WEEK 9

Problem 1 (Data science/stat interview questions). For full rank $A \in \mathbb{R}^{m \times n}$ with m > n (i.e., rank(A) = n), solve

$$\min_{x \in \mathbb{R}^n} \|Ax - b\|.$$

Want another question? What is the solution of

$$\min_{x \in \mathbb{R}^n : Ax = b} \|x\|_2$$

for full rank $A \in \mathbb{R}^{m \times n}$ with m < n (i.e., rank(A) = m)?

Problem 2 (Math 1187H, 2024). Suppose a weighted coin gives heads with probability α for $0 < \alpha < 1$. A game is designed as follows: flip the coin twice. If both flips are the same, repeat. If the flips are HT, A wins, and if the flips are TH, B wins. What is the expected runtime of the game?

Problem 3 (Putnam 1989 A4). If α is an irrational number, $0 < \alpha < 1$, is there a finite game with an honest coin such that the probability of one player winning the game is α ? (An honest coin is one for which the probability of heads and the probability of tails are both $\frac{1}{2}$. A game is finite if with probability 1 it must end in a finite number of moves.)

Problem 4 (Missouri Collegiate Competition 2017). Let n be a fixed positive integer. Let $M_n(\mathbb{Z}_2)$ denote the set of $n \times n$ matrices with entries in \mathbb{Z}_2 . Given $A \in M_n(\mathbb{Z}_2)$, what is the probability that A is invertible? (Hint: Recall that $\mathbb{Z}_2 = \{0,1\}$ and all arithmetic is modulo 2.)

Problem 5 (AIME 1988). It is possible to place positive integers into the vacant twenty-one squares of the 5 times 5 square shown below so that the numbers in each row and column form arithmetic sequences. Find the number that must occupy the vacant square marked by the asterisk (*).

Problem 6 (Missouri Collegiate Competition 2017). Recall that the trace $\operatorname{tr}(A)$ of an $n \times n$ matrix A is the sum of the entries on the main diagonal of A. Let A^{\top} denote the transpose of the matrix A. Show that if A and B are $n \times n$ real-valued matrices with $\operatorname{tr}(AA^{\top} + BB^{\top}) = \operatorname{tr}(AB + A^{\top}B^{\top})$, then it must be the case that $A = B^{\top}$.

Problem 7 (Putnam 1991 A4). Does there exist an infinite sequence of closed discs D_1, D_2, D_3, \ldots in the plane, with centers c_1, c_2, c_3, \ldots , respectively, such that

- (1) the c_i have no limit point in the finite plane,
- (2) the sum of the areas of the D_i is finite, and
- (3) every line in the plane intersects at least one of the D_i ?

			*	
	74			
				186
		103		
0				

Date: October 30, 2025.

1