

Quiz 8: Solutions

Question 1. Find the exterior derivative $d\omega(x_1y_1)$. Evaluate $d\omega(x)((x,v))$ for $x = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ and $v = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$.

By definition of the exterior derivative of a 0-form, $d\omega$ is given by

$$(d\omega(x))((x, v)) := \omega'(x)v = (x_2, x_1) \cdot v$$

By Proposition 2.2 from the April 18th lecture (Thm 30.3 Munkres)

$$d\omega = \frac{\partial \omega}{\partial x_1} dx_1 + \frac{\partial \omega}{\partial x_2} dx_2$$

where $dx_i = \Phi_1$ are the elementary 1-forms in $\Omega^1(\mathbb{R}^n)$. Therefore,

$$(d\omega(x))((x,v)) := \omega'(x)v = (2,1)\cdot \left(\begin{array}{c} 3\\4 \end{array}\right) = 10$$

Question 2. Find the exterior derivative $d\omega$ of ω given by $\omega(x) = x_1x_2dx_1$. Evaluate $d\omega(x)((x, v_1), (x, v_2))$ for $x = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, v_1 = \begin{pmatrix} 1 \\ 3 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

By definition of a derivative of a k-form for $k \ge 1$, we have

$$d\omega = \sum_{I \text{ ascending}} df_I \wedge dx_I$$

where $f_I: U \subseteq \mathbb{R}_n$ are given by the following representation for all k forms

$$\omega = \sum_{I \text{ ascending}} f_I dx_I$$

as established in a previous lecture (see also Munkres p. 249).

Here we have I = i where $i \in \{1, 2\}$, $f_1 = x_1x_2$ and $f_2 = 0$. By definition of the exterior derivative of 0-form and Proposition 2.2, we have $df_1 = (x_2dx_1 + x_1dx_2)$, and $df_2 = 0$. Consequently,

$$d\omega = (x_2 dx_1 + x_1 dx_2) \wedge dx_1 = x_1 dx_2 \wedge dx_1 = -x_1 dx_1 \wedge dx_2$$

where $dx_1 \wedge dx_2 = 0$ follows from the anticommutativity of the wedge product.

This implies that

$$d\omega(x)((x; v_1), (x; v_2)) = 0$$

Question 3. (Munkres, Ex 2, p. 260) Consider the forms

$$\omega = xydx + 3dy - yzdz$$
$$\eta = xdx - yz^2dy + 2xdz$$

 $\in \mathbb{R}^3$. Verify by direct computation that $d(d\omega) = 0$ and $d(\omega \wedge \eta) = (d\omega) \wedge \eta - \omega \wedge d\eta$.

By definition of the exterior derivative of 0-form and Proposition 2.2, we have

$$d\omega = (ydx + xdy) \wedge dx - (zdy + ydz) \wedge dz$$
$$= xdy \wedge dx - zdy \wedge dz$$
$$= -xdx \wedge dy - zdy \wedge dz$$

and,

$$d(d\omega) = d(-xdx \wedge dy - zdy \wedge dz)$$

$$= d(-xdx \wedge dy - zdy \wedge dz)$$

$$= -dx \wedge dx \wedge dy - dz \wedge dy \wedge dz$$

$$= 0$$

The LHS is given by

$$\omega \wedge \eta = (xydx + 3dy - yzdz) \wedge (xdx - yz^2dy + 2xdz)$$

$$= -xy^2z^2dx \wedge dy + 2x^2ydx \wedge dz + 3xdy \wedge dx + 6xdy \wedge dz$$

$$-xyzdz \wedge dx + y^2z^3dz \wedge dy$$

$$= -(xy^2z^2 + 3x)dx \wedge dy + (2x^2y + xyz)dx \wedge dz + (6x - y^2z^3)dy \wedge dz$$

and, therefore,

$$d(\omega \wedge \eta) = -((y^2z^2 + 3)dx + 2xyz^2dy + 2xy^2zdz) \wedge dx \wedge dy$$

$$+((4xy + yz)dx + (2x^2 + xz)dy + xydz) \wedge dx \wedge dz$$

$$+(6dx - 2yz^3dy - 3y^2z^2dz] \wedge dy \wedge dz$$

$$= -2xy^2zdz \wedge dx \wedge dy + (2x^2 + xz)dy \wedge dx \wedge dz + 6dx \wedge dy \wedge dz$$

$$= (-2x^2 - 2xy^2z - xz + 6)dx \wedge dy \wedge dz$$

The RHS is given by

$$(d\omega) \wedge \eta - \omega \wedge d\eta = d(xydx + 3dy - yzdz) \wedge (xdx - yz^2dy + 2xdz)$$

$$- (xydx + 3dy - yzdz) \wedge d(xdx - yz^2dy + 2xdz)$$

$$= (d(xy) \wedge dx - d(yz)dz) \wedge (xdx - yz^2dy + 2xdz)$$

$$- (xydx + 3dy - yzdz) \wedge (d(x)dx - d(yz^2)dy + d(2x)dz)$$

$$= ((ydx + xdy) \wedge dx - (zdy + ydz) \wedge dz) \wedge (xdx - yz^2dy + 2xdz)$$

$$- (xydx + 3dy - yzdz) \wedge (dx \wedge dx - (z^2dy + 2yzdz) \wedge dy + 2dx \wedge dz)$$

$$= (xdy \wedge dx - zdy \wedge dz) \wedge (xdx - yz^2dy + 2xdz)$$

$$- (xydx + 3dy - yzdz) \wedge (-2yzdz \wedge dy + 2dx \wedge dz)$$

$$= 2x^2dy \wedge dx \wedge dz - xzdy \wedge dx \wedge dx$$

$$- (-2xy^2zdx \wedge dz \wedge dy + 6dy \wedge dx \wedge dz)$$

$$= (-2x^2 - 2xy^2z - xz + 6)dx \wedge dy \wedge dz$$