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Background

Prediction with expert advice

I Focus on the geometric stopping (GS) version: the stopping time T is sampled
from a geometric distribution G with mean 1

δ

I At each round, the predictor (player) uses guidance from a collection of N experts
with the goal of minimizing the difference (regret) between the player’s loss and
that of the best performing expert in hindsight

I The expert losses are determined by the adversary

Strategies and bounds

I Player strategies (leading to upper bounds) are known and often based on
potentials (e.g., exp. weights)

I No previously known lower bounds for GS for general N
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Our contribution

Previously, we developed a PDE-based viewpoint on player and adversary potentials
used for the fixed horizon (FH) version of the expert problem (where T is fixed)
[Kobzar et al., 2020]

This paper extends this viewpoint to the GS version

I Specifically, if an adversary for FH does not depend on time (stationary), it can be
used for GS

I Technically : Given a FH potential, its Laplace transform gives a GS potential

I Intuition: This transform is the expectation w/r/t the Exp distribution (limit of G
when δ → 0)

I Key result: We obtain the first lower bounds for general N for GS
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Definitions

Prediction with expert advice: In each period t ∈ [T ],

I the player determines the mix of N experts to follow - distribution pt ∈ ∆N ;

I the adversary allocates losses to them - distribution at over [−1, 1]N ; and

I expert losses qt ∈ [−1, 1]N are sampled from at , player’s choice of expert
It ∈ [N] is sampled from pt , and both samples are revealed to both parties.

Instantaneous regret: rτ = qIτ ,τ1− qτ

Accumulated regret: xt =
∑

τ<t rτ

Final regret
FH: RT (p, a) = Ep,a maxi xi ,T
GS: R(p, a) = EGRT (p, a)
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Our viewpoint on potentials uses the value function

I Focus first on player strategies/upper bounds

I Assume player p is Markovian: depends only on the cumulative regret x
I Value function vp: expected final-time regret achieved by p if the game starts

with realized regret x (and the adversary behaves optimally)
I Characterized by

vp(x) = δmax
i

xi + (1− δ) max
a

Ea,p vp(x + r)
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GS upper bound potentials/players

I Our upper bound potential is a function ŵ : RN → R, nondecr. in xi , which solves ŵ(x) ≥ max
i

xi +
1− δ

2δ
max

q∈[−1,1]N
〈D2ŵ(x) · q, q〉 (1a)

ŵ(x + c1) = ŵ(x) + c (1b)

I The associated player p = ∇ŵ
I Leads to an upper bound on vp if ŵ(x)−maxi xi is uniformly bounded below

(we’ll later sketch of the proof assuming ŵ(x)−maxi xi ≥ 0 for simplicity)

I This upper bounds the regret since vp(0) = maxaR(a, p)
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Constructing a GS upper bound potential from a FH one

Illustrate by the exponential weights

I The FH potential w e(x , t) = Φ(x) + kt where Φ(x) = 1
η log(

∑N
i=1 e

ηxi )

I Associated with the exponential weights player pe = ∇w e

I The standard FH upper bound: maxa RT (a, pe) ≤ Φ(0) + 1
2ηT .

I Thus, taking k = 1
2η ensures that maxa RT (a, pe) ≤ w e(0,T )

The Laplace transform gives the GS potential

ŵ e(x) =

∫ ∞
0

e−tw e(x , t)dt = Φ(x) + k

I Φ(x) ≥ maxi xi and 〈D2ŵ e(x) · q, q〉 = 〈D2Φ · q, q〉 ≤ η
I Taking k = 1−δ

2δ η ensures ŵ e(x) ≥ maxi xi + 1−δ
2δ maxq∈[−1,1]N 〈D2ŵ e(x) · q, q〉

I Also Φ(x + c1) = Φ(x) + c ; thus ŵ e satisfies our definition of a GS upper bound potential

I Since Φ is convex, 0 ≤ 〈D2Φ · q, q〉. Therefore, ŵ e(x)−maxi xi ≥ 0.
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Proof of vp ≤ ŵ

I Issue: want to use induction backwards (“verification” argument), but don’t know
the final time T

I Solution: introduce a new problem, which is the same as the original problem
except that it ends at t0 (if it doesn’t end earlier in accordance with the GS
condition)

I The difference in regret relative to the original problem→ 0 as t0 →∞.

I Thus, it suffices to bound the value function g of the new problem.

I It is given by a dynamic program

g(x , t0) = max
i

xi

g(x , t) = δmax
i

xi + (1− δ) min
p

Ea,p g(x + r , t + 1) if t ≤ t0 − 1
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Proof of vp ≤ ŵ : step 1 - controlling increase of ŵ

I As a reminder r = qI1− q

I By the linearity along 1, Taylor’s thm, and the PDE-based definition of ŵ

Ep,a [ŵ(x + r)]− ŵ(x) = Ea [p · q + ŵ(x − q)]− ŵ(x)

≤ 1

2
max

q∈[−1,1]N
〈D2ŵ · q, q〉 ≤ δ

1− δ
(ŵ(x)−max

i
xi )

where the choice of p eliminated the 1st-order term for all q: p · q −∇ŵ · q = 0

I Rearranging the foregoing,

−ŵ(x) + δmax
i

xi + (1− δ) max
a

Ea,p ŵ(x + r) ≤ 0
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Proof of vp ≤ ŵ : step 2 (“verification” argument)

Show g ≤ ŵ by induction (and therefore vp ≤ ŵ)

I Initialization: g(x , t0) ≤ ŵ(x) [since g(x , t0) = maxi x and ŵ(x)−maxi xi ≥ 0]

I Inductive hypothesis: g(x + r , t + 1) ≤ ŵ(x + r)

ŵ(x) ≥ ŵ(x) + (−ŵ(x) + δmax
i

xi + (1− δ) max
a

Ea,p ŵ(x + r)) [by step 1]

≥ δmax
i

xi + (1− δ) max
a

Ea,p [g(x + r , t + 1)] [by the hypothesis]

= g(x , t) [by the DP]

I Exp. weights: ŵ e(0) = logN
η + 1−δ

2δ η =
√

2(1−δ) logN
δ for η =

√
2δ logN
1−δ

I This improves on the best known regret bound
√

2 logN
δ [Gravin et al., 2017]
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Our framework also works for lower bounds

I Adversary a is Markovian & “balanced” (Eaqi = Eaqj)

I It’s value function va is similar to the player value function vp
I Lower bound potential is a function û : RN → R which solves û ≤ max

i
xi +

1− δ
2δ

Ea〈D2û(x) · q, q〉 (2a)

û(x + c1) = û(x) + c (2b)

I û ≤ va (modulo discretization error E )

I Regret bound û(0)− E ≤ va(0) = minp R(a, p)

I In estimating the expected value of u(x + r)− u(x), the dependence on p is in the
1st-order Taylor term, which gets eliminated since a is balanced

I The dependence on a remains at the 2nd order
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Heat-based adversary ah

I ah is a uniform distribution over the following set S{
q ∈ {±1}N |

∑N
i=1 qi = ±1

}
for N odd or

{
q ∈ {±1}N |

∑N
i=1 qi = 0

}
for N even

I Potential û is the Laplace transform of the sol’n of the linear heat equation{
ut + κ∆u = 0

u(x , 0) = maxi x
u(x , t) = α

∫
e−

‖y‖2

2σ2 max
k

(xk − yk)dy

where α = (2πσ2)−
N
2 and σ2 = −2κt.

I Satisfies our def’n of a lower bound potential for a well-chosen κ

I The leading order asymptotics of our lower bound û(0) = Ω
(√

logN
δ

)
matches that of the

exponential weights upper bound

I Optimal leading order term for N = 2

I Also give a nonasymptotic guarantee û(0)− E ≤ vah(0)

I The discretization error E is computed explicitly and is O
(
N
√
N ∧
√
N
(
1 + log 1

δ

))



14/15

Conclusion
I We provide easily-checked conditions for a function to be useful as a lower-bound

or an upper bound potential

I Using the Laplace transform, we construct potentials for the GS problem from
potentials used for the FH version

I Lower bound potentials correspond to strategies for adversary

I We obtain the first known lower bound in the GS setting for general N associated
with a simple randomized strategy

I Our framework also leads in some cases to improved upper bounds

Questions? vladimir.kobzar@nyu.edu
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