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This work establishes lower bounds on the values of the block-diagonal semidefinite program (SDP)
relaxations for the clique number of the Paley graphs of prime order. The size of the maximal clique
(clique number) of a graph is a classic NP-complete problem; a Paley graph is a deterministic graph
where two vertices are connected if their difference is a quadratic residue in a finite field with the number
of elements given by certain primes and prime powers. Improving on the current O(

√
p) upper bound

for the clique number of Paley graphs of prime order is a classic open problem in number theory and
combinatorics. Kunisky and Yu (CCC 2023) provided numerical evidence that the upper bounds given
by the sum-of-squares relaxations of degree 4 (SOS-4) are growing at an order smaller than square root
of p and proved that the values of these relaxations are lower bounded as Ω(p1/3). Gvozdenovic, Laurent
and Vallentin introduced a block-diagonal hierarchy (Lt ) of SDPs that are weaker than the SOS SDPs.
Therefore, the values of these block-diagonal SDPs of degree 2 (L2) bound from above the values of
the corresponding SOS-4 relaxations, and the Ω(p1/3) lower bound also applies to the L2 relaxations.
Building on the above-mentioned work, using Feige-Krauthgamer pseudomoments, we show that these
Lt relaxations are bounded from below by 21−t√p, at the leading order as p gets large. Since the Lt

hierarchy is stronger than the Lovász-Schrijver hierarchy, our lower bound also applies to the latter
hierarchy. Lastly, we study the subgraphs (localizations) of the Paley graphs induced on a set of vertices
extending a clique of a given size a to a maximal clique. We prove that interchanging localization degree
a and relaxation degree t are equivalent for the purpose of our lower bound, which is consistent with the
localization-relaxation trade-off conjectured by Kunisky (Exp. Math. 2024). More broadly, we make
progress towards generalizing methods available to analyze SDPs to the block-diagonal hierarchy. This
hierarchy appears to be well suited for relaxations of combinatorial optimization/graph-based problems,
yet remains relatively unexplored.

1 Introduction

We consider the problem of estimating the clique number of the Paley graphs, which is a classic open prob-
lem in number theory with connections to additive combinatorics, random matrix theory, Ramsey theory,
complexity theory and compressed sensing/sparse recovery. Semidefinite programming (SDP) and other
convex relaxations are popular tools to bound from above the clique number of various graphs of interest,
including the Paley graphs. Our work focuses on the block-diagonal SDP hierarchy of relaxations devel-
oped by Gvozdenovic, Laurent and Vallentin, which are at least as powerful as the classic Lovász-Schrijver
relaxations and include the Lovász theta function (which we will denote by ϑ ) as the first and weakest level
of the hierarchy. We establish lower bounds on these relaxations of the clique number for the Paley graphs
of prime order, as well as certain subgraphs thereof, referred to as localizations.

A subset of vertices K in a graph G forms a clique if every pair in K is adjacent, and the clique number
ω(G) is the size of a largest clique in G. Conversely, a subset of vertices in G is an independent set if no
two vertices in it are connected, and the independence number α(G) is the size of the largest independent
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set in G (a single vertex and the empty set ∅ are deemed to be cliques and independence sets of sizes 1 and
0 respectively.) Computing each of these numbers (the clique and independent set problems, respectively)
for a general graph is a classic NP-complete problem [Kar72]. Moreover, it is hard to approximate these
numbers within any polynomial factor n1−ε for any ε > 0 where n is the number of vertices [Hås99].

The clique and independence numbers are among the main quantities of interest in Ramsey theory.
For samples G of Erdős-Renyi (ER) graphs, denoted by G (1

2 ,n), which are random graphs on n vertices
with edge probability 1

2 , the classic result of Erdős provides that max(ω(G),α(G)) ≤ log2 n with positive
probability [Erd47]. However, finding deterministic graphs with small independence and clique numbers
remains a significant open problem, sometimes referred to as one of finding “hay in the haystack”.

The Paley graphs are connected to the construction of deterministic matrices satisfying the restricted
isometry property (RIP), an important problem in compressed sensing and sparse recovery [Tao08] (see also
[Mix15]). References [BFMW13, BMM16] constructed a family of deterministic matrices (equitriangluar
frames) from the rows of the discrete Fourier transform matrix indexed by the quadratic residues modulo a
prime number p (the Paley matrices), which provably achieve RIP when sparsity is on the order of

√
p but

are conjectured to achieve higher sparsity, breaking this square root bottleneck (see also [AAM15] designing
deterministic RIP matrices using the adjacency matrix of a Paley graph). In this conditional construction,
a lower bound on ω(Gp) leads to a lower bound on the distortion in the sparse recovery (Theorem 2.3 in
[BMM16]). Using a similar analysis, reference [KPB19] overcame the square root bottleneck uncondition-
ally for signals with a certain sparse structure. Finally, reference [BFMM16] constructed a matrix using the
Legendre symbol (which is closely connected to the Paley graphs) to reduce the number of random bits in a
random RIP matrix.

We focus on the Paley graphs of prime order p, denoted by Gp, which are undirected graphs with
vertices identified with the elements of the finite field Fp where p ≡ 1 (mod 4). Any two vertices i and j
in Gp are connected if and only if i− j is a quadratic residue in Fp. The Paley graphs are considered to be
pseudorandom, sharing certain similarities with the ER graphs [CGW89, KS06].

Since the Paley graphs are self-complementary, their clique and independence numbers are equal. We
focus on the former problem because it makes the connection between relaxations and localizations apparent
more readily in our results. Presently it is not known whether or not the clique number ω(Gp) is O(p

1
2−ε)

for some ε > 0; this problem is referred to as the square root barrier. Spectral methods provide that
ω(Gp)≤

√
p, and the state-of-the-art upper bound by Hanson and Petridis

HP(Gp) :=
√

2p−1+1
2

≈
√

p
2

improves on the spectral bound by a constant prefactor [HP21, BSW21]. On the other hand, reference
[GR90] showed that for infinitely many primes p,

ω(Gp)≥ log p log loglog p.

Accordingly, there is significant gap between the existing upper and lower bounds on the clique number
of the Paley graphs. Based on numerical experiments, this number is conjectured to be O(polylog p) (see
discussion of [Exo23, She23] in [BMR14]).

The maximal clique problem can be formulated as an integer {0,1} program. A long line of work
established that classic convex relaxations, including the Lovász-Schrijver and sum-of-squares (SOS), also
known as Lasserre-Parrillo SDPs, of any fixed degree, do not break the square root barrier in the context of
ER graphs. The Lovász-Schrijver hierarchy, however, breaks the square root barrier in that context if the
degree of hierarchy t = t(n) is a slowly growing function of the number of vertices n.

An open problem proposed by Mixon and Bandeira is whether the SOS-4 relaxation of the Paley graph
clique number breaks this barrier [Ban16]. This problem is premised on numerical experiments using the
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block-diagonal relaxations (which are stronger then the Lovász-Schrijver relaxations as noted previously,
but weaker than the SOS relaxations) suggesting that these block-diagonal relaxations may break the square
root barrier [GLV09] (see also [Gvo08, KM23]). More recent work provided numerical evidence that the
SOS-4 relaxations of the Paley graph clique number may break the square root barrier, and proved that it
can at best improve the exponent from 1/2 to 1/3 [KY23].

Perhaps surprisingly, our main result (Theorem 3.3) is that that the block-diagonal relaxations of any
constant degree do not break the square root barrier for the Paley graph clique number, in the sense that they
all have the exponent of 1/2 (they may, however, improve the constant prefactor in front of

√
p). Since, as

noted previously, the block diagonal relaxations are as strong as the Lovász-Schrijver relaxations, our result
also applied to the latter relaxations. Accordingly, our lower bound parallels in the Paley graph setting the
lower bound in [FK03] on the Lovász-Schrijver relaxations of the clique number of the ER random graphs.

Another line of work considered whether convex relaxations [Pas13, MMP19] and, more recently, spec-
tral bounds [Kun24] for the clique number of localizations of the Paley graphs (which are defined below)
may break the square root barrier. Our lower bounds cover block-diagonal relaxations of the clique number
of localizations of the Paley graphs. Since the first and the weakest degree of the block-diagonal hierarchy
is the Lovász theta function, which is equivalent to the sum of squares relaxation of degree 2 (SOS-2), our
analysis shows that this relaxation of the clique number of a localization of the Paley graph of any constant
degree does not break the square root barrier either (resolving the corresponding open question in Table 1
in [Kun24]). Our results, however, do not rule out the possibility that SOS-2, or a block-diagonal relaxation
of higher constant degree, may break the square root bottleneck if the degree of localization a = a(p) is a
slowly growing function of p.

Our results are premised on a simplification of the positive semidefinite (PSD) constraints in the block
diagonal program (Lemmas 3.1 and 3.2), which may be of interest independent from the Paley graph clique
problem.

2 Background and notation

Notation In this work, p denotes a prime number p ≡ 1 mod 4, Fp denotes a finite field of order p, and
F×

p denotes its group of units. An element y of F×
p is a quadratic residue if y = x2 for some x ∈ F×

p and is
a nonresidue otherwise. We will denote the set of quadratic residues by (F×

p )
2. We will represent Fp by the

elements {0,1, . . . , p− 1} of Zp. For any graph G = (V,E) and S ⊆ V , 1S denotes the indicator function
of S being a clique in G. On the other hand, 1 denotes the vector containing 1 in each entry. We denote
the power set of V by P(V ), and the subsets of V with at most t and exactly t elements by Pt(V ) := {I ∈
P(V ) | |I| ≤ t} and P=t(V ) := {I ∈ P(V ) | |I| = t} respectively. We will suppress the dependence on
V in Pt(V ) for brevity. Note that Pt contains the empty set ∅. For example, P1 = {∅,{i}, i ∈ V}. We
denote the canonical basis vectors in RP1 by e∅ and ei for i ∈V . We also denote the set of all cliques of G
by K (G) or K when the context is clear. Similarly, we let Ka(G) or Ka denote the set of cliques of size a
in G.

Convex relaxations of the clique number Convex relaxations, including Lovász-Schrijver and sum-of-
squares (SOS) SDP hierarchies defined below, are used to bound optimal values of integer programs. In the
context of the clique problem, linear programming and SDP relaxations have been applied to many graphs
of interest [Del72, DL98, Sch79], [Lov79, Sch05, BV08, dLV15].

For a graph G sampled from the ER graph distribution G (1
2 ,n), reference [FK03] showed that the value

of the Lovász-Schrijver relaxation of degree t for ω(G) is approximately
√

n/2t by proving matching lower
and upper bounds. To establish the lower bound, this reference introduced the so-called Feige-Krauthgamer
(FK) pseudomoments (see Definition 2.1). Reference [BHK+19] established an Ω(n1/2−o(1)) lower bound on
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the SOS relaxations for ω(G) at any constant degree of the hierarchy, using the so-called pseudocalibration
technique (see also [MPW15] applying the FK pseudomoments in a related setting).

In contrast, in the context of the Paley graphs, it has not been previously determined whether or not
any given convex relaxation hierarchy leads to nontrivial upper bounds on ω(Gp), i.e., an upper bound that
either breaks the square root barrier or reduces the prefactor in front of

√
p to any constant strictly less than

1. Recent work [KY23] made progress in that direction: it provided numerical evidence that SOS4(Gp)
breaks that barrier and proved that the value of these relaxations is lower bounded as Ω(p1/3) using the FK
pseudomoments method.

Sum-of-squares relaxations The sum-of-squares (SOS) hierarchy, also known as the Lasserre-Parrilo
hierarchy [Las01, Par03], of SDP relaxations has been used to analyze the Paley graph clique number. To
define these relaxations, we first define the moment matrix Mt(y) ∈ RPt×Pt : given a vector y ∈ RP2t , for
I,J ∈ Pt , Mt(y)IJ := yI∪J .1 The sum-of-squares relaxation of ω(G), denoted by SOS2t(G), is defined as

SOS2t(G) := max
y∈RP2t

∑
i∈V

yi,∅

s.t. y ∈ Qt(G)

where the constraint set (convex cone in RP2t ) is

Qt(G) = {y ∈ RP2t | y∅ = 1, yS,T = 0 ∀S∪T /∈ K , Mt(y)⪰ 0}.

Lovász-Schrijver relaxations The Lovász-Schrijver relaxation of the clique number [LS90, GLV09],
which we denote by LSt(G) for t ≥ 0, is defined as:

LSt(G) := max
x∈RP1

∑
i∈V

xi

s.t. x∅ = 1, x ∈ Nt
+

where

N0
+ := { Ye∅ ∈ RP1 | Y ∈ M+,V ,Yi j = 0 if (i, j) /∈ E } and M+,V := {Y ∈ RP1×P1 |Y ⪰ 0,Yii = Y∅i}

and the constraints of higher degree t ≥ 1 (also convex cones in RP1) are defined iteratively by

Nt
+ := {Ye∅|Y ∈ M+,V ,Yei ∈ Nt−1

+ ,Y (e∅− ei) ∈ Nt−1
+ ,∀i ∈V}.

Note that LS0(G) = SOS2(G), and both of these relaxations are equivalent to Lovász ϑ(G) [GL17]. For
t > 1, the SOS2t relaxations are stronger than the corresponding LSt−1 relaxations. This implies that in the
context of the corresponding clique number relaxations SOS2t(G)≤ LSt−1(G). However, the SOS hierarchy
is more computationally expensive, and appears difficult to analyze, as can been seen in the SOS4(Gp) case
considered in [KY23].

1This definition implies that Mt(y)IJ depends only on I ∪ J. Based on that fact, the moment matrices and the SOS2t relaxation
hierarchy can be defined without reference to y (see, e.g., [KY23]). However, we use the definition in the text accompanying this
footnote to make the relationship between the SOS2t and the block diagonal hierarchy discussed below more apparent.
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Block-diagonal hierarchy and FK pseudomoments References [GLV09] and [Gvo08] introduced the
block-diagonal hierarchy of SDPs, denoted by Lt , which are less computationally expensive that the SOS
SDPs. These references also initiated the investigation of the Lt relaxations of independent sets of graphs,
including the Paley graphs.

As noted previously, analyzing the clique number instead of the independence number makes the con-
nection between relaxations and localizations more apparent (specifically, under the FK pseudomoment
assumption, principal submatrices of the adjacency matrices of localizations emerge in Appendix E in the
optimization constraints). Therefore, we define the Lt optimization problem with respect to the complement
graph G, which constitutes a relaxation of the clique number.

Let us first define a submatrix M(T ;y) of the moment matrix Mt(y), defined above: for a subset T ⊆ V
of cardinality t − 1 and vector y ∈ RPt+1 where the power set Pt+1 is defined previously, let M(T ;y) ∈
R(n+1)Pt−1×(n+1)Pt−1 denote the principal submatrix of the moment matrix Mt(y), whose rows and columns
are indexed by

A(T ) :=
⋃

S⊆T

AS, where AS := {S}∪{S∪{i} | i ∈V}.

Here, we treat A(T ) as a multiset, and therefore we keep possible repeated occurrences of the same elements,
e.g., S and S∪{i} if i ∈ S in the indexing. Furthermore, for a subset S of T , let AS(y) ∈ R(n+1)×(n+1) denote
the principal submatrix of M(T ;y) indexed by the set AS with entries given by:

AS(y)∅,∅ = yS, AS(y)∅,i = yS∪{i}, AS(y)i, j = yS∪{i, j} (i, j ∈V, where |V |= n).

By Lemma 2.2 in [Gvo08], M(T ;y) is PSD if and only if for all subsets S of T the matrix

A(S,T )(y) := ∑
S′:S⊆S′⊆T

(−1)|S
′\S|AS′(y) (1)

is PSD. These matrices arise as a result of block-diagonalization of M(T ;y) by zeta matrices of the Pt−1
lattice. The Lt relaxation of the clique number problem is given by

Lt(G) :=



max ∑
i∈V

y{i}

s.t. y ∈ RPt+1, y∅ = 1

y{i, j} = 0 ∀ {i, j} /∈ E

A(S,T )(y)⪰ 0 for all S ⊆ T and T ∈ P=t−1



(2a)

(2b)

(2c)

(2d)

where the set of edges E refers to the edges of the original graph G.
According to Lemma 3.1 in [GLV09], constraints y{i, j} = 0,∀{i, j} ̸∈ E imply that yS = 0 for any subset

S ⊆V with |S| ≤ t +1 containing nonedge in G, and therefore have (AS′)i, j = 0 if S′∪{i, j} /∈ K (G). This
confirms that the following Feige-Krauthgamer (FK) pseudomoment assumption satisfies the condition that
all optimization variables indexed by non-cliques are identically 0.

Definition 2.1. Given a graph G = (V,E), y ∈ RPt+1 satisfies the FK pseudomoment assumption if there
exists a sequence 1 = α0,α1,α2, . . . ,αt ,αt+1 ∈ R such that:

yK =

{
α|K|, if K ∈ Pt+1 is a clique in G
0, otherwise.

For t = 1, the SOS2(G) and LS0(G) constraint matrix M1(y) matches the L1 constraint matrix M(∅,y),
and therefore all three relaxations coincide: L1(G) = SOS2(G) = LS1(G). When t ≥ 2, for each T ⊂ V of
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cardinality t −1, M(∅,y) is a principal submatrix of Mt(y). If a moment matrix Mt(y) is PSD, then all of its
principal submatrices, such as M(T ;y), are also PSD. Therefore, Lt is a relaxation of SOS2t , and the optimal
Lt(G) value bounds from above the optimal SOS2t(G) value. In the context of the Paley graph clique number
ω(Gp), this relationship implies that the above-mentioned Ω(p1/3) lower bound on SOS4(Gp) in [KY23]
also applies to L2(Gp). Finally, the block-diagonal hierarchy is stronger than the Lovász-Schrijver hierarchy
(see also Remark 3.4).

Remark 2.1. As noted in [GLV09], the feasible region of Lt(G) is contained in the feasible region of Lovász-
Schrijver relaxation Nt−1

+ for all t ≥ 1. Therefore, any lower bound on Lt(G) also lower bounds on LSt−1(G).

Recent experiments in [KM23] numerically showed that L2(Gp) grows as approximately O(p0.456) for
p < 1000. Since the exponent in this scaling estimate is fairly close to 1/2 and the range of values of p
is relatively small, these experiments does not make it clear, even empirically, whether L2 breaks the

√
p

barrier.

Localizations and relaxation-localization tradeoff Localization is another technique used to strengthen
convex relaxations [Pas13, MMP19] and, more recently, spectral bounds on the clique number of the Paley
graphs [Kun24]. We shall use the following definition compatible with the clique number problem.

Definition 2.2. Given a set of vertices X ⊂ V (G), the localization GX of degree |X | is a subgraph of G
induced on the vertices adjacent to all vertices of X (excluding the vertices in X).

The clique numbers of a graph and its localization have following basic relationship.

Proposition 2.1. For any a ≤ ω(G),

ω(G) = a+ max
K∈Ka(G)

ω(GK). (3)

If a function f (GK) bounds ω(GK) from above, this leads to the following upper bound:

ω(G)≤ a+ max
K∈Ka(G)

f (GK).

In the context of the Paley graph clique number, when a = 1, it is sufficient to consider K = {0} for purposes
of this maximization since Gp is vertex transitive. Reference [Pas13] observed that Gp,{0} is a circulant
graph, and therefore ϑ(Gp,{0}) reduces to a linear program. This approach facilitated the computation of the
value of this relaxation for up to p < 20000 and led to the observation that this value is around

√
(p−1)/2,

which matches the leading order term of the subsequently established HP(Gp) upper bound. Similarly,
reference [MMP19] computed ϑ(Gp,{0}), strengthened by Schrijver’s entrywise non-negativity condition
[Sch79], numerically for p < 3000 and observed that the optimal values of this problem usually coincided,
and sometimes improve upon, the HP(Gp) upper bound.

Reference [Kun24] proposed a program towards improving the upper bound on ω(Gp) by combining
localization with spectral methods. One of the main conjectures (Conjecture 1.9 in that reference) is that
minimum eigenvalue of the adjacency matrix of each Paley graph localization converges to the left edge of
support of the the Kesten-MacKay measure (KM) as p→∞. We restate that conjecture in terms of subgraphs
induced on a set of vertices adjacent to a clique of a size a (rather than the equivalent original formulation
involving subgraphs induced on a set of vertices nonadjacent to an independent set):

Conjecture 2.1. For the adjacency matrix AGp,K of Gp,K ,

liminf
p→∞

min
K∈Ka

2a+1

√
p

λmin(AGp,K ) =−2
√

2a −1.
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Assuming this conjecture holds, reference [Kun24] proved that

ω(Gp)≤
√

2a −1
2a−1

√
p+o(

√
p). (4)

This reference also conjectured that higher degree of localization can be ‘traded’ for weaker convex relax-
ations while obtaining comparable bounds on the clique number (relaxation-localization tradeoff ). Based
on numerical evidence, this reference also conjectured that ϑ(Gp,{0,1}) of Paley graph degree 2 localization
leads to (1/

√
2− ε)

√
p upper bound, improving on the upper bound of Hanson and Petridis.

We will use the following proposition to estimate the size of Paley graph localizations.

Proposition 2.2. For any clique K of Gp of size a,∣∣∣|V (Gp,K)|−
p
2a

∣∣∣≤ (a−1)
√

p+
a
2

(5)

and ∣∣∣degv(Gp,K)−
p

2a+1

∣∣∣≤ a
√

p+
a+1

2
, ∀v ∈V (Gp,K). (6)

Equation (5) is a restatement of Proposition 4.3 in [Kun24], adjusted for the fact that our localization Gp,K

is induced on vertices of Gp adjacent to a clique K rather than an equivalent localization induced on vertices
not adjacent to an independent set. Equation (6) follows from the fact that, for any x∈V (Gp,K) with K ∈Ka,
we have {x}∪K ∈ Ka+1, and degx(Gp,K) = |V (Gp,K∪{x})| satisfies the estimate (5) with |K ∪{x}|= a+1.

3 Main results

Our main lower bound is based on two preliminary results: first, we simplify each PSD constraint (2d) of
the Lt program. This result generalizes the previous simplifications of L2 and L3 programs, which made it
possible to use matrices of size smaller than (p+1)×(p+1) in the optimization constraints (see dimensions
of the constraints in Section 4 in [GLV09], see also Section IV in [KM23] for additional details about the
L2 constraint simplifications). Second, we set forth further simplified constraints which define a feasible set
that satisfies (2d); a point in that set leads to our main lower bound. These simplifications are not specific to
the Paley graph clique number relaxation or the FK pseudomoments. As such, our simplifications could be
of interest in other contexts where the block-diagonal hierarchy may be used.

Simplification of the block-diagonal constraints We can remove the rows and columns of each A(S,T )(y)
corresponding to the vertices in T , as well as to each vertex i ∈ V (G) \T such that S∪{i} /∈ K (G). Let
Ã(S,T )(y) denote the submatrix of A(S,T )(y) after removing the rows and columns corresponding to all
such vertices. Similarly, we let ÃS′(y) denote the submatrix of AS′(y) in (1) with the rows and columns
corresponding to the above-mentioned vertices removed:

ÃS′(y)∅,∅ = yS, ÃS′(y)∅,i = yS′∪{i}, ÃS′(y)i, j = yS′∪{i, j}

where the rows and columns of ÃS′ are indexed by vertices i ∈V \T , such that S′∪{i} ∈ K (G).

Lemma 3.1. For any undirected graph G, the constraint (2d) is equivalent to

Ã(S,T )(y)⪰ 0 for all S ⊆ T where T ∈ P=t−1 and S ∈ K (G) (7)

where
Ã(S,T )(y) := ∑

S′:S⊆S′⊆T
S′∈K (G)

(−1)|S
′\S|ÃS′(y). (8)
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Additional simplifications for lower bound purposes When t ≥ 3, the following lemma shows that
further simplified constraints define a feasible region of the original block-diagonal program.

Lemma 3.2. For any undirected graph G, the constraint (7) is satisfied if

Â(S,T )(y)⪰ 0 for all S ⊆ T such that S ∈ K (G) and for all T ∈ P=t−1, (9)

where

Â(S,T )(y) :=

ÃS(y)−∑ k∈T\S
S∪{k}∈K (G)

ÃS∪{k}(y) if S is a proper subset S ⊊ T,

ÃT (y) if S = T.
(10)

FK pseudomoments For m = |S|, and any i, j ∈ {∅,V (G)\T} and k ∈ T \S we have

|S∪{k, i}|= m+1 and |S∪{k, i, j}|=

{
m+3 if i ̸= j
m+2 if i = j.

Hence, according to the FK pseudomoment assumption, we denote by Â(S,T )(α), ÃS(α), ÃS∪{k}(α) the
matrices Â(S,T )(y) and ÃS(y), ÃS∪{k}(y) with yS = αm, yS∪{k} = αm+1, yS∪{k,i} = αm+2 if S∪{k, i} ∈K (G)
and 0 otherwise, and similarly yS∪{k,i, j} = αm+3 if S∪{k, i, j} ∈ K (G) and 0 otherwise. Since S∪{k} ⊆ T ,
the set of indices i, j does not include any elements of S∪{k}. Accordingly,

ÃS(α) =

(
αm αm+11

αm+11
⊤ αm+1I +αm+2MS

)
, and ÃS∪{k}(α) =


αm+1 αm+2vS∪{k}

αm+2v⊤S∪{k} αm+2diag(vS∪{k})

+αm+3MS∪{k}


where we denote the vector of all ones by 1, (vS∪{k})i := 1S∪{k,i} for and the indicator function of a clique
by 1S, (MS)i, j := 1S∪{i, j} if i ̸= j and 0 if i = j for any i, j ∈V (G)\T , and MS∪{k} is defined similarly. The
definition ÃS(α) and MS can be extended to ÃT (α) and MT accordingly. Notice that ÃS(α) and ÃS∪{k}(α)
have the same dimension of |V (G) \ T |+ 1 = |V (G)| − t + 2. In particular, the length (denoted n) of the
{0,1}-vector vS∪{k} is given by

n = |V (G)|− t +1. (11)

In other words, MS and MS∪{k} are the principal submatrices constructed by removing the rows and columns
corresponding to ∅ from ÃS(α) and ÃS(α), respectively. Note also that MS and MS∪{k} are principal
submatrices of the {0,1} adjacency matrices AG of G and AGS∪{k} of degree 1 localization of G respec-
tively (the latter matrix is padded with rows and columns of all zeros in the positions of each i such that
S∪{k, i} ̸∈ K (G)). This observation facilitates our subsequent analysis of the FK pseudomoments using
Schur complements, and also makes transparent the connection between the constraints in the block diagonal
program and adjacency matrices of the graph and its localizations.

Lower bounds on the block-diagonal relaxations of the Paley graph clique problem Analysis of the
FK pseudomoments now leads to our main result: the block-diagonal relaxation of the clique number of
a localization of the Paley graph of any constant degree does not break the

√
p barrier, resolving the

corresponding open question in Table 1 in [Kun24], which was also raised by the numerical results in
[Gvo08, GLV09, KM23].
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Theorem 3.3. For any level of hierarchy t ≥ 1, the value Lt(Gp) of the block-diagonal relaxation for the
clique number of Paley graph Gp with p ≡ 1 (mod 4) satisfies

Lt(Gp)≥
√

p
2t−1 +O

(
1
2t

)
. (12)

Moreover, for any K ∈ Ka(Gp) clique of size a of Gp, the value Lt(Gp,K) of this relaxation for the clique
number of the localization Gp,K satisfies

Lt(Gp,K)≥
√

p
2a+t−1 +O

( a
2t

)
. (13)

Remark 3.4. By Remark 2.1, the lower bounds (12) and (13) apply respectively to the values of LSt−1(Gp)
and LSt−1(Gp,K) of the Lovász-Shrijver hierarchy.

Accordingly, any fixed level of the Lovász-Shrijver hierarchy does not break the
√

p barrier for the Paley
graph clique number. Since L1 = SOS2 = ϑ , Theorem 3.3 shows that SOS2 does not break the

√
p barrier for

any constant degree of localization of Gp. For t = 1,a = 0, the classical result ϑ(Gp) =
√

p demonstrates
the optimality of our lower bound. Finally, since the lower bound is a function of a+ t, it is consistent with
the relaxation-localization trade-off conjectured in [Kun24].

Numerical experiments Let Lt
FK(G) denote the variant of (2) where the optimization variable y is re-

stricted according to the FK pseudomoment assumption. We replicated the L3(Gp) computations reported
in [GLV09, Gvo08] using Matlab/CVX for primes p ≤ 809 and extended them for all p < 1000.2Figure 1
plots the L2(Gp) and L3(Gp) values for p ≤ 809 determined in [GLV09, Gvo08], the L2(Gp) values for
809 < p < 1000 reported in [KM23], L3(Gp) values for 809 < p < 1000 computed in this work, along with
the L2

FK(Gp) and L3
FK(Gp) values, relative to the corresponding lower bounds in Theorem 3.3. This figure

also includes the values of ω(Gp) obtained from [She23] and the Hanson, Petridis upper bound on ω(Gp)
established in [HP21].

4 Conclusion and future directions

We have established that the block-diagonal Lt relaxations, and therefore the Lovász-Schrijver relaxations,
of fixed level of hierarchy do not break the

√
p barrier with respect to the clique number of the Paley graphs

and their localizations. Our results, however, leave open the possibility that L1/SOS-2, or a block-diagonal
relaxation of some higher constant degree, may break the

√
p bottleneck if the degree of localization a is

a slowly growing function of p. It might also be possible to improve the constant prefactor in our lower
bounds, especially if Conjecture 2.1 holds. We leave these interesting questions to further work.

Our results also leave open the possibility that the block-diagonal relaxations may improve the constant
prefactor of the Hanson-Petridis upper bound. In particular, since the adjacency matrices AGp and AGp{0} , as
well as the matrices of the indicators of orbits of triangles of the form {0,α,β} in Gp are circulant, Fourier-
based methods may facilitate the analysis of L2(Gp) upper bounds; a possible next step in this direction
would be to consider the corresponding dual programs.

Our broad contribution is a methodological advance: we make progress towards extending methods
available to analyze convex relaxations of combinatorial optimization problems to the block-diagonal re-
laxations, an SDP hierarchy that remains relatively unexplored. Accordingly, we hope that block-diagonal
relaxations will lead to new results in the context of other combinatorial problems/problems over graphs.

2The corresponding code is available on the last author’s website.
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Figure 1: The L2(Gp) and L3(Gp) values for p≤ 809 computed in [GLV09, Gvo08], L2(Gp) values for 809<
p < 1000 computed in [KM23], L3(Gp) values for 809 < p < 1000 computed in this work, along with the
L2

FK(Gp) and L3
FK(Gp) values, are plotted relative to the corresponding lower bounds in Theorem 3.3. The

values of ω(Gp) were obtained from [She23] and the Hanson, Petridis upper bound on ω(Gp) is (
√

2p−1+
1)/2 established in [HP21].
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A Proof of Lemma 3.1

Consider any vertex x ∈ S. Then for all S′ satisfying

S ⊆ S′ ⊆ T, (14)

and for all i ∈V , we have
AS′(y)i,x = yS′∪{i,x} = yS′∪{i} = AS′(y)∅,i.

This implies that each row and column of AS′ corresponding to S′∪{i,x} is the same as the one corresponding
to S′ ∪{i}. Therefore, the rows and columns of A(S,T )(y) corresponding to x are the same as the rows
corresponding to ∅. The duplicated rows and columns A(S,T )(y)x,: and A(S,T )(y):,x can be removed for
purposes of the PSD constraint according to Lemma D.1.

Now consider any x ∈ T , such that x ̸∈ S. We also consider each pair of S′ satisfying (14) containing x,
and S̃ = S′ \ x. Given any such pair, since x /∈ S, S̃ also satisfies (14). Also (−1)|S

′\S| and (−1)|S̃\S| have the
opposite signs. For all i ∈V and i =∅, we have

AS̃(y)i,x = yS̃∪{i,x} = yS′∪{i,x} = AS′(y)i,x.

Since this result holds for every pair of AS̃ and AS′ , the resulting pairwise cancellations in (1) lead A(S,T )(y)x,:
and A(S,T )(y):,x to be equal to zero. Therefore these rows and columns can be removed for purposes of the
PSD constraint. This result, and the result in the previous paragraph, lead to the desired simplification of
A(S,T )(y).

As noted previously, according to Lemma 3.1 in [GLV09], constraints y{i, j} = 0,∀{i, j} ̸∈ E imply that
yS = 0 for any subset S ⊆V with |S| ≤ t +1 containing nonedge in G. Therefore, (AS′)i, j = 0 for all j ∈V if
S′∪{i} /∈ K (G). This implies that if S∪{i} /∈ K (G), then the i-th row and column in A(S,T )(y) contain
zero entries only, and can be removed for purposes of the corresponding PSD constraints. Also (AS′)i, j = 0
if S′ ∪ {i, j} /∈ K (G). Accordingly if S′ /∈ K (G), then the corresponding AS′ will be identically zero.
Therefore, in (8) we can sum only over those subsets S′ of vertices that are cliques. Similarly, for purposes
of the constraint (2d) it is sufficient to consider only A(S,T )(y) where S ∈ K (G).

B Proof of Lemma 3.2

To lighten the notation, in this proof, we omit the tilde ˜ accent, as well as the dependence of Ã(S,T )(y) and
ÃS(y) on y. To simplify the PSD constraints further, we need to split the sums over the subsets of T . For
i ≤ T −|n|, let us denote the partial sums of A(S,T ) by

Ei(S,T ) := ∑
S′ s.t.

|S′|=|S|+i
S⊆S′⊆T

(−1)iAS′ (15)

Note that

A(S,T ) =
|T |−n

∑
i=0

Ei(S,T ) (16)

Lemma B.1. For S ⊆ T , n = |S|, and pair of natural numbers m and i such that n+m+ i ≤ |T |, we have

∑
B⊆T\S

s.t. |B|=m

Ei(S∪B,T ) = (−1)m
(

m+ i
m

)
Em+i(S,T ) (17)
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Proof. From the definition of Em in (15), (17) can be written as:

∑
B⊆T\S

s.t. |B|=m

∑
S′ s.t.

|S′|=n+m+i,
S∪B⊆S′⊆T

AS′ =

(
m+ i

m

)
∑

S′ s.t.
|S′|=n+m+i,

S⊆S′⊆T

AS′

after canceling (−1)i on both sides. Since S∪B ⊆ S′,B ⊆ S′ \S. Given |S′|= n+m+ i and |S|= n, we have
|S′ \S|= (n+m+ i)−n = m+ i, so the number of m-element subsets B of S′ \S is

(m+i
m

)
, i.e., for each such

S′,AS′ appears
(m+i

m

)
times on the left hand side. Therefore,

∑
B⊆T\S

s.t. |B|=m

∑
S′ s.t.

|S′|=n+m+i,
S∪B⊆S′⊆T

AS′ = ∑
S′ s.t.

|S′|=n+m+i,
S⊆S′⊆T

 ∑
B⊆T\S

s.t. |B|=m

1

AS′ = ∑
S′ s.t.

|S′|=n+m+i,
S⊆S′⊆T

(
m+ i

m

)
AS′ =

(
m+ i

m

)
∑

S′ s.t.
|S′|=n+m+i,

S⊆S′⊆T

AS′ .

This confirms that (17) indeed holds.

We will use two nested inductions to prove our main result. We first induct on decreasing n = |S| for all
S ⊆ T (Outer Induction). We assume that the lemma holds for all S ⊆ T such that

|S| ≥ n+1 (18)

(Outer Hypothesis). This induction is initialized when n = |T | and n = |T | − 1 by definition of A(S,T )
(Outer Base Case). Then we show that the lemma holds for all S ⊆ T satisfying |S| = n (Outer Step) as
follows. By equation (1), for all n ≤ |T |−2,

A(S,T ) =AS − ∑
k∈T\S

AS∪{k}+F(S,T ),

where

F(S,T ) :=
|T |−n−2

∑
i=0

Ei+2(S,T ). (19)

For j ≤ |T |−n, let us denote

Fj(S,T ) := ∑
B⊆T\S

2≤|B|< j

β
j

BA(S∪B,T )+ ∑
B⊆T\S
|B|= j

(
β

j
BA(S∪B,T )− ∑

r∈T\B

|T |−n− j−1

∑
i=1

α
j

i Ei(S∪B∪{r},T )

)
(20)

We will induct by increasing j from 3 to |T |− n (Inner Induction). The hypothesis of the Inner Induction
is that (20) holds for j where Fj(S,T ) = F(S,T ) given by (19) and all β

j
B ≥ 0 and 1

i α
j

i is a monotone
nonnegative decreasing function of i (Inner Hypothesis). This induction will show that

F(S,T ) = F|T |−n(S,T ) = ∑
B⊆T\S

2≤|B|≤|T |−n

β
|T |−n
B A(S∪B,T ) (21)

Therefore, by the Outer Hypothesis F(S,T )⪰ 0, and the Outer Step is established. In the following sections
we initialize the Inner Induction (Inner Base Case) and prove the inductive step (Inner Step).
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B.1 Inner Base Case

By Lemma B.1, setting γi :=
(i+2

2

)
, we have

F(S,T ) =
|T |−n−2

∑
i=0

1
γi

∑
{k,m} s.t.
k,m∈T\S

Ei(S∪{k,m},T )

= ∑
{k,m} s.t.
k,m∈T\S

(
|T |−n−2

∑
i=0

Ei(S∪{k,m},T )+
|T |−n−2

∑
i=1

(
1
γi
−1
)

Ei(S∪{k,m},T )

)

= ∑
{k,m} s.t.
k,m∈T\S

(
A(S∪{k,m},T )+

|T |−n−2

∑
i=1

(
1
γi
−1
)

Ei(S∪{k,m},T )

)

Since γi ≥ 3 for all i ≥ 1, then βi := 1− 1
γi
≥ 2

3 . Then, the inner sum above can be rearranged as

|T |−n−2

∑
i=1

(
1
γi
−1
)

Ei(S∪{k,m},T )

=

(
1− 1

γ1

)
∑

r∈T\{S∪{k,m}}

|T |−n−2

∑
i=1

Ei−1(S∪{k,m,r},T )

−
(

1− 1
γ1

)
∑

r∈T\{S∪{k,m}}

|T |−n−2

∑
i=2

Ei−1(S∪{k,m,r},T )

+
|T |−n−2

∑
i=2

(
1
γi
−1
)

Ei(S∪{k,m},T )

=

(
1− 1

γ1

)
∑

r∈T\{S∪{k,m}}

|T |−n−3

∑
i=0

Ei(S∪{k,m,r},T )

−
(

1− 1
γ1

)
∑

r∈T\{S∪{k,m}}

|T |−n−3

∑
i=1

Ei(S∪{k,m,r},T )

+ ∑
r∈T\{S∪{k,m}}

|T |−n−2

∑
i=2

1
i

(
1− 1

γi

)
Ei−1(S∪{k,m,r},T )

where we used Lemma B.1 again in the last equality. Rearranging the preceding expression further, we have(
1− 1

γ1

)
∑

r∈T\{S∪{k,m}}
A(S∪{k,m,r},T )

+ ∑
r∈T\{S∪{k,m}}

|T |−n−3

∑
i=1

(
1

i+1

(
1− 1

γi+1

)
−
(

1− 1
γ1

))
Ei(S∪{k,m,r},T )

)
.

Since for all i ≥ 1,
1

i+1

(
1− 1

γi+1

)
=

1
i+1

(
1− 2

(i+3)(i+2)

)
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is a bounded from above by .42, we can define αi ≥ 0 by

−α
2
i :=

1
i+1

(
1− 1

γi+1

)
−
(

1− 1
γ1

)
≤ 0.

Note that α2
i
i is a monotone increasing positive function of i. Also we showed that F(S,T ) has the form

of F2(S,T ) in (20) satisfying the requirements of the Inner Hypothesis. Therefore, we have established the
Inner Base Case.

B.2 Inner Step

We now establish the Inner Step. We fix r ∈ T \B in (20) and let B′ = B∪{r}. By Lemma B.1,

−
|T |−n− j−1

∑
i=1

α
j

i Ei(S∪B′,T ) = ∑
k∈T\B′

|T |−n− j−1

∑
i=1

1
i
α

j
i Ei−1(S∪B′∪{k},T ) (22)

Next, for each k ∈ T \B′,

|T |−n− j−1

∑
i=1

1
i
α

j
i Ei−1(S∪B′∪{k},T ) = α

j
1E0(S∪B′∪{k},T )+

|T |−n− j−1

∑
i=2

1
i
α

j
i Ei−1(S∪B′∪{k},T )

= α
j

1

|T |−n− j−2

∑
i=0

Ei(S∪B′∪{k},T )−α
j

1

|T |−n− j−2

∑
i=1

Ei(S∪B′∪{k},T )+
|T |−n− j−1

∑
i=2

1
i
α

j
i Ei−1(S∪B′∪{k},T )

= α
j

1A(S∪B′∪{k},T )+
|T |−n− j−2

∑
i=1

(
1

i+1
α

j
i+1 −α

j
1

)
Ei(S∪B′∪{k},T )

Accordingly, we have

−a j+1
i :=

1
i+1

α
j

i+1 −α
j

1 .

Since −α
j

i+1/(i+1) is a increasing function of i, we have

1
i+1

α
j

i+1 −α
j

1 ≤ 0 (23)

Based on this fact, 1
i α

j+1
i is decreasing

1
i+1

α
j+1

i+1 − 1
i
α

j+1
i =− 1

(i+1)(i+2)
α

j
i+2 +

1
i+1

α
j

1 +
1

i(i+1)
α

j
i+1 −

1
i
α

j
1 ≤ 0 (24)

This completes the proof of Lemma 3.2.

C Examples illustrating Lemma 3.2

The following two examples illustrate (21), i.e., that the “error” terms F(S,T ) for n ≤ T − 2 and S = {w}
can be expressed as a linear combination of A(S,T ) for |S| ≥ 2
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Example C.1. If |T |= 3, it is sufficient to consider S =∅ and {w}. In the first case,

A( /0,T ) = A /0 − ∑
k∈T

A{k}+F( /0,T ).

where

F( /0,T ) = E2( /0,T )+E3( /0,T ) =

(
∑

{k,m}⊂T
A{k,m}

)
−AT

=

(
∑

{k,m}⊂T

(
A{k,m}−AT

))
+2AT =

(
∑

{k,m}⊂T
A({k,m},T )

)
+2A(T,T )

where we used the fact that there are 3 ways of choosing two elements k,m from T . In the second case,

A({w},T ) = A{w}− ∑
k∈T\{w}

A{k,w}+F({w},T )

where

F({w},T ) = E2({w},T ) = AT

Example C.2. We next consider |T |= 4:

A(∅,T ) = A∅− ∑
k∈T

A{k}+F(∅,T )

where

F(∅,T ) := E2(∅,T )+E3(∅,T )+E4(∅,T ) =

(
∑

{m,k}⊂T
A{k,m}

)
−

(
∑

{m,k,n}⊂T
A{m,k,n}

)
+AT

Since there are 3 possible ways to order n relative to fixed m and k, and that there are 6 ways to choose k,m
from T , expression defining E(∅,T ) can be re-arranged as:∑

k∈T
∑

m<k
m∈T

A{k,m}

−

∑
k∈T

∑
m<k
m∈T

 ∑
m<k<n

n∈T

A{k,m,n}+ ∑
n<m<k

n∈T

A{k,m,n}+ ∑
m<n<k

n∈T

A{k,m,n}


+2

(
∑
n∈T

AT\n

)
+AT

=

∑
k∈T

∑
m<k
m∈T

A{k,m}− ∑
n̸=m,k
n∈T

A{k,m,n}+AT


+2

(
∑
n∈T

AT\n

)
−5AT

=

∑
k∈T

∑
m<k
m∈T

A{k,m}− ∑
n̸=m,k
n∈T

A{k,m,n}+AT


+2

(
∑
n∈T

(AT\n −AT )

)
+3AT

=

∑
k∈T

∑
m<k
m∈T

A({k,m},T )

+2

(
∑
n∈T

A(T \n,T )

)
+3A(T,T ).

The cases
A({w},T ) = A{w}− ∑

k∈T\{w}
A{k,w}+F({w},T )
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where

F({w},T ) := E2({w},T )+E3({w},T ) =

(
∑

{m,k}⊂T\{w}
A{k,m}

)
−AT\{w} (25)

and
A({w,u},T ) = A{w,u}− ∑

k∈T\{w,u}
A{k,w,u}+F({w,u},T )

where

F({w,u},T ) := E2({w,u},T ) = AT\{w,u} (26)

are handled by the previous example.

D Lemma D.1

Lemma D.1. Given any n× n symmetric matrix M and some J ⊊ [n], so that M j• = M j′• = M⊤
• j = M⊤

• j′

for any j, j′ ∈ J . Then M ⪰ 0 if and only if M̃ ⪰ 0, where M̃ is the m×m (m = n+ 1− |J |) principal
submatrix of M with M j• and M• j removed for all but one j ∈ J .

Proof. The “only if” direction is trivial as M̃ is a principal submatrix of M. Suppose M̃ ⪰ 0, then it’s enough
to consider the case of |J |= 2 as it can be easily extended to general J by an induction statement on its
cardinality. Without loss of generality, it’s enough to consider J = {1,2} as the spectrum of M is invariant
under change of basis by permutation matrix.

Write

M =


c c v⊤

c c v⊤

v v A

 and M̃ =

(
c v⊤

v A

)
⪰ 0.

For any vector x⊤ = (x1,x2, . . . ,xn) = (x1,x2,y⊤) ∈ Rn, we see that x⊤Mx = c(x1 + x2)
2 +2(x1 + x2)⟨v,y⟩+

y⊤Ay. Because M̃ ⪰ 0, then for any (z,y⊤) ∈ Rn, (z,y⊤)⊤M̃(z,y⊤) = cz2 + 2z⟨v,y⟩+ y⊤Ay ≥ 0, so we can
simply take z = x1 + x2, so that x⊤Mx = (z,y⊤)⊤M̃(z,y⊤)≥ 0, therefore, M ⪰ 0.

E Proof of Theorem 3.3

Our overall approach is to look for a feasible point for (9) of the following form:

αi = ci p−
i
2 > 0 (27)

and find the constant ci > 0 for each i > 0 (with c0 = α0 = 1 given by Definition 2.1). Then, we obtain our
lower bound by lower bounding the objective function at that feasible point.

E.1 Schur complements

To simplify the notation, for any proper subset S ⊊ T where T ⊆V (G), we let

T∧
S

MS∪{k} := ∑
k∈T\S

S∪{k}∈K (G)

MS∪{k}. (28)



19

for a set of matrices MS∪{k}. Letting m := |S|, this sum has s := |T |−m terms, corresponding to the number
of vertices in T \S, i.e. s ∈ [1, . . . , |T |] and by construction |T | = t −1. When the sets S and/or T are clear
from the context, we may omit the subscript S and/or superscript T from

∧
. Also in this proof we omit the

dependence of Â(S,T )(α) and ÃS∪{k}(α) on α . For Â(S,T ) defined in (10), we have

Â(S,T ) = ÃS −
∧

ÃS∪{k} =
∧(1

s
ÃS − ÃS∪{k}

)
=
∧

Ak(S,T ) (29)

where

Ak(S,T ) =

(
ᾱm −αm+1 ᾱm+11

⊤−αm+2v⊤S∪{k}

ᾱm+11−αm+2vS∪{k} ᾱm+1I + ᾱm+2MS −αm+2diag(vS∪{k})−αk+3MS∪{k}
)) , (30)

vS∪{k}, MS and MS∪{k} are defined in Section 3, and

ᾱm := αm/s.

According to equation (27) of each αi, for all p sufficiently large, ᾱm −αm+1 ≥ αm/(t − 1)−αm+1 > 0
uniformly in s. Therefore, for each k ∈ T \S, it is sufficient to consider the positive semidefiniteness of the
Schur complement of Ak(S,T ):

DS := diag(w)+ ᾱm+2MS −αm+3MS∪{k}−
1

ᾱm −αm+1
ww⊤ (31)

where

w := ᾱm+11−αm+2vS∪{k}. (32)

The {0,1} adjacency matrix AG has the following relationship to the {±1} adjacency matrix UG (also called
the Seidel matrix) :

AGp,K =
1
2
(UGp,K + J− I)

where J = 11⊤ is a matrix containing entries of all 1’s. Similarly we can decompose each MS and MS∪{k}
into submatrices US and US∪{k} of the Seidel matrices UGp,K∪S and UGp,K∪S∪{k} of Gp,K∪S and Gp,K∪S∪{k}
respectively (or more precisely, in the latter case US∪{k} is a submatrix of UGp,K∪S∪{k} padded with rows and
columns of all zeros in the positions i ∈V (Gp,K∪S) corresponding to S∪{k, i} ̸∈ K (Gp,K∪S)):

MS =
1
2
(US +11⊤− I) and MS∪{k} =

1
2

(
US∪{k}+ vS∪{k}v⊤S∪{k}−diag(vS∪{k})

)
(33)

Moreover, the definition for US can be extended to the case where S = T , so that MT = 1
2(UT +11⊤− I).

The adjacency matrix AGp and the Seidel matrix UGp of the Paley graph Gp have the following spectra, e.g.,
Prop. 2.5 in [KY23].
Proposition E.1. For any prime p = 1 mod 4, the spectra of the {0,1} adjacency and the Seidel matrices
AGp and and UGp of the Paley graph Gp are

spec(AGp) = { p−1
2

,

√
p−1
2

, . . . ,

√
p−1
2︸ ︷︷ ︸

p−1
2 times

,
1−√

p
2

, . . . ,
1−√

p
2︸ ︷︷ ︸

p−1
2 times

} (34)

spec(UGp) = {0,
√

p, . . . ,
√

p︸ ︷︷ ︸
p−1

2 times

,−√
p, . . . ,−√

p︸ ︷︷ ︸
p−1

2 times

}. (35)

and 1 is the eigenvector corresponding to the p−1
2 and 0 eigenvalues of AGp and UGp , respectively.
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Remark E.1. Since Gp is a strongly regular graph and every two adjacent vertices have 1
4(p−5) common

neighbors, 1 is the eigenvector corresponding to the eigenvalues p−4
2 and 0 of AGp,{0} and UGp,{0} , respec-

tively.

By the eigenvalue interlacing theorem, we have the following relationship between the Seidel matrices of
the Paley graph localizations and their submatrices:

−√
p ≤ min

i
λi(US)≤ min

i
λi(UGp,K∪S) and max

i
λi(US∪{k})≤ max

i
λi

(
UGp,K∪S∪{k}

)
≤√

p. (36)

E.1.1 Positive semidefiniteness of the Schur complement of Â(T,T )

For S = T , the Schur complement of Â(T,T ) is

DT = αtI +αt+1MT − α2
t

αt−1
11⊤ (37)

Let us first consider the L1 case where T = ∅, and MT equals to the {0,1} adjacency matrix AG matrix of
the relevant graph.

The L1(Gp) case We first consider the case when the L1(Gp), which is equivalent to the well known the
Lovasz ϑ /SOS-2. In this case, MT = AGp , which has an eigenvector 1 ∈ Rp corresponding to the p−1

2

eigenvalue, and the smallest eigenvalue equal to 1−√
p

2 . Therefore, DT is PSD if

α1 +α2
p−1

2
− α2

1
α0

p ≥ 0, and α1 +α2
1−√

p
2

≥ 0.

Based on equation (27), for sufficiently large p such that

α1 −
1
2

α2 ≥ 0.

or equivalently

2
√

pc1 ≥ c2. (38)

Therefore, it is sufficient to consider

α2
p
2
− α2

1
α0

p ≥ 0, and α1 −α2

√
p

2
≥ 0.

Substituting the expression for αi from equation (27), these two inequalities are equivalent to

c2

2
− c2

1
c0

≥ 0 and c1 −
c2

2
≥ 0. (39)

The L1(Gp,{k}) case We now consider the consider the case when the L1(Gp,{k}) where Gp,{k} is the
degree one localization of the Paley graph. Since the Paley graph is vertex transitive, it is sufficient to
consider L1(Gp,{0}). In this case, MT = AGp,{0} , which also an eigenvector 1 ∈ R

p−1
2 corresponding to the

p−5
4 eigenvalue, and the smallest eigenvalue is bounded by 1−√

p
2 from below by the eigenvalue interlacing

theorem. Therefore, DT is PSD if

α1 +α2
p−5

4
− α2

1
α0

p−1
2

≥ 0, and α1 +α2
1−√

p
2

≥ 0.



21

Based on equation (27), for sufficiently large p,

α1 −α2 > 0,

or equivalently
√

pc1 ≥ c2. (40)

Therefore, it is sufficient to consider

α2
p−1

4
− α2

1
α0

p−1
2

≥ 0, and α1 −α2

√
p

2
≥ 0.

Again, substituting the expression of αi from equation (27), the preceding two inequalities are equivalent to

c2

2
− c2

1
c0

≥ 0 and c1 −
c2

2
≥ 0. (41)

L1 relaxations of localizations of degree 2 and higher, and Lt for t ≥ 2 for Gp and its localizations We
do not expect localizations Gp,K to be regular graphs when |K| ≥ 2. Therefore, 1 is no longer an eigenvector
of AGp,K . Also for Lt for t ≥ 2, we do not expect the submatrix MT of Â(T,T ), to have an eigenvector equal
to 1. In all these cases, it is more convenient to decompose MT into a principal submatrix UT of the Seidel
matrix UGp,K∪T according to equation (33). We can control the eigenvalues of UGp,K∪T , and therefore UT , by
the eigenvalue interlacing theorem. Then, equation (37) becomes

DT = αtI +αt+1MT − α2
t

αt−1
11⊤

=
(

αt −
αt+1

2

)
I +

αt+1

2
UT +

(αt+1

2
− α2

t

αt−1

)
11⊤.

Since the only non-zero eigenvalue of 11⊤ is the norm of 1 which is positive and asymptotically O(p), we
require the constant before 11⊤ be non-negative:

αt+1

2
− α2

t

αt−1
≥ 0, (42)

so that this term does not decrease λmin(DT ). Based on that to guarantee DT ⪰ 0, it suffices to require

λmin(DT )≥
(

αt −
αt+1

2

)
+

αt+1

2
λmin(UT )+λmin

((
αt+1

2
− α2

t

αt−1

)
11⊤

)
≥ αt −

αt+1

2
√

p+E1 ≥ 0, (43)

where the leading order term of (43) is O(p−
t
2 ) and the lower term error is E1 :=−αt+1

2 = O(p−
t+1

2 ). Com-
bining the foregoing results, the inequalities (39) for relaxation degree t = 1 and localization degree a = 0,
the inequalities (41) for relaxation degree t = 1 localization degree a = 1, and the inequalties(42) and (43)
in all other cases hold for sufficiently large p if

ct+1

2
− c2

t

ct−1
≥ 0 (44)

ct −
ct+1

2
+ Ê1(p)≥ 0. (45)

where

Ê1(p) :=

{
0 if t = 1, and a = 0 or 1
− ct+1

2
√

p otherwise.
(46)
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E.1.2 Positive semidefiniteness of the Schur complement of Â(S,T ) for S ⊊ T

When t > 1, for each proper subset S of T (0 ≤ |S| = m ≤ t − 2), we also establish the positive semindefi-
niteness of the Schur complement of Ak(S,T ) for each k ∈ T \S. This leads to the positive semidefiniteness
of the corresponding Â(S,T ). We simplify the notation by writing vS∪{k} as v, denoting vc := 1− v. Hence
we can write w defined in (32) as

w = ᾱm+11−αm+2v = (ᾱm+1 −αm+2)v+ ᾱm+11vc.

Using equation (33), the Schur complement DS of Ak(S,T ) given by (31) can be decomposed as

DS =

(
ᾱm+1 −

ᾱm+2

2

)
I +
(
−αm+2 +

αm+3

2

)
diag(v)+

ᾱm+2

2
US −

αm+3

2
US∪{k}+C

where

C := τvv⊤+ ιvcv⊤c +η(vv⊤c + vcv⊤), such that


ι := ᾱm+2

2 − ᾱ2
m+1

ᾱm−αm+1
,

τ := ᾱm+2
2 − αm+3

2 − (ᾱm+1−αm+2)
2

ᾱm−αm+1
= ι +E2,

η := ᾱm+2
2 − ᾱm+1(ᾱm+1−αm+2)

ᾱm−αm+1
= ι +E3.

(47)

and

E2 :=−αm+3

2
+

αm+2(2ᾱm+1 −αm+2)

ᾱm −αm+1
= O(p−

m+3
2 ) (48)

E3 :=
ᾱm+1αm+2

ᾱm −αm+1
= O(p−

m+3
2 ) (49)

where the asymptotic estimates are given by the order assumption (27). Since DS ⪰ 0 if and only if
λmin(DS) ≥ 0, we need to estimate λmin(C), which is given by Lemma F.1. It suffices to consider −ζ ≤
λmin(C) and minimize ζ > 0. As the leading order terms of ι , η and τ are equal, we set this leading order to
zero, which is achieved by:

ᾱm+2

2
=

ᾱ2
m+1

ᾱm
which holds if and only if

cm+2

2cm+1
=

cm+1

cm
. (50)

Therefore,

ι =
ᾱ2

m+1

ᾱm
−

ᾱ2
m+1

ᾱm −αm+1
=

−ᾱ2
m+1αm+1

ᾱm(ᾱm −αm+1)
=

−ᾱm+2αm+1

2(ᾱm −αm+1)
, by (50) (51)

where E8(p) = O(p−
m+4

2 ) is a positive for all p. Moreover, this ζ can be further minimized by setting the
leading order term of τ − ι = E2 = 0. By equation (48), it is enough to require:

αm+3

2
=

2ᾱm+1αm+2

ᾱm
which holds if and only if

cm+3

4cm+2
=

cm+1

cm
. (52)

This further enforces equality between τ = ι because

τ − ι =−2ᾱm+1αm+2

ᾱm
+

2ᾱm+1αm+2 −α2
m+2

ᾱm −αm+1
= αm+2

(
2ᾱm+1αm+1 − ᾱmαm+2

ᾱm(ᾱm −αm+1)

)
(53)
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where the numerator of the fraction on the right-hand side above is 0 by equation (50). Moreover, η = −ι

because:

η + ι = 2ι +E3 =
−2ᾱm+2αm+1

2(ᾱm −αm+1)
+

ᾱm+1αm+2

ᾱm −αm+1
= 0. by (49) and (51) (54)

Let ∥v∥2
2 = nv,∥vc∥2

2 = nc, so that n = nv +nc, where n is given by (11). By our previous computation, we
have

ι = τ =−η < 0,

Therefore, by Lemma F.1, the nonzero eigenvalues of the matrix C are

λ1 =
1
2

(
ιn+

√
ι2(nv −nc)2 +4ι2nvnc

)
=

1
2
(ιn+ |ι |(nv +nc)) = 0

λ2 =
1
2
(ιn−|ι |(nv +nc)) = ιn =− nᾱm+1αm+2

2(ᾱm −αm+1)
, by (51)

=−nᾱm+1αm+2

2ᾱm
+E ′

4 =−nαm+3

8
+E ′

4, by (52)

where E ′
4 =− nα2

m+2
4(ᾱm−αm+1)

= O(p−
m+2

2 ). Therefore it is sufficient to prove that for sufficiently large p :

λmin(DS)≥−nαm+3

8
+ ᾱm+1 −

ᾱm+2

2
√

p−E4(p)≥ 0, (55)

and we write E4(p) as the collection of lower order terms in λmin(DS)

E4(p) = αm+2

(
1+

1
2s

)
+

αm+3

2
√

p+
nα2

m+2

4(ᾱm −αm+1)
= O(np−

m+4
2 + p

m+2
2 )≥ 0 (56)

We write Ê4(p) = p
m+1

2 E4(p) = O(np−3/2 + p−1/2). To ensure the feasibility condition (9) under the αi of
form give by (27), we need to make sure that there exists some cm such that for all 0 ≤ m ≤ t −2,

cm+3

4cm+2
=

cm+2

2cm+1
=

cm+1

cm
= 0, by (50) and (52) (57)

cm+1

s
− cm+3

2a+m+3 −
cm+2

2s
− Ê4(p)≥ 0, by (55) (58)

holds for sufficiently large p.

E.2 Lower bound for t = 1

When t = 1, since |T | = t − 1 = 0, T = ∅, and it has no proper subsets. Therefore, it sufficient to ensure
that the inequalities (44) and (45) are satisfied. Theses inequalities can be collected into:

2+ Ê1(p)>
c2

c1
≥ 2c1

c0
= 2c1 (59)

Gp and its degree 1 localization When a = 0 and a = 1, Ê1(p) = 0, and the maximal choices for this
constraint is c1 = 1 and c2 = 2. For these values, (38) and (40) are satisfied for all p ≥ 5. With Proposition
2.2, we are able to establish the following lower bound:

L1(Gp)≥
c1|V (Gp)|√

p
≤√

p and L1(Gp,{0})≥
√

p
2

− 1
2
√

p
(60)
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Localizations of degree 1 and higher When a ≥ 2, the maximal choice of c1 for this constraint is c1 =
1+ 1

2 Ê1 = 1− ε where ε = c2
2
√

p > 0. We can now solve,

c2

1− ε
= 2(1− ε)

leading to

c2 = 2−O
(

1
√

p

)
and ε =

1
√

p
−O

(
1
p

)
With Proposition 2.2, we establish the following lower bound for sufficiently large p:

L1(Gp,K)≥
c1|V (Gp,K)|√

p
≥
(

1− 1
√

p
+O

(
1
p

))(√
p

2a − (a−1)− a
2
√

p

)
(61)

≥
√

p
2a − (a−1)+O

(
a
√

p

)
(62)

Combining the preceding equation with (60), we get

L1(Gp,K)≥
√

p
2a −


0 if a = 0

1
2
√

p if a = 1

a−1+O
(

a√
p

)
if a ≥ 2

, (63)

which proves Theorem 3.3 for t = 1. In particular, since L1 = SOS2 = ϑ , this recovers the classical result
ϑ(G)≥ |V (G)| for arbitrary graph G when applied to G = Gp,K .

E.3 Lower bound for t ≥ 2

For any fixed t ≥ 2, to satisfy constraints (9) for sufficiently large p, we need to find a feasible set {ci}t+1
i=1 of

positive numbers so that the inequalities (44), (45), (57), and (58) hold, in the case of the last two inequalities,
for each 0 ≤ m ≤ t −2. These inequalities can be collected into the following system:

2 >
2
√

p
√

p+1
≥ ct+1

ct
=

2ct

ct−1
=

4ct−1

ct−2
= ...=

2t−1c2

c1
=

2tc1

c0
= 2tc1 (64)

cm+3

cm+2
+ Ê4(p)≤ 2a+m+3

t −m−1

(
cm+1

cm+2
− 1

2

)
, for 0 ≤ m ≤ t −2 (65)

where (64) is obtained by reorganizing and combining (57), (44), and (45), whereas (65) is obtained by
shifting terms in (58) for all m and substituting s = t −m−1.

Now define for 0 ≤ i ≤ t, ri =
2a+i+1

t−i+1 and qi =
ci+1
ci

. In particular, q0 = c1 as c0 = 1 by definition. We can
reorganize the above inequalities as:

2 >
2
√

p
√

p+1
≥ qt = 2qt−1 = 22qt−2 = · · ·=2t−iqi = · · ·= 2t−1q1 = 2tq0, (66)

qi + Ê4(p)≤ ri

(
1

qi−1
− 1

2

)
, for 2 ≤ i ≤ t. (67)

For sufficiently large p, Ê4(p) = O(p−1/2)< qi, and we have qi + Ê4(p)≤ 2qi. Since (a+ t)≥ 2, we have
2a+t−1 ≥ 2 and 2t−i+1 −1 ≥ t − i+1 for any 0 ≤ i ≤ t. Therefore,

2t−i−1ri

(
2t−i − 1

2

)
=

2a+t−1(2t−i+1 −1)
t − i+1

≥ 2, which holds if and only if ri

(
2t−i − 1

2

)
≥ 2i+2−t .



25

Moreover, equation (66) implies 2qi ≤ 2i+2−t for any i ≥ 0 and 1
qi−1

≥ 2t−i for any i ≥ 1. Hence

qi + Ê4(p)≤ 2qi ≤ ri

(
2t−i − 1

2

)
≤ ri

(
1

qi−1
− 1

2

)
, for 2 ≤ i ≤ t

for sufficiently large p. Hence, equation (67) is redundant. Therefore, we can take q0 = c1 =
√

p
2t−1(

√
p+1) by

(66), Using Proposition 2.2, we establish the following lower bound for sufficiently large p:

Lt(Gp,K)≥
c1|Gp,K |√

p
≥ 1

2t−1(
√

p+1)
·
( p

2a − (a−1)
√

p− a
2
− t +1

)
(68)

≥ p
2a+t−1(

√
p+1)

−
(a−1)

√
p

2t−1(
√

p+1)
− a+2t +2

2t(
√

p+1)
(69)

=

√
p

2a+t−1 −
a2a −2a +1

2a+t−1 ·
√

p
√

p+1
− a+2t +2

2t(
√

p+1)
(70)

=

√
p

2a+t +O
( a

2t

)
(71)

This completes the proof of Theorem 3.3.

F Lemma F.1

Lemma F.1. Let C be a matrix of the form τvv⊤+ ιvcv⊤c +η(vv⊤c +vcv⊤), where each of v and vc is a vector
in Rn containing 0 and 1’s in each entry such that v+vc = 1. Let ∥v∥2

2 = nv,∥vc∥2
2 = nc, so that n = nv+nc.

Then the eigenvalues of C are either O or given by

λ1,2 =
τnv + ιnc ±

√
(τnv − ιnc)2 +4η2nvnc

2
.

Proof. We can represent C in block form as:

C =

(
τJnv,nv ηJnv,nc

ηJnc,nv ιJnc,nc

)
where Jm,n is an m×n all-ones matrix. The range of C is in the span of v and vc, and therefore eigenvectors
corresponding to non-zero eigenvalues have the prescribed form x, i.e., a linear combination of v and vc:

x =

[
α1nv

β1nc

]
where α and β are scalars. Substituting x into the equation det(C−λ I)x= 0 leads to the following equivalent
characteristic equation: ∣∣∣∣∣τnv −λ ηnc

ηnv ιnc −λ

∣∣∣∣∣= 0.

Therefore, the eigenvalues are given by:

λ1,2 =
τnv + ιnc ±

√
(τnv − ιnc)2 +4η2nvnc

2
.
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