New Potential-Based Bounds for the Geometric-Stopping Version of Prediction with Expert Advice

Vladimir A. Kobzar¹ joint work with Robert V. Kohn² and Zhilei Wang²

¹NYU Center for Data Science

²Courant Institute, NYU

MSML 2020

Outline

- Background on prediction with expert advice
- Our contribution
 - Upper bounds framework
 - Lower bounds framework

Background

Prediction with expert advice

- Focus on the *geometric stopping* (GS) version: the *stopping time* T is sampled from a geometric distribution G with mean $\frac{1}{\delta}$
- At each round, the predictor (*player*) uses guidance from a collection of *N* experts with the goal of minimizing the difference (*regret*) between the player's loss and that of the best performing expert in hindsight
- The expert losses are determined by the adversary

Strategies and bounds

- Player strategies (leading to upper bounds) are known and often based on potentials (e.g., exp. weights)
- No previously known lower bounds for GS for general N

Our contribution

Previously, we developed a PDE-based viewpoint on player and adversary potentials used for the *fixed horizon* (FH) version of the expert problem (where T is fixed) [Kobzar et al., 2020]

This paper extends this viewpoint to the GS version

- Specifically, if an adversary for FH does not depend on time (stationary), it can be used for GS
- ► Technically: Given a FH potential, its Laplace transform gives a GS potential
- Intuition: This transform is the expectation w/r/t the Exp distribution (limit of G when $\delta \rightarrow 0$)
- ▶ Key result: We obtain the first lower bounds for general N for GS

Definitions

Prediction with expert advice: In each period $t \in [T]$,

- ▶ the *player* determines the mix of *N* experts to follow distribution $p_t \in \Delta_N$;
- the adversary allocates losses to them distribution a_t over $[-1,1]^N$; and
- ► expert losses q_t ∈ [-1, 1]^N are sampled from a_t, player's choice of expert I_t ∈ [N] is sampled from p_t, and both samples are revealed to both parties.

Instantaneous regret: $r_{ au} = q_{I_{ au}, au}\mathbb{1} - q_{ au}$

Accumulated regret:
$$x_t = \sum_{ au < t} r_{ au}$$

Final regret FH: $R_T(p, a) = \mathbb{E}_{p,a} \max_i x_{i,T}$ GS: $R(p, a) = \mathbb{E}_G R_T(p, a)$

Our viewpoint on potentials uses the value function

Focus first on player strategies/upper bounds

> Assume player p is Markovian: depends only on the cumulative regret x

Value function v_p: expected final-time regret achieved by p if the game starts with realized regret x (and the adversary behaves optimally)

Characterized by

$$v_p(x) = \delta \max_i x_i + (1 - \delta) \max_a \mathbb{E}_{a,p} v_p(x + r)$$

GS upper bound potentials/players

• Our upper bound potential is a function $\hat{w} : \mathbb{R}^N \to \mathbb{R}$, nondecr. in x_i , which solves

$$\left\{ egin{array}{ll} \hat{w}(x)\geq \max_{i}x_{i}+rac{1-\delta}{2\delta}\max_{q\in [-1,1]^{N}}\langle D^{2}\hat{w}(x)\cdot q,q
angle & (1a)\ \hat{w}(x+c\mathbb{1})=\hat{w}(x)+c & (1b) \end{array}
ight.$$

- The associated player $p = \nabla \hat{w}$
- ▶ Leads to an upper bound on v_p if $\hat{w}(x) \max_i x_i$ is uniformly bounded below (we'll later sketch of the proof assuming $\hat{w}(x) \max_i x_i \ge 0$ for simplicity)
- This upper bounds the regret since $v_p(0) = max_aR(a, p)$

Constructing a GS upper bound potential from a FH one

Illustrate by the exponential weights

- The FH potential $w^e(x,t) = \Phi(x) + kt$ where $\Phi(x) = \frac{1}{\eta} \log(\sum_{i=1}^N e^{\eta x_i})$
- Associated with the exponential weights player $p^e = \nabla w^e$
- ► The standard FH upper bound: $\max_a R_T(a, p^e) \le \Phi(0) + \frac{1}{2}\eta T$.
- ▶ Thus, taking $k = \frac{1}{2}\eta$ ensures that $\max_a R_T(a, p^e) \le w^e(0, T)$

The Laplace transform gives the GS potential

$$\hat{w}^e(x) = \int_0^\infty e^{-t} w^e(x,t) dt = \Phi(x) + k$$

Φ(x) ≥ max_i x_i and ⟨D²ŵ^e(x) · q, q⟩ = ⟨D²Φ · q, q⟩ ≤ η
Taking k = 1-δ/2δ η ensures ŵ^e(x) ≥ max_i x_i + 1-δ/2δ max_{q∈[-1,1]^N}⟨D²ŵ^e(x) · q, q⟩
Also Φ(x + c1) = Φ(x) + c; thus ŵ^e satisfies our definition of a GS upper bound potential
Since Φ is convex, 0 ≤ ⟨D²Φ · q, q⟩. Therefore, ŵ^e(x) - max_i x_i ≥ 0.

Proof of $v_p \leq \hat{w}$

- Issue: want to use induction backwards ("verification" argument), but don't know the final time T
- Solution: introduce a new problem, which is the same as the original problem except that it ends at t_0 (if it doesn't end earlier in accordance with the GS condition)
- ▶ The difference in regret relative to the original problem \rightarrow 0 as $t_0 \rightarrow \infty$.
- ▶ Thus, it suffices to bound the value function g of the new problem.
- It is given by a dynamic program

$$g(x, t_0) = \max_i x_i$$

 $g(x, t) = \delta \max_i x_i + (1 - \delta) \min_p \mathbb{E}_{a,p} g(x + r, t + 1) \text{ if } t \le t_0 - 1$

Proof of $v_p \leq \hat{w}$: step 1 - controlling increase of \hat{w}

• As a reminder $r = q_I \mathbb{1} - q$

b By the linearity along 1, Taylor's thm, and the PDE-based definition of \hat{w}

$$\mathbb{E}_{p,a} \left[\hat{w}(x+r)
ight] - \hat{w}(x) = \mathbb{E}_{a} \left[p \cdot q + \hat{w}(x-q)
ight] - \hat{w}(x)$$
 $\leq rac{1}{2} \max_{q \in [-1,1]^N} \langle D^2 \hat{w} \cdot q, q \rangle \leq rac{\delta}{1-\delta} (\hat{w}(x) - \max_i x_i)$

where the choice of p eliminated the 1st-order term for all q: $p \cdot q - \nabla \hat{w} \cdot q = 0$ Rearranging the foregoing,

$$-\hat{w}(x) + \delta \max_{i} x_{i} + (1 - \delta) \max_{a} \mathbb{E}_{a,p} \ \hat{w}(x + r) \leq 0$$

Proof of $v_p \leq \hat{w}$: step 2 ("verification" argument)

Show $g \leq \hat{w}$ by induction (and therefore $v_p \leq \hat{w}$)

▶ Initialization: $g(x, t_0) \le \hat{w}(x)$ [since $g(x, t_0) = \max_i x$ and $\hat{w}(x) - \max_i x_i \ge 0$]

▶ Inductive hypothesis: $g(x + r, t + 1) \le \hat{w}(x + r)$

$$\hat{w}(x) \ge \hat{w}(x) + (-\hat{w}(x) + \delta \max_{i} x_{i} + (1 - \delta) \max_{a} \mathbb{E}_{a,p} \ \hat{w}(x + r))$$
 [by step 1]
 $\ge \delta \max_{i} x_{i} + (1 - \delta) \max_{a} \mathbb{E}_{a,p} [g(x + r, t + 1)]$ [by the hypothesis]
 $= g(x, t)$ [by the DP]

Our framework also works for lower bounds

- ► Adversary *a* is Markovian & "balanced" $(\mathbb{E}_a q_i = \mathbb{E}_a q_j)$
- ▶ It's value function v_a is similar to the player value function v_p
- Lower bound potential is a function $\hat{u} : \mathbb{R}^N \to \mathbb{R}$ which solves

$$\begin{cases} \hat{u} \leq \max_{i} x_{i} + \frac{1-\delta}{2\delta} \mathbb{E}_{a} \langle D^{2} \hat{u}(x) \cdot q, q \rangle \\ \hat{u}(x+c\mathbb{1}) = \hat{u}(x) + c \end{cases}$$
(2a) (2b)

- $\hat{u} \leq v_a$ (modulo discretization error *E*)
- ▶ Regret bound $\hat{u}(0) E \leq v_a(0) = \min_p R(a, p)$
- ► In estimating the expected value of u(x + r) u(x), the dependence on p is in the 1st-order Taylor term, which gets eliminated since a is balanced
- The dependence on a remains at the 2nd order

Heat-based adversary a^h

▶ a^h is a uniform distribution over the following set S $\left\{q \in \{\pm 1\}^N \mid \sum_{i=1}^N q_i = \pm 1\right\}$ for N odd or $\left\{q \in \{\pm 1\}^N \mid \sum_{i=1}^N q_i = 0\right\}$ for N even

> Potential \hat{u} is the Laplace transform of the sol'n of the linear heat equation

$$\begin{cases} u_t + \kappa \Delta u = 0\\ u(x,0) = \max_i x \end{cases} \quad u(x,t) = \alpha \int e^{-\frac{||y||^2}{2\sigma^2}} \max_k (x_k - y_k) dy$$

where $\alpha = (2\pi\sigma^2)^{-\frac{N}{2}}$ and $\sigma^2 = -2\kappa t$.

- Satisfies our def'n of a lower bound potential for a well-chosen κ
- The leading order asymptotics of our lower bound $\hat{u}(0) = \Omega\left(\sqrt{\frac{\log N}{\delta}}\right)$ matches that of the exponential weights upper bound
- Optimal leading order term for N = 2
- ▶ Also give a nonasymptotic guarantee $\hat{u}(0) E \leq v_{a^h}(0)$
- The discretization error E is computed explicitly and is $O\left(N\sqrt{N} \wedge \sqrt{N}\left(1 + \log \frac{1}{\delta}\right)\right)$

Conclusion

- We provide easily-checked conditions for a function to be useful as a lower-bound or an upper bound potential
- Using the Laplace transform, we construct potentials for the GS problem from potentials used for the FH version
- Lower bound potentials correspond to strategies for adversary
- We obtain the first known lower bound in the GS setting for general N associated with a simple randomized strategy
- Our framework also leads in some cases to improved upper bounds

Questions? vladimir.kobzar@nyu.edu

Acknowledgements

- ▶ V.A.K and R.V.K. are supported, in part, by NSF grant DMS-1311833.
- ▶ V.A.K. is also supported by the Moore-Sloan Data Science Environment at NYU.

References

- Nick Gravin, Yuval Peres, and Balasubramanian Sivan. Tight Lower Bounds for Multiplicative Weights Algorithmic Families. In 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017), volume 80, pages 48:1–48:14, Warshaw, Poland, 2017.
- Vladimir A. Kobzar, Robert V. Kohn, and Zhilei Wang. New Potential-Based Bounds for Prediction with Expert Advice. In *Proceedings of the 33rd Annual Conference on Learning Theory (COLT)*, forthcoming, 2020.