
Vector Analysis, MATH-UA.224.001

Homework Sheet 5: Solutions

1. Consider the non-empty set of functions

V :=

p : R→ R | p(x) =

n−1∑
k=0

akxk for ai ∈ R, x ∈ R


(a) Define an addition operation + : V×V → V and a scalar multiplication

operation · : R × V → V such that the triple (V,+, ·) is a real vector
space.

We define + : V2 → V by (p1 + p2)(x) = p1(x) + p2(x). Then
p1(x) + p2(x) =

∑n−1
k=0(a1k + a2k)xk where p1(x) =

∑n−1
k=0 a1kxk and p2(x) =∑n−1

k=0 a2kxk. Therefore, p1 + p2 ∈ V . This confirms that V is closed under
addition.

Similarly, we define · : R × V → V by (λp)(x) = λp(x). Then
λp(x) =

∑n
k=0(λak)xk where p(x) =

∑n
k=0 akxk, so λp ∈ V . This con-

firms that V is closed under scalar multiplication.

[V1] (p1 + p2)(x) =
∑n−1

k=0(a1k + a2k)xk =
∑n−1

k=0(a2k + a1k)xk = (p2 + p1)(x)
Thus p1 + p2 = p2 + p1 for any p1, p2 ∈ V .

[V2] For p3 defined by p3(x) =
∑n−1

k=0 a3kxk, we have

(p1 + (p2 + p3))(x) =

n−1∑
k=0

a1kxk + (
n−1∑
k=0

a2kxk +

n−1∑
k=0

a3kxk)

=(
n−1∑
k=0

a1kxk +

n−1∑
k=0

a2kxk) +

n−1∑
k=0

a3kxk

=((p1 + p2) + p3)(x)

Thus p1 + (p2 + p3) = (p1 + p2) + p3 for any p1, p2, p3 ∈ V .

[V3] Define 0 by 0(x) = 0. By the Fundamental Theorem of Algebra,
an n − 1 degree polynomial with more than n − 1 roots is identically
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zero. Therefore 0 ∈ V is uniquely defined by 0(x) =
∑n−1

k=0 0 · xk, and we
have

(p + 0)(x) =

n−1∑
k=0

akxk +

n−1∑
k=0

0 · xk = p(x)

Therefore, p + 0 = p for any p ∈ V .

[V4] We have

(p + (−1) · p)(x) =

n−1∑
k=0

akxk + (−1)
n−1∑
k=0

ak · xk = 0

Therefore, p + (−1)p = 0 for any p ∈ V .

[V5] We have

(1 · p)(x) =1 ·
n−1∑
k=0

akxk = p(x)

Therefore, 1 · p = p for any p ∈ V .

[V6] We have

c1(c2 · p)(x) =c1(c2 ·

n−1∑
k=0

akxk) = (c1c2) ·
n−1∑
k=0

akxk = (c1c2)p(x)

Therefore, c1(c2 · p) = (c1c2)p for any p ∈ V .

[V7] We have

((c1 + c2)p)(x) =(c1 + c2) ·
n−1∑
k=0

akxk = c1

n−1∑
k=0

akxk + c2

n−1∑
k=0

akxk = c1 p(x) + c2 p(x)

Therefore, (c1 + c2) · p = c1 p + c2 p for any c1, c2 ∈ R and p ∈ V .

[V8] We have

c(p1 + p2)(x) =c(
n−1∑
k=0

a1kxk +

n−1∑
k=0

a2kxk)

=c
n−1∑
k=0

a1kxk + c
n−1∑
k=0

a2kxk = cp1(x) + cp2(x)
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Therefore, c · (p1 + p2)p = c1 · p1 + c · p2 for any c ∈ R and p1, p2 ∈ V .

(b) Find a basis for this vector space, and deduce its dimension.
By the construction of V, the set of monomials b = {xk}n−1

k=0 is a span-
ning set. By the Fundamental Theorem of Algebra, an n − 1 degree
polynomial with more than n − 1 roots is identically zero. Therefore∑n−1

k=0 ak · xk = 0 for all x ∈ R if and only if ak = 0 for 0 ≤ k ≤ n − 1.
Thus, b is a basis of V.

2. Suppose m, n ≥ 1 are integers.

(a) Prove that the set of all maps f : Rm → Rn of class C1(Rm) ad-
mits the structure of a real vector space with respect to the ‘natural’
+ : C1(Rm) × C1(Rm) → C1(Rm) and · : R × C1(Rm) → C1(Rm) opera-
tions.

We define + : C1(Rm)×C1(Rm)→ C1(Rm) by ( f + g)(x) = f (x) + g(x).
Then, the fact that f and g are differentiable implies that there exists
f ′, g′ : Rm → Rn×m such that for every a ∈ Rm, we have

lim
|h|→0

f (a + h) − f (a) − f ′(a)
|h|

= lim
|h|→0

g(a + h) − g(a) − g′(a)
|h|

= 0

Consequently,

lim
|h|→0

( f (a + h) + g(a + h)) − ( f (a) + g(a)) − ( f ′(a) + g′(a))
|h|

= lim
|h|→0

( f + g)(a + h) − ( f + g)(a) − ( f ′(a) + g′(a))
|h|

= 0

Therefore, there exists ( f + g)′ on Rm defined by ( f + g)′(a) = f ′(a) +

g′(a). The existence of ( f + g)′ implies that ( f + g)′ is continuous on
Rm (Munkres, Theorem 5.2).

Next, let D j( f + g) be the j-th partial derivative of ( f + g), which by
the preceding paragraph is defined by D j( f + g) = D j f + D jg. The
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continuity of D j f + D jg implies that for every ε/2 > 0, there exists
δ = min(δ f , δg), such that

||D j( f + g)(x) − D j( f + g)(y)|| = ||D j f (x) − D j f (y)|| + ||D jg(x) − D jg(y)||
≤ ε/2 + ε/2

for ||x − y|| ≤ δ. This confirms that ( f + g) ∈ C1(Rm), and therefore
C1(Rm) is closed under addition.

Similarly, we define · : R × C1(Rm) → C1(Rm)by (λ f )(x) = λ f (x).
Then, the fact that f is differentiable implies that there exists
f ′ : Rm → Rn×m such that for every a ∈ Rm, we have

lim
|h|→0

f (a + h) − f (a) − f ′(a)
|h|

= 0

Consequently,

lim
|h|→0

λ f (a + h) − λ f (a) − λ f ′(a)
|h|

= lim
|h|→0

(λ f )(a + h) − (λ f )(a) − λ f ′(a)
|h|

= 0

Therefore, there exists (λ f )′ on Rm defined by (λ f )′(a) = λ f ′(a). The
existence of λ f ′ implies that f ′ is continuous on Rm.

Next, let D j(λ f ) be the j-th partial derivative of f , which by the pre-
ceding paragraph is defined by D j(λ f ) = D jλ f . The continuity of D j f
implies that D jλ f is also continuous (Munkres, Theorem 3.6). This
confirms that (λ f ) ∈ C1(Rm), and therefore C1(Rm) is closed under
scalar multiplication.

[V1] We have

( f + g)(x) = f (x) + g(x) = g(x) + f (x) = (g + f )(x)

Thus f + g = g + f for any f , g ∈ V .
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[V2] For h ∈ C1(Rm), we have

( f + (g + h))(x) = f (x) + (g(x) + h(x))
=( f (x) + g(x)) + h(x) = (( f + g) + h)(x)

Thus f + (g + h) = ( f + g) + h for any f , g, h ∈ C1(Rm).

[V3] Define 0 by 0(x) = 0. Trivially 0′ = 0, and D j0 = 0, and therefore
0 ∈ C1(Rm). We have,

( f + 0)(x) = f (x) + 0 = f (x)

Therefore, f + 0 = f for any f ∈ V . Note that if 0(x) , 0 for any
x, then the above equality will not hold, and therefore, 0 ∈ C1(Rm) is
uniquely defined.

[V4] We have

( f + (−1) · f )(x) = f (x) + (−1) f (x) = 0

Therefore, f + (−1) f = 0 for any f ∈ C1(Rm).

[V5] We have

(1 · f )(x) = f (x)

Therefore, 1 · f = f for any f ∈ C1(Rm).

[V6] We have

c1(c2 · f )(x) =c1(c2 f (x)) = (c1c2) · f (x) = (c1c2) f (x)

Therefore, c1(c2 · f ) = (c1c2) f for any f ∈ C1(Rm).

[V7] We have

((c1 + c2) f )(x) =(c1 + c2) · f (x) = c1 f (x) + c2 f (x) = c1 f (x) + c2 f (x)

Therefore, (c1 + c2) · f = c1 f + c2 f for any c1, c2 ∈ R and f ∈ C1(Rm).

[V8] We have

c( f1 + f2)(x) =c( f1(x) + f2(x)) = c f1(x) + c f2(x)

Therefore, c·( f1+ f2)p = c1 · f1+c· f2 for any c ∈ R and f1, f2 ∈ C1(Rm).
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(b) In the case n = m = 1, show that this vector space cannot be finite-
dimensional.
Assume that {bi}

k
i=0 is a basis of C1(R). Since (xi)′ = ixi−1, each mono-

mial is of class C1(R), and as shown above, the set of monomials is
linearly independent. We can have l linearly independent monomials
for any l > k. This contradicts Theorem 1.1 in Munkres.

3. Let V := R3 and consider the set of all 3-tensorsL3(V). Give two examples,
say f and g, of maps which lie in L3(V).

Consider f (x, y, z) = x1y1z1 and g(x, y, z) = x1y1z1 + x2y2z2 where x =

(x1, x2, x3), y = (y1, y2, y3), z = (z1, z2, z3) ∈ R3.

For s = (s1, s2, s3), consider f (αx + βs, y, z) = (αx1 + βs1)y1z1 = αx1y1z1 +

βs1y1z1 = α f (x, y, z)+β f (s, y, z) and g(αx+βs, y, z) = (αx1+βs1)y1z1+(αx2+

βs2)y2z2 = α(x1y1z1 + x2y2z2) + β(s1y1z1 + s2y2z2) = αg(x, yz) + βg(s, y, z).
We can similarly confirm the linearity in the second and third variables.

4. Suppose f1, ..., fk ∈ L
1(V), the set of all 1-tensors on a real vector space V.

Prove that

F(x1, ..., xk) := f1(x1)... fk(xk) for (x1, ..., xk) ∈ Vk

is a k-tensor on V, i.e. F ∈ Lk(V).

For s ∈ V , by linearity of f1 we have F(αx1 + βs, x2, ..., xk) = f1(αx1 +

βs) f2(x2)... fk(xk) = α f1(x1) f2(x2)... fk(xk)+β f1(s) f2(x2)... fk(xk) = αF(x1, ..., xk)+
βF(s, ..., xk) . We can similarly confirm the linearity in the other variables.

5. Let V be a real vector space, and k ≥ 1 an integer. Show that if f , g ∈ Lk(V)
and c, d ∈ R, then c f + dg ∈ Lk(V).

For s ∈ V , by multilinearity of f and g, we have

(c f + dg)(αx1 + βs, x2, ..., xk) = c f (αx1 + βs, x2, ..., xk) + dg(αx1 + βs, x2, ..., xk)
= c(α f (x1, x2, ..., xk) + β f (s, x2, ..., xk)) + d(αg(x1, x2, ..., xk) + βg(s, x2, ..., xk))
= α[c f (x1, x2, ..., xk) + dg(x1, x2, ..., xk)] + β[c f (s, x2, ..., xk)) + dg(s, x2, ..., xk)]

= α(c f + dg)(x1, x2, ..., xk) + β(c f + dg)(s, x2, ..., xk)

We can similarly confirm the linearity in the other variables.

6. Let V := R4. Which of the following define 2-tensors on V?
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(a) f (x, y) := 3x1y2 + 5x2x3;

We have f ((0, 1, 1, 0) + (0, 1, 1, 0), 0) = 20 and
f ((0, 1, 1, 0), 0) + f ((0, 1, 1, 0), 0) = 10. Thus f < L2(V).

(b) g(x, y) := x1y2 + x2y4 + 1;

We have g(0 + 0, 0) = 1 and g(0, 0) + g(0, 0) = 2. Thus g < L2(V).

(c) h(x, y) := x1y1 − 7x2y3.

h(αx + βs, y) =(αx1 + βs1)y1 − 7(αx2 + βs2)y3

=α(x1y1 − 7x2y3) + β(s1y1 − 7s2y3)
=αh(x, y) + βh(s, y)

Similarly,

h(x, αy + βs) =x1(αy1 + βs1) − 7x2(αy3 + βs3)
=α(x1y1 − 7x2y3) + β(x1y1 − 7x2s3)
=αh(x, y) + βh(x, s)

Thus h ∈ L2(V).

7. Let V be a real vector space with basis {vk}
n
k=1. To begin, for each 1 ≤ i ≤ n

we define the maps φi : {vk}
n
k=1 → {0, 1} by

φi(v j) :=

 1 if j = i

0 if i , j.

(a) How does φi extend in a natural way to a linear map φ̃i : V → R on
the whole vector space V? Write out φ̃i : V → R explicitly (that is,
write out φ̃i(x) for any x ∈ V).

Define φ̃i : V → R by φ̃i(v) = ai where v =
∑n

k=1 akvk. Observe that
φ̃i = φi on the restricted set {vk}

n
k=1.

(b) How can we use Proposition 8.1 to show that φi extends to a linear
map on the whole vector space V uniquely?
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For w =
∑n

k=1 bkvk, we have φ̃i(αv +βw) = αai +βbi = αφ̃i(v) +βφ̃i(w).
This confirms that φ̃i ∈ L

1(V). This and 7(a) establish the hypoth-
esis of proposition 8.1. Therefore, given any φ̃′i ∈ L

1(V) such that
φ̃′i = φi = φ̃i on the restricted set {vk}

n
k=1, we have φ̃′i = φ̃i on the whole

vector space V, i.e. the extension given by φ̃i is unique.

(c) Suppose V := R3 equipped with the canonical basis {ek}
3
k=1. Can you

give a ‘geometric’ description of the map φ1 : V → R associated with
e1?
φ1 is a scalar projection of v ∈ V on e1, i.e. φ1(v) = 〈e1, v〉.

8. Let V be a real vector space with basis {vr}
n
r=1, and k ≥ 1 an integer. For

any fixed multi-index I = (i(1), ..., i(k)) ∈ {1, ..., n}k, we define an associated
map φI : {vr}

n
r=1 × ... × {vr}

n
r=1︸                   ︷︷                   ︸

k times

→ {0, 1} by

φI(v j(1), ..., v j(k)) :=

 1 if ( j(1), ..., j(k)) = I,

0 if ( j(1), ..., j(k)) , I.
(1)

(a) How does φI extend in a natural way to a multilinear map φ̃I : Vk → R
on the whole vector space V? Write out φ̃I : Vk → R explicitly (that
is, write out φ̃I(x1, ..., xk) for any (x1, ..., xk) ∈ Vk).

Define φ̃I : V → R by φ̃I(x1, ..., xk) =
∏k

m=1 xm,i(m) where xm =∑n
r=1 xm,rvr. Observe that φ̃I = φI on the restricted set {vr}

n
r=1 × ... × {vr}

n
r=1︸                   ︷︷                   ︸

k times

.

(b) How can we use proposition 8.1. to show that φ̃I extends to a map on
the whole vector space Vk uniquely?

For y =
∑n

r=1 yrvr, we have

φ̃I(αx1 + βy, x2, ..., xk) =(αx1,i(1) + βyi(1))
k∏

m=2

xm,i(m)

=αφ̃I(x1, x2, ..., xk) + βφ̃I(y, x2, ..., xk)

This confirms that φ̃I ∈ L
k(V). This and 8(a) establish the hypothesis

of proposition 8.1. Therefore, given any other φ̃′I ∈ L
k(V) such that

φ̃′I = φI = φ̃I on the restricted set {vr}
n
r=1 × ... × {vr}

n
r=1︸                   ︷︷                   ︸

k times

, we have φ̃′I = φ̃I

on the whole vector space Vk, i.e., the extension given by φ̃I is unique.
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9. Let V be a real vector space and k ≥ 1 an integer. Prove that the set of nk

k-tensors
{φI : I ∈ {1, ...n}k} ⊂ Lk(V)

defined in question 8 above is a basis for Lk(V).

See Munkres, Theorem 26.3.
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