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Homework Sheet 5: Solutions

1. Consider the non-empty set of functions

n—1
V= {p;R—)Rlp(x):Zakxk for a; € R, xER}
k=0

(a) Define an addition operation + : VXV — V and a scalar multiplication
operation - : R XV — V such that the triple (V,+,-) is a real vector
space.

We define + : V2 — V by (p; + p2)(x) = pi(x) + pa(x). Then
P1(x) + pa(x) = YiZo(ai + ax)x* where pi(x) = 32 ayx* and pa(x) =

Z;(l) a.x*. Therefore, p; + p, € V. This confirms that V is closed under
addition.

Similarly, we define - : R XV — V by (dp)(x) = Ap(x). Then
Ap(x) = Yi_o(Aap)x* where p(x) = Y, ax*, so Ap € V. This con-
firms that V is closed under scalar multiplication.

[V1] (p1 + p2)(x) = SiZo(an +am)x* = Yiso(amu +an)x* = (pa+ p)(x)
Thus p; + p, = p» + py forany py,p, € V.

[V2] For p; defined by p3(x) = 325 azx*, we have
n—1

n—1 n—1
(p1+ (P2 + p3))(x) = Z alkxk + (Z akak + Z a3kxk)
k=0 =0

k=0

n—1 n—1 n—1
:(Z alkxk + Z 612ka) + E Cl3kxk
k=0 k=0 k=0

=((p1 + p2) + p3)(x)

Thus p; + (p2 + p3) = (p1 + p2) + p3 forany py, pa, p3 € V.

[V3] Define 0 by O(x) = 0. By the Fundamental Theorem of Algebra,
an n — 1 degree polynomial with more than n — 1 roots is identically
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zero. Therefore 0 € V is uniquely defined by 0(x) = 37~ 0 - x*, and we
have

n—1

n—1
(p+0)(x) :Zakxk+20-xk = p(x)
k=0

k=0

Therefore, p + 0 = p forany p € V.

[V4] We have

n-—1 n—1
(p+ (=D p)@) = ) ad +(=1) ) ag-x =0
k=0 k=0

Therefore, p + (—1)p =0 forany p € V.

[V5] We have
n—1
(1 p)x) =1 ) axt = p(x)
k=0
Therefore, 1 - p = pforany p e V.

[V6] We have
n—1

n—1
ci(ea - p)(x) =ci(cs - Z ax’) = (cic2) - Z ax* = (c1c2)p(x)
k=0

k=0

Therefore, ¢i(c; - p) = (cicz)p forany p € V.

[V7] We have

n—1 n—1 n—1
(1 + e)p)) =(c1 +¢2) - D @ =1 ) apd + ¢ Y @ = ¢1p(0) + cap(x)
k=0 k=0 k=0

Therefore, (¢; + ¢2) - p=c1p+ cyp forany cj,co € Rand p e V.

[V8] We have

n—1 n—1
c(p1+ () =e(Y aux + ) an)
k=0 k=0

n—1 n—1
=c Z apx* +c ayx* = cp1(x) + cpa(x)
k=0 k=0
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Therefore, ¢ - (p1 + p2)p=c1-p1+c-p,foranyc e Rand p;,p, € V.

(b) Find a basis for this vector space, and deduce its dimension.
By the construction of V, the set of monomials b = {x*}!~} is a span-
ning set. By the Fundamental Theorem of Algebra, an n — 1 degree
polynomial with more than n — 1 roots is identically zero. Therefore
Z;(])ak-xk =0forall x e Rifand onlyifa, = 0for0 <k <n-1.
Thus, b is a basis of V.

2. Suppose m,n > 1 are integers.

(a) Prove that the set of all maps f : R™ — R" of class C'(R™) ad-
mits the structure of a real vector space with respect to the ‘natural’
+:C'RM X C'R™ — C'R™ and - : R x C'(R™) — C'(R™) opera-

tions.

We define + : C'(R™) x C'(R™) — C'(R™) by (f + g)(x) = f(x) + g(x).
Then, the fact that f and g are differentiable implies that there exists
f',g : R™ — R™" such that for every a € R™, we have

T fla+h) - fla)-f'(@ .. gla+h)—gla)-ga
m lim =

= 0
Ihl—0 K| Ihl—0 A

Consequently,

i @+ )+ gla+ ) = (f(0) + (@) = (@) + g/(a)

|Al—0 |l’l|
L UrREt ) - (9@ - (@ g @)
= S0 ] -

Therefore, there exists (f + g)’ on R” defined by (f + g)’'(a) = f'(a) +
g’'(a). The existence of (f + g)" implies that (f + g)’ is continuous on
R™ (Munkres, Theorem 5.2).

Next, let D;(f + g) be the j-th partial derivative of (f + g), which by
the preceding paragraph is defined by D;(f + g) = D;f + D;g. The
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continuity of D;f + D;g implies that for every €/2 > 0, there exists
0 = min(dy, d,), such that

ID;(f + 8)(x) = D;(f + Wl = [ID;f(x) = D; fWl + ID;g(x) — DgW)ll
<e€/2+¢€/2

for ||x — y|| < 6. This confirms that (f + g) € C'(R™), and therefore
C'(R™) is closed under addition.

Similarly, we define - : R x C'(R™) — C!'(R™by (Af)(x) = Af(x).
Then, the fact that f is differentiable implies that there exists
[ R™ — R™ such that for every a € R™, we have

lim L@t = f@) = f@) _
11m =

0
hl—0 ||

Consequently,

i e+ - A4f@-Af @ . @A)a+h) - (Af)a) - Af (@)

0
Ihl—0 K| Ihl—0 1

Therefore, there exists (1f)" on R™ defined by (4f)’(a) = Af"(a). The
existence of Af” implies that f” is continuous on R".

Next, let D;(Af) be the j-th partial derivative of f, which by the pre-
ceding paragraph is defined by D;(A1f) = D;Af. The continuity of D; f
implies that D;Af is also continuous (Munkres, Theorem 3.6). This
confirms that (1f) € C'(R™), and therefore C!'(R™) is closed under
scalar multiplication.

[V1] We have

(f +9)x) =f(x) + g(x) = g(x) + f(x) = (g + /) ()

Thus f+g=g+ fforany f,ge V.
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[V2] For h € C'(R™), we have

(f + (& +m)(x) =f(x) + (g(x) + h(x))
=(f(x) + g(x) + h(x) = (f + &) + H(x)
Thus f + (g + h) = (f + g) + h for any f, g, h € C'(R™).

[V3] Define 0 by O(x) = 0. Trivially 0" = 0, and D;0 = 0, and therefore
0 € C'(R™). We have,

(f +0)(x) = f(x) +0 = f(x)

Therefore, f + 0 = f for any f € V. Note that if O(x) # 0 for any
x, then the above equality will not hold, and therefore, 0 € C'(R™) is
uniquely defined.

[V4] We have
(f+ED-HE) =)+ (=Df(x) =0
Therefore, f + (—=1)f = 0 for any f € C'(R™).

[V5] We have
(1 /)x) = f(x)
Therefore, 1 - f = f for any f € C'(R™).

[V6] We have
ci(ca - Fx) =ci(caf(x) = (c1c2) - f(x) = (c1c2) f (%)
Therefore, ¢ (c; - f) = (c1c2)f for any f € C'(R™).

[V7] We have
((c1 + ) )(x) =(c1 +¢2) - f(xX) = c1 f(xX) + c2f(x) = 1 f(x) + o f (x)
Therefore, (¢; +¢2) - f = ¢if + cof forany ¢;,c; € Rand f € C'(R™).

[V8] We have
c(fi + )(x) =c(fi(x) + fo(x) = cfi(x) + ¢ fo(x)
Therefore, c-(fi+f2)p = ¢i-fi+c- f> forany ¢ € Rand f;, > € C'(R™).
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(b) In the case n = m = 1, show that this vector space cannot be finite-
dimensional.
Assume that {b;}}_ is a basis of C'(R). Since (x)’ = ix'"!, each mono-
mial is of class C!(R), and as shown above, the set of monomials is
linearly independent. We can have [ linearly independent monomials
for any / > k. This contradicts Theorem 1.1 in Munkres.

3. Let V := R? and consider the set of all 3-tensors L3 (V). Give two examples,
say f and g, of maps which lie in L3(V).

Consider f(x,y,z) = xiy1z1 and g(x,y,2) = x1y121 + X222 Where x =
(X1, %2, %3), ¥ = (V1. Y2, ¥3), 2 = (21,22, 23) € R,

For s = (51, 52, 53), consider f(ax + Bs,y,z2) = (ax; +Bs))yi121 = ax;y12 +
,851)7111 = af(xa Yy, Z)+ﬁf(s, Y, Z) and g(ax+ﬁs, Y, Z) = (G’X] +ﬂsl))7121 +(CY.X'2+
Bs2)y222 = a(xiy121 + X2y222) + B(s1y121 + $2)222) = ag(x,yz) + Bg(s,y, 2).
We can similarly confirm the linearity in the second and third variables.

4. Suppose fi, ..., fr € LYV), the set of all 1-tensors on a real vector space V.
Prove that

F(xy, .., xp) := fi(x)...filxp) for (xi,...,x;) € V¥

is a k-tensoron'V, i.e. F € LKV).

For s € V, by linearity of f; we have F(ax; + Bs, X2, ..., Xxx) = filax; +

BS) fo(x2)... fr () = afi(x1) fo(x2)... i) +Bf1(8) fo(x2).-.. fixr) = aF (x4, ..., Xi)+

BF(s, ..., x;) . We can similarly confirm the linearity in the other variables.

5. Let V be a real vector space, and k > 1 an integer. Show that if f, g € L*(V)
and c,d € R, then cf +dg € LX(V).

For s € V, by multilinearity of f and g, we have
(cf +dg)axi + Bs, x2, ..., i) = cf(axy + B, Xo, ..., Xi) + dg(ax, + B, x2, ..., X¢)
= c(af(xy, X2, o0 Xi) + BF(S, X2, 0 X)) + d(@8(X1, X2, .. Xi) + BE(S, X2, 00 X))

= alcf(xy, X2, ..oy Xx) + dg(x1, X2, ooy X)) + Bl f (s, X2, ooey X)) + dg(s, Xa, ..y Xi)]
= alcf +dg)(xy, x2, ..., xx) + Blcf +dg)(s, xz, ..., Xx)

We can similarly confirm the linearity in the other variables.

6. Let V := R*. Which of the following define 2-tensors on V ?
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(@) f(x,y):=3x1y; + 5x2x3;

We have f((0,1,1,0) + (0,1, 1,0),0) = 20 and
£((0,1,1,0),0) + £((0,1,1,0),0) = 10. Thus f ¢ L*(V).

(b) g(x,y) i=x1y2 + X294 + 1;

We have g(0 + 0,0) = 1 and g(0, 0) + g(0,0) = 2. Thus g ¢ LX(V).

(©) h(x,y) := xi1y1 — Tx2ys.

h(ax + Bs,y) =(ax; + Bsi)yr — T(ax; + Bs2)y3
=a(x1y; — Tx2y3) + B(s1y1 — 752y3)
=ah(x,y) + Bh(s,y)

Similarly,

h(x,ay + Bs) =xi(ay; + Bs1) — Txo(ay; + Bs3)
=a(x1y1 — 7x2y3) + B(x1y1 — Tx253)
=ah(x,y) + Bh(x, s)

Thus h € L2(V).

7. Let V be a real vector space with basis {vi};_,. To begin, for each 1 <i <n
we define the maps ¢; : {vi};_, — {0, 1} by

) 1 if j=i

HZ )

P, 0 ifi#]

(a) How does ¢; extend in a natural way to a linear map ¢; : V. — R on
the whole vector space V? Write out ¢; : V — R explicitly (that is,
write out ¢;(x) for any x € V).

Define ¢, : V — R by ¢;(v) = a; where v = Y|_, a;v;. Observe that

¢; = ¢; on the restricted set {v};_,.

(b) How can we use Proposition 8.1 to show that ¢; extends to a linear
map on the whole vector space V uniquely?
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Forw = Y1_, byvi, we have ¢;(av +Bw) = aa; +Bb; = ad;(v) + Bdi(w).
This confirms that ¢; € £'(V). This and 7(a) establish the hypoth-
esis of proposmon 8.1. Therefore, given any ¢, € L'(V) such that
¢ ¢; = ¢; on the restricted set {vk}k |» we have ¢ $; on the whole
vector space V, i.e. the extension given by @; is unique.

(c) Suppose V = R3 equipped with the canonical basis {ek}zzl. Can you
give a ‘geometric’ description of the map ¢, : V — R associated with
(4] ?
¢, is a scalar projection of v € V on ey, i.e. ¢;(v) = {ey, V).

8. Let V be a real vector space with basis {v.}"_,, and k > 1 an integer. For

any fixed multi-index I = (i(1), ..., i(k)) € {1, ..., n}*, we define an associated
map ¢ : {vih,_y X .. X {v, b — {0, 1} by
k times

o ) L it (), .., j(k) =1, "

Vi1)s «ees Vi) -= . . .

N 0 if (1), ..., j(k)) # L.

(a) How does ¢; extend in a natural way to a multilinear map ¢; : V¥ — R
on the whole vector space V? Write out ¢; : V¥ — R explicitly (that
is, write out ¢;(xy, ..., x;) for any (x1, ..., xy) € V¥).

Define ¢, : V — R by Gr(x1s s xi) = [15_, Xpwimy Where x,, =
D=1 XmsVr. Observe that ¢; = ¢; on the restricted set {v,})_; X ... X {v,}"_,

k times

(b) How can we use proposition 8.1. to show that ¢; extends to a map on
the whole vector space V* uniquely?

Fory = "_, v,v,, we have

&I(axl + By, X2, ..., xk) =(a@x11) + BYic1)) l—[ Xim,i(m)

m=2
:aésl(xh X2y eeny xk) +,8&I()’» X2s euey xk)

This confirms that ¢; € LX(V). This and 8(a) establish the hypothesis
of proposition 8.1. Therefore, given any other ¢, € L*(V) such that
@, = ¢; = ¢; on the restricted set {v,}"_, X ... X {v,}'_,, we have @, = ¢,

k times
on the whole vector space V¥, i.e., the extension given by ¢; is unique.
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9. Let V be a real vector space and k > 1 an integer. Prove that the set of n*
k-tensors

{p; : Tel{l,..n)yc LYV
defined in question 8 above is a basis for LX(V).
See Munkres, Theorem 26.3.



