MATH 2568 HW#3

THE ALGEBRA OF MATRICES

The commutator~[A,B] of two $(n\times n)\text{-matrices}~A$ and B is the $(n\times n)\text{-matrix}$

$$[A, B] = AB - BA.$$

1. Prove the following algebraic identity for $(n \times n)$ -matrices A, B, C:

$$[A, BC] = [A, B]C + B[A, C].$$

2. Prove the following *Jacobi identity* for $(n \times n)$ -matrices A, B, C:

$$[A, [B, C]] + [B, [C, A]] + [C, [A, B]] = \mathbf{0}.$$

3. Give an example of (2×2) -matrices A and B such that

$$(A+B)(A+B) \neq A^2 + 2AB + B^2.$$

- **4.** Prove that for each $(n \times n)$ -matrix M, $(e^M)^T = e^{(M^T)}$.
- **5.** Do $\S 1.6 \# 24$ from the text
- **6.** Do $\S 1.6 \# 42$ from the text
- **7.** Do §1.6 #50 from the text

LINEAR (IN)DEPENDENCE

- **8.** Do §1.7 #20
- **9.** Do §1.7 #34
- **9.** Do §1.7 #42
- **10.** Do §1.7 #52