WEEK 10

Problem 1 (Putnam 2001 A1). Consider a set S and a binary operation *, i.e., for each $a, b \in S$, $a * b \in S$. Assume (a * b) * a = b for all $a, b \in S$. Prove that a * (b * a) = b for all $a, b \in S$.

Problem 2 (Missouri Collegiate Competition 2003). Let $x_1 > 1$ be odd and define the sequence $\{x_n\}_{n=1}^{\infty}$ recursively by $x_n = x_{n-1}^2 - 2$, $n \ge 2$. Prove that for any pair of integers j, k satisfying $1 \le j < k$, the terms x_j , x_k are relatively prime.

Problem 3 (Putnam 1989 B2). Let S be a non-empty set with an associative operation that is left and right cancellative (xy = xz implies y = z, and yx = zx implies y = z). Assume that for every a in S the set $\{a^n : n = 1, 2, 3, \ldots\}$ is finite. Must S be a group?

Problem 4 (Leo Schneider 2017). Two points are chosen uniformly at random from the unit interval [0,1]. What is the probability that the points will be within a distance of 1/8 of each other?

Problem 5 (Missouri Collegiate Competition 2006). The array below is called a magic square because the sum of the three numbers along any row, any column, or the two diagonals, is the same (namely, 15).

8	1	6
3	5	7
4	9	2

(a) Construct a 3×3 multi-magic square, that is, a 3×3 array of 9 distinct integers such that the PRODUCT of the three numbers along any row, any column, or the two diagonals, is the same.

(b) Show that no multi-magic square can be constructed with nine *consecutive* integers.

Problem 6 (Putnam 2004 - A6). Suppose that f(x,y) is a continuous real-valued function on the unit square $0 \le x \le 1, 0 \le y \le 1$. Show that

$$\int_0^1 \left(\int_0^1 f(x,y) dx \right)^2 dy + \int_0^1 \left(\int_0^1 f(x,y) dy \right)^2 dx$$

$$\leq \left(\int_0^1 \int_0^1 f(x,y) dx dy \right)^2 + \int_0^1 \int_0^1 \left[f(x,y) \right]^2 dx dy.$$

Date: November 6, 2025.

1