = (27102)~2 and 02 = —2xt.

» Satisfies our def'n of a lower bound potential for a well-chosen

» The leading order asymptotics of our lower bound &(0) = Q(\/@) matches that of the
exponential weights upper bound

» Optimal leading order term for N =2

> Also give a nonasymptotic guarantee 4(0) — E < v,(0)

» The discretization error E is computed explicitly and is O (N\m/\ VN (1 + log %))



Conclusion
» We provide easily-checked conditions for a function to be useful as a lower-bound
or an upper bound potential

» Using the Laplace transform, we construct potentials for the GS problem from
potentials used for the FH version

» Lower bound potentials correspond to strategies for adversary

» We obtain the first known lower bound in the GS setting for general N associated
with a simple randomized strategy

» Qur framework also leads in some cases to improved upper bounds

Questions? vladimir.kobzar@nyu.edu
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