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Paley graph clique number
I Classic problem in number theory and additive combinatorics

I Connected to Ramsey theory, random matrices, computational
complexity and optimization, to name a few research areas

I Links to deterministic restricted isometries in compressed
sensing and sparse recovery

Paley Ramsey Tao

Vallentin Laurent Gvozdenovic



Background

For any G = (V ,E ):

I K ⊆ V is a clique if each i , j ∈ K are adjacent

I Clique number

ω(G ) = the size of a largest clique

I I ⊆ V is an independence set if each i , j ∈ I are not adjacent

I Independence number

α(G ) = the size of a largest independence set

Finding ω(G ) and α(G ) is NP-hard for general graphs



Paley graph

ω(G5) = 2 ω(G13) = 3

Image credit: Wolfram

I A Paley graph Gp = (V ,E )
I |V | = p where p ≡ 1 mod 4 (Pythagorean prime)
I {i , j} ∈ E iff i − j = a2 mod p for some a ∈ Zp

I Strongly regular and self-complementary

I (We’re not considering Paley graphs of prime power order ps)



Connections to compressed sensing and sparse recovery

I SLOGAN: compressible high-dimensional signal can be
recovered from very few measurements

I x ∈ Rn is s-sparse if it has no more than s nonzero entries

I When can you recover x exactly from few measurements y

I Sparse recovery experiment design of A ∈ Cm×n

[
y
]

=
[

A
]
x


where
s < m� n



Restricted isometry property (RIP)

I Guarantees that sparse recovery is robust to noise

I A ∈ Cm×n satisfies RIP with distortion 0 < δ < 1 if for any
s-sparse x

(1− δ)‖x‖2 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖2

I Matrices with Gaussian i.i.d. entries satisfy RIP w.h.p. if

s ∼ m/log(n)



Square root bottleneck

I Deterministic constructions based on controlling “spikeness”
or “localization” (coherence) of rows achieve

s ≈
√
m

I Include those based on the eigenvectors corresponding to
λ1(AGp) and λ2(AGp) [Arash Amini and Marvasti, 2015]

I A combinatorial construction overcomes this bottleneck with

s = Ω(m
1
2
+ε)

for small ε > 0 [Bourgain et al., 2011b, Bourgain et al., 2011a]

I Accordingly, random constructions are abundant but
deterministic constructions are hard to find (“hay in the
haystack”)



Paley matrices

I Matrices constructed from rows of the DFT matrix
corresponding to QR’s mod p [Bandeira et al., 2013] support

s ∼ √p

I Conditioned on a conjecture about the # of edges in any
subgraph of Gp [Bandeira et al., 2016], these matrices support

s ∼ p/polylog(p)

I Unconditional [Kaplan et al., 2019] for signals with a certain
sparse structure

s = Ω(m
1
2
+ 9

40 )

I A lower bound on ω(Gp) would lead to a lower bound on the
distortion constant δ



Paley graph clique number

I Classic problem in number theory and additive combinatorics

I Gp share similarities with Erdos-Renyi graphs G(1/2, p)

I Is ω(Gp) = O(polylog p), i.e., is Gp roughly a Ramsey graph?

I Note ω(G(1/2, n)) ∼ 2 log2 n

ω(G13) = 3 ω(G41) = 5



Existing bounds

I Upper bounds [Hanson and Petridis, 2021, Benedetto et al.,
2021]

ω(Gp) ≤ (
√

2p − 1 + 1)/2

I Improves on
√
p by a constant prefactor.

I Lower bound for infinitely many primes [Graham and
Ringrose, 1990]

log p · log log log p ≤ ω(Gp)

I Conditioned on GRH [Montgomery, 1971],

log p · log log p ≤ ω(Gp)

I Numerical experiments [Bachoc et al., 2014]

ω(Gp) ≈ polylog(p)



Integer program

I Easier to see in the context of the independence number α(G )

ω(Gp) = max
x∈Rp

∑
i

xi

s.t. x2i = xi for all i ∈ V

xixj = 0 for all {i , j} ∈ E

I We focus on the clique problem ω(G ) (i.e., take
xixj = 0 for all {i , j} /∈ E )

I It makes connections to AGp more apparent



Nonconvex semidefinite matrix optimization

max
Y∈Sp+1×p+1

∑
i∈Zp

Y∅i

s.t. Y 2
ii = Yii for all i ∈ V

Yij = 0 if {i , j} 6∈ E

Y � 0, Y∅∅ = 1

rank(Y ) = 1

I This is equivalent to the previous program for ω(Gp)
I Let y = (1, x1, . . . , xn) and reparametrize:

Y = yyT =


1 x1 x2 . . . xp
x1 x1 x1x2 . . . x1xp
x2 x1x2 x2 . . . x1xp
...

. . .

xp xp





SOS-2 = Lovasz-Schrivjer0 = L1 convex relaxation

I Then we drop the nonconvex constraints

max
∑
i∈V

yi

s.t.y ∈ Rp,Y ∈ Rp×p

Yij = 0 if i 6= j , {i , j} 6∈ E

Yii = yi , i ∈ V(
1 y>

y Y

)
� 0

I One can show this is equivalent to the Lovász ϑ function



SOS / Laserre-Parrilo hierarchy

I Denote the power sets of V of size ≤ t by
Pt = {S ⊂ V | |S | ≤ t}.

I Now let y =
(∏

i∈S xi
)
S∈Pt

, Y = yyT .

I For example for t = 2,
y = (1, x1, . . . , xn, x1x2, . . . x2x1, . . . xpxp).

I For y ∈ P2t(V ), Mt(y) with (Mt(y))I ,J = yI∪J , I , J ∈ Pt(V )
is called the moment matrix of y .

SOS2t(G ) = max
∑
i∈V

yi

s.t. Mt(y) � 0, y0 = 1, yij = 0 if {i , j} ∈ E .



Sum of squares relaxations

I An open problem proposed by Mixon and Bandeira is whether
the SOS-4 relaxation of the Paley graph clique number breaks
this barrier

I Xu & Kunisky
I provided numerical evidence that SOS4(Gp) relaxation are

O(p
1
2−ε)

I proved an Ω(p
1
3 ) lower bound

I However, SOS4(Gp) appears to be computationally intractable
even for moderate p ≈ 250.

I Gvozdenovic et al. introduced a more computationally
efficient block-diagonal hierarchy of SDPs (Lt)

SOS2t(Gp) ≤ Lt(Gp)



Block Diagonal Hierarchy

I For T ∈ Pt−1(V ), introduce M(T ; y), a principal sub-matrix
of Mt(y) indexed by

⋃
S⊆T {S , S ∪ {i}, i ∈ V }.

Lt(G ) = max
∑
i∈V

yi

M(T ; y) � 0 ∀ |T | = t − 1

y0 = 1, yij = 0, {i , j} ∈ E .

I Less computationally expensive than SOS2t(G ).

I A relaxation of SOS because Mt(y) � 0 is requires every
submatrix to be PSD

I Block-diagonalized by zeta matrices - it is sufficient to use
p + 1× p + 1 matrices in the constraints.



Main result: Lower bound on Lt(Gp)

I We proved the following lower bound

Lt(Gp) ≥
√
p

2t−1
+ o(
√
p).

I This shows Lt does not break
√
p bottleneck for fixed t, but

may beat it if t(p) is a slowly increasing function of p.



Localization-relaxation trade-off

I Localization Gp,K of subgraphs induced on vertices K adjacent
to all vertices in Gp is another technique used to strengthen
convex relaxations [Passuello, 2013, Magsino et al., 2019] and,
more recently, spectral bounds on ω(Gp) [Kunisky, 2023].

I for any clique K of size a,

Lt(Gp,K ) ≥
√
p

2a+t−1 + o(
√
p). (1)

I This shows Lt does not break
√
p bottleneck for fixed t, but

may beat it if a(p) is a slowly increasing function of p.



Proof idea
I We construct a feasible point of L2 using Feige-Krauthgamer

(FK) pseudomoments, similarly to such construction
in [Kunisky and Yu, 2022] for SOS2t .

I The FK program L2FK (Gp) corresponding to L2(Gp) is defined
by replacing A{0} with:

A{0} =



y{0} y{0} y{0,1}(AGp)0,1:end
y{0} y{0} y{0,1}(AGp)0,1:end

y{0,1}× y{0,1}× y{0,1}diag(AGp)1:end,0 + α3M
′

(AGp)1:end,0 (AGp)1:end,0


where M ′ is the indicator matrix of triangles in Gp of the form
{0, i , j} for 1 ≤ i , j < p, and reducing the number of scalar
optimization variables y{0,α,β} corresponding to the orbits of
triangles to the single α3 ∈ R.

I Use the Schur complements to reduce the PSD constraints to
a system of scalar inequalities for y{0} y{0,1} and α3.



Future direction - symmetries and upper bounds

I We plan to upper bound L2 and L3, and therefore ω(Gp), by
constructing feasible points of the corresponding dual
programs.

I Since the edges and the edges triples (triangles) form orbits
under Aut(Gp), the number of optimization variables is
proportional to the number of the representatives of such
orbits

I Since a Paley graph is edge-transitive, the representatives of
such orbits are given by {0, 1, β} where both β and β − 1 are
squares in Zp; there are approximately (p − 5)/24 orbits.

I The upper bound problem can be reduced to a problem of
studying the e.s.d of indicators of orbits as p →∞
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