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Abstract. This paper generalizes the Max-Flow Min-Cut (MFMC) theorem

from the setting of numerical capacities to cellular sheaves of semimodules
on directed graphs. Motivating examples of semimodules include probabil-

ity distributions, multicommodity capacity constraints, and logical proposi-

tions. Directed algebraic topology provides the tools necessary for capturing
the salient information in such a general setting. First homology classes gen-

eralize flows, an orientation sheaf characterizes generalized cuts, first relative

homology measures duality gaps, zeroth homology classes generalize both flow-
values and cut-values, and inverse limits generalize infima. Under this dictio-

nary, MFMC is just a special case of a Poincaré Duality for directed topology.

A Universal Coefficients Theorem for directed homology generalizes existing
criteria for monoid-valued flows to decompose into sums of generalized loops.

First homology coincides with a standard generalization of Abelian homology

for non-Abelian categories under an assumption of stalkwise flatness, stalkwise
module structure, or certain degree bounds on the vertices.

1. Introduction

Sheaves encode local constraints. Abelian sheaf cohomology, by definition, clas-
sifies those global properties of a sheaf of modules invariant under equivalent local
representations of the same data. Abelian sheaf cohomology has seen recent ap-
plications in the inference of global properties of complex systems with known
local structure. Examples include bit-rates across coding networks [6], minimum
sampling rates for noisy signals [9], and invariant states and race conditions on
asynchronous microprocessors [9]. However, the sectionwise invertibility of Abelian
sheaves ignores the irreversibility of states in dynamical systems. For example, the
(co)homology of a cellular module-valued sheaf on an oriented simplicial complex
is invariant under a change in simplicial orientations; properties of systems sensi-
tive to the causal structure of their state spaces are undetectable by classical sheaf
(co)homology.

Nonetheless, flow-cut dualities resemble topological dualities. For one exam-
ple, to each minimal cut corresponds a maximal flow such that the correspond-
ing induced cohomology and homology classes on an ambient compact surface are
Poincaré dual [3]. For another example, a version of Poincaré Duality for sheaves
of vector spaces implicitly underlies an analysis of distributed linear coding [6]. For
another example, the proof of the classical Max-Flow Min-Cut theorem (MFMC)
on directed graphs satisfying the natural graph-theoretic versions of compactness,
orientability, and smoothness is trivial. For still another example, a recent general
proof of classical MFMC follows from the Riemann-Roch Theorem [1]. Flows resem-
ble homology classes, cuts resemble cohomology classes, local capacity constraints
resemble a sheaf, and flow-cut dualities evoke the Poincaré duality

(1) H1(X;F) ∼= H0(X;O ⊗F).
1
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between sheaf homology H1(X;F) and sheaf cohomology H0(X;OS ⊗S F) up to
local orientations O for F a sheaf of modules over a topological graph X [Theorem
...].

This note formalizes that resemblance by generalizing the constructions in (1).
Local constraints on networks generalize to cellular sheaves F of (partial) semi-
modules on directed graphs X. Homological constructions for such sheaves gener-
alize familiar constructions on networks. First directed homology H1 generalizes
flows [Theorem 6.12], an inverse limit of H0 over cut-sets lifts taking infima of
cut-values, zeroth directed homology H0 (stalks up to parallel transport) general-
izes flow-values [Propositions ...] and cut-values [Propositions ...], boundary maps
∂−, ∂+ : H1((X,C);F) → H0(C;F) reduce flows and cuts to flow-values and cut-
values [Propositions ...], and parallel transport makes it possible to compare values
of a flow at an edge e with values at an e-cut. A limited Universal Coefficients
Theorem for directed homology [Proposition 6.10] identifies criteria for generalized
flows to decompose into generalized loops. Additional lattice structure makes it
possible to pose dual optimization problems for a sheaf. The main result of this
note is a generalization of classical MFMC for sheaf-valued flows over a directed
graph.

Theorem 7.9. There exists an isomorphism

(2) [e : X]F︸ ︷︷ ︸
max F-flow value

∼= inf C [C : C]F︸ ︷︷ ︸
F-values of e-cuts C

,

where C denotes an e-cut, for each hard lattice-ordered S-sheaf F on X and edge
e in X.

A consequence is a decomposition of the feasible set of flow-values as an inter-
section of feasible local flow-values over cut-sets.

Corollary 7.11. There exists an isomorphism

(3) [e : X]specF ∼=
⋂
C

[C : C]specF ,

where C ranges over all e-cuts of X, for each hard but flat S-sheaf and e ∈ EX .

Another consequence is an algebraic generalization of MFMC for totally ordered
N-semimodules [5], and hence in particular classical MFMC [4].

Corollary 7.12. For a finite M -weighted digraph (X;ω) with edge e0,

supφφ(e0) = inf C
∑
e∈C

ωe,

where φ denotes a M -valued flow φ on (X;ω) and C denotes an e0-cut.

2. Outline

Modules over commutative monoid objects S in monoidal categories are ubiqui-
tous in the literature. Such S-semimodules include classical semimodules (over rings
S), more general classical semimodules (over semirings S), and even more general
partial semimodules (over partial semirings S). Partial semimodules, sets equipped
with partially defined additions and scalar multiplications, will later encode capac-
ity constraints on the individual edges of a network. Section §4 introduces some of
the theory of semimodules, including a description of limits for partial semimodules
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[Proposition ...] and a characterization of partial semimodules as ideal complements
in classical semimodules [...].

An S-sheaf, a cellular sheaf of S-semimodules over a directed graph, generalizes
edge weights. For example, an orientation sheaf OS [Definition 5.2] over a general
commutative object S in a monoidal category measures singularities of the directed
graph [Lemma 5.8 and Figure 5] in a sense determined by the choice of commutative
monoid object S. The stalkwise freeness of ON detects bounds on local in-degrees
and out-degrees [Lemma 5.5 and Figure 6.18]. The stalks ofOR are just the ordinary
local homology modules [Proposition 5.4] over a ring R and hence are free and
invariant under a change in edge directions. Section §5 introduces the theory of
S-sheaves.

(Co)homology theories for sheaves of modules generalize for S-sheaves [7]. The
global sections functor sends a sheaf F to the limit limc F(c) over the vertices and
edges of the base graph. Like the compactly supported global sections functor
H0
c , different subfunctors H0 of the global sections functor yield different variants

of directed (co)homology for S-sheaves. Categorical limits of partial semimodules
are not just ordinary limits of underlying sets with extra structure. This note
introduces an everywhere defined global sections functor H0

∞, for sheaves of partial
semimodules, to circumvent such pathologies. Section §6.1 introduces the theory,
and in particular investigates the interaction of H0

∞ with sheaf tensor products
[Lemma 3.21]

Homology for sheaves classifies global twisted cycles up to global homotopies
between such cycles. Zeroth directed homology amounts to products of stalks mod-
ulo parallel transport. On a graph, the tensor sheaf F ⊗S OS essentially describes
the local twisted 1-cycles and the trivial sheaf essentially describes the homotopy
relations between local 1-cycles. Thus first directed homology on graphs [Definition
6.8] is effectively defined by Poincaré Duality (1). Directed homology, unlike zeroth
directed (co)homology, depends upon the choice of ground semiring. First directed
homology with constant semiring coefficients S classifies directed loops for S = N
[Theorem 6.12] and undirected loops for S = Z [Theorem 6.12]. Natural maps

∂−, ∂+ : H1((X,C);F)→ H0(C;F)

collectively generalize the connecting homomorphism for ordinary homology [Propo-
sition ...]. Unlike in the classical case of a ground ring, ∂−, ∂+ do not fit into a
natural generalization of an exact sequence for directed homology [Example ...]
Sections §6.2 and §6.3 introduce H0, H1, and section §6.4 introduces the connecting
homomorphisms.

The following limited version of the Universal Coefficients Theorem generalizes
for the directed setting.

Proposition 6.10 (Universal Coefficients). There exists an S-map

H1(X;F)⊗S M ∼= H1(X;F ⊗S kM )

natural in S-sheaves F and S-semimodules M and an isomorphism for M flat,
where F ⊗S kM is regarded as an S-semimodule.

Chain-theoretic constructions of homology generalize for the directed setting.
Under certain local algebraic or local geometric criteria, first directed homology
coincides with a degree 1 homology theory for higher categorical structures [8] and
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thus admits an intuitive interpretation as sheaf-valued flows, sheaf-valued chains
satisfying a conservation law expressed in terms of an equalizer diagram.

Theorem 6.12. For a locally finite digraph X, there exists an equalizer diagram

H1(X;F) // ∏
e∈EX

F(∂−e)×F(e) F(∂+e)
π− //
π+

//
∏
v∈VX

F(v),

with π−, π+ induced by projections onto first and second factors, for an S-sheaf F
on X such that F is flat, S is a ring, or each vertex in X has in-degree or out-degree
1.

Classical MFMC generalizes to a sheaf-theoretic setting. Section §7 details the
generalization. Sheaves of (partial) semimodules naturally encode numeric capacity
constraints [Example 7.1] on transportation networks, multicommodity constraints
[Example 7.2] on supply chains, and even logical constraints [Example 7.3]. Clas-
sical flows naturally generalize to sheaf-valued flows [Proposition 7.4], classified by
directed sheaf homology under the assumption of flatness. Classical directed cuts
naturally admit a characterization in terms of the orientation sheaf [Proposition
7.8]. The generalized connecting homomorphisms ∂−, ∂+ send flows to their values
[Proposition ...] Additional order-structure on the coefficient sheaf makes it possible
to define maximum flow-values and minimum cut-values. Theorem 7.9 decomposes
the suprema of e-values [e : X]F of F-flows as an infimum over cut-values [C : C]F
of e-cuts C.

The proof of Theorem 7.9 requires two steps. Weak duality, an upper bound
on the maximum flow-value given as the infima of cut-values, directly follows from
tensorial properties of locally hard sheaves and a cohomological characterization
of cuts [Proposition 7.8]. The proof that the maximum flow-value bounds the
minimum cut-value follows from local-to-global properties, reminiscent of descent in
simplicial sheaves, of lattice-ordered sheaves. In particular, there exists an operator
on the Cech 0-cochains of such sheaves - defined in terms of infima operations, that
increasingly approximates such Cech 0-cochains by Cech 0-cocycles, global sections.
The Tarski Fixed Point Theorem for complete lattices implies the existence of a
desired maximal flow.

Throughout, the note adopts the following general conventions. The cardinality
of a set X is written #X. This note ocassionally abuses notation and conflates an
element x in a set with its singleton set {x} and in particular sometimes lets X −x
denote the set X − {x}. Additionally, the following section §3 fixes some notation
and terminology for directed graphs.

3. Digraphs

This note takes digraph to mean a reflexive directed graph, a directed graph
allowing for self-loops at the vertices. For a digraph X, VX denotes its vertex
set, EX denotes its edge set, and ∂−, ∂+ denote its respective source and target
functions EX → VX . The vertex and edge sets of a digraph are assumed to be
disjoint and the symbol X used to denote a digraph is identified with the disjoint
union VX ∪ EX , regarded as a poset ordered so that v 6X e if e is an edge having
v as either its source or target. Fix a digraph X. For each subset C ⊂ X, let

starC = C ∪
⋃

v∈VX∩C
∂−1
− (v) ∪ ∂−1

+ (v).
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Let sdX denote the digraph such that VsdX = X, EsdX = EX × {−,+}, and

∂−(e,−) = ∂−(e), ∂−(e,+) = ∂+(e,−) = e, ∂+(e,+) = e, e ∈ EX .
For each subset C ⊂ X, let sdC denote the subset

sdC = C ∪ {(e,−) | e ∈ C ∩ EX} ∪ {(e,+) | e ∈ C ∩ EX} ⊂ sdX.

v1

v2

v3

v4

v1

v2

v3

v4

Figure 1. Subdivisions A digraph X and its subdivision sdX.

Consider digraphs X and Y . This note writes X ⊂ Y to indicate that VX ⊂ VY ,
EX ⊂ EY , and the source and target maps ∂−, ∂+ : EY → VY are restrictions and
corestrictions of respective source and target maps ∂−, ∂+ : EX → VX .

4. Semimodules

Fix a closed monoidal category C . Commutative monoid objects in C will gen-
eralize ground rings for this note. Listed below are some examples of commutative
monoid objects in C .

C ,⊗ commutative monoid objects in C
based sets, Cartesian product commutative monoids

Abelian groups, bilinear tensor commutative rings
commutative monoids, bilinear tensor commutative semirings

This note takes a partial commutative monoid to mean a commutative monoid
object in the Cartesian monoidal category of sets and partial functions between
them and a partial commutative semiring to mean a commutative monoid object in
the category of partial commutative monoids and (partial) homomorphisms between
them, equipped with the standard bilinear tensor defined by [...].

Example 4.1. ...

Fix a commutative monoid object S in C throughout this note. An S-semimodule
will mean a module object over S and an S-map is a morphism of S-semimodules.
Let MS denote the category of S-semimodules and S-maps between them. Let
S[−] denotes the functor from the category of sets and functions to MS naturally
sending each set X to the X-indexed copower in MS of the S-semimodule S. The
following proposition follows from [Theorem 2.2, ...].

Proposition 4.2. There exists a unique tensor product

⊗ : MS ×MS →MS
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turning the category MS of S-semimodules and S-maps between them into a closed
symmetric monoidal category with closed structure homS sending each pair (A,B)
of S-semimodules to the C -object hom⊗(A,B) equipped with ....

Example 4.3.

An S-semimodule M is flat if the functor

−⊗S M : MS →MS

preserves finite limits. In the case S is a commutative semiring, 1 will denote the
multiplicative unit, 0 will denote the additive identity, and each element x ∈ X is
identified with the image of 1 under the natural inclusion S ↪→

⊕
x∈X S mapping

S onto the x-indexed summand. A semiring S is module-free if the only submodule
of S is trivial.

5. Sheaves

Fix a digraph X. An S-sheaf on X will mean a functor

X →MS

from the poset X. The stalks of an S-sheaf F are the S-semimodules F(c) for each
c ∈ X. The restriction maps of an S-sheaf are all S-maps of the form F(v 6X e)
for v ∈ VX and e ∈ EX . The constant sheaf at an S-semimodule, written kS , is
the constant sheaf whose restriction maps are the identity on M . An S-sheaf F on
X determines an S-sheaf on sdX sending each v ∈ VsdX = X to F(v), each edge
of the form (e,−) or (e,+) to F(e), and each restriction map to an appropriate
restriction map of F or the identity map between stalks of F . For each inclusion
X ⊂ Y of digraphs and S-sheaf F on X,

(X ⊂ Y )∗F
denotes the unique S-sheaf on Y such that (X ⊂ Y )∗F(c) = F(c) for each c ∈ X,
(X ⊂ Y )∗F(c) = 0 for each c ∈ Y − X, and (X ⊂ Y )∗F(v 6X e) = F(v 6X e)
for each v 6X e. This note abuses notation and denotes such a sheaf on sd X
determined by an S-sheaf F on X by F .

Example 5.1. ...

Orientation sheaves over rings of weak homology manifolds [2] generalize to
orientation sheaves OS over S, local top dimensional directed homology with S-
coefficients, for analogues of weak homology manifolds equipped with distinguished
directions. For brevity, this note combinatorially constructs OS ; the reader should
refer to [?] for a principled definition.

Definition 5.2. Let OS , ES ,VS be the S-sheaves on X in the diagram

(4) OS // ES
∂− //

∂+

// VS

such that VS(e) = 0 and ES(e) = S[e] for e ∈ EX , VS(v) = S[v], and ES(v) =
S[∂−1
− (v) ∪ ∂−1

+ (v)] for v ∈ VX , and ES(v 6X e)(c) = 0 for c 6= e and e for c = e
for v 6X e. The above sheaf maps ∂−, ∂+ are defined on edges e by ∂e(e) = e and
defined on vertices v by ∂v restricted to S[e] is the natural identity between copies
of S if ∂e = v and the 0-map otherwise, for ∂ = ∂−, ∂+.
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Example 5.3. For S a semiring,

ES(v 6X e)(c) =

{
c, c = e

0. c 6= e

For the case S a ring, ES and VS are the local F-valued 1-chains and 0-chains on
X and ∂+−∂− is the natural boundary homomorphism. The following proposition
follows for the case M = S immediately and for the general case by the Universal
Coefficients Theorem for homology.

Proposition 5.4. Suppose S is a ring. There exists an isomorphism

OS(c)⊗S M ∼= H1((X,X − starC);M)

natural in cells c in a given digraph and S-modules M , where H• denotes ordinary
simplicial homology.

The local orientations over the natural numbers N are generated, if not neces-
sarily freely, as local combinatorial directed paths.

Lemma 5.5. Fix v ∈ VX . The elements in

(∂−1
− (v) ∩ ∂−1

+ (v)) ∪ {e− + e+ | e− ∈ ∂−1
− (v) \ ∂−1

+ (v), e+ ∈ ∂−1
+ (v) \ ∂−1

− (v)}.

individually generate minimal N-subsemimodules of ON and collectively generate all
of ON(v).

Proof. Let Ev, E
−
v , E

+
v be the sets

Ev = ∂−1
− v ∩ ∂−1

+ v, E−v = ∂−1
− v \ Ev, E+

v = ∂−1
+ v \ Ev.

Each e ∈ Ev, indecomposable as an element in ON(v) by e indecomposable as
an element in N[EG], lies in ON(v) because the parallel arrows both send e to 1.

Consider e− ∈ E−v and e+ ∈ E+
v . Then e− + e+ ∈ ON(v) because both parallel

arrows send e− + e+ to 1 + 0 = 0 + 1 = 1. Moreover, e− + e+ is indecomposable
because e−, e+ /∈ ON(v) by e−, e+ /∈ Ev.

Every element in ON(v) factors as a sum of the form

(5)
∑
i∈I

ei +
∑
i∈J

ej , ei ∈ Ev, i ∈ I ej ∈ E−v ∪ E+
v , j ∈ J .

for some indexing sets I,J . The first sum in (5) is generated by the elements in
Ev. Moreover,

#I + #{j ∈ J | ej ∈ E−v } = ∂−(z) = ∂+(z) = #I + #{j ∈ J | ej ∈ E+
v },

hence #{j ∈ J | ej ∈ E−v } = #{j ∈ J | ej ∈ E+
v }, hence J is the disjoint union of

bijective subsets J−,J+ such that ej ∈ E−v if j ∈ J− and ej ∈ E+
v if j ∈ J+. For

any choice of bijection τ : J− ∼= J+, the second sum in (5) is generated by elements
of the form ej + eτ(j) for j ∈ I−. �

Lemma 5.6. Fix v ∈ VX . Then

(6) (∂−1
− (v) ∩ ∂−1

+ (v)) ∪ {e− + e+ | e− ∈ ∂−1
− (v) \ ∂−1

+ (v), e+ ∈ ∂−1
+ (v) \ ∂−1

− (v)}.

freely generates OS(v) if v has in-degree or out-degree 1.
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Proof. It suffices to consider the case v has in-degree 1, the case v has out-degree
1 symmetrically following. Then there exists a unique e− ∈ ∂−1

− (v). Let e+ denote

an element in ∂−1
+ (v) and e denote an element of the form e+ or e−. The map

(∂−)v : ES(v)→ VS(v) is the isomorphism S[e−] ∼= S[v] sending e− to v. Hence

OS(v) = {
∑
e

λee | λe ∈ S, λe−
∑
e+

λe+} = {
∑
e+

λe+(e− + e+) | λe+ ∈ S} = S[X]

for X the set (6). �

Lemma 5.7. Fix v ∈ VX . The natural diagram

(7) OS(v)⊗S M // ES(v)⊗S M
∂−⊗SM //

∂+⊗SM
// VS(v)⊗S M,

where the dotted arrow is induced by the natural inclusion OS → ES, is an equalizer
diagram natural in S-semimodules M if M is flat, S is a ring, or v has in-degree
1, or v has out-degree 1.

Proof. For M flat, M⊗S− sends the equalizer diagram (4) to an equalizer diagram.
For S a ring, the difference between parallel arrows in (7) is the degree 1 differ-

ential in the chain complex of local simplicial chains at v with coefficients in M .
Hence the equalizer of the solid arrows in (7) is the first local simplicial homology at
v with coefficients in M at v. That local homology module naturally is isomorphic
to OS(v)⊗S M [Proposition 5.4].

Consider the case there exists a unique edge e− ∈ EX such that ∂−e− = v. Let
e+ denote an element in ∂−1

+ (v). Then (7) is isomorphic to the diagram

(8)
⊕

e+
M

⊕
e+

ιe+ //⊕
e∈∂−1

− (v)∪∂−1
+ (v)M

∂− //

∂+

// M,

by Lemma 5.6, where ιe+ is the sum of inclusion of M into the e+th summand and
inclusion of M into the e−th summand and ∂ maps the eth summand isomorphically
onto M if ∂−e = v and 0 otherwise for ∂ = ∂−, ∂+. The diagram (8) is an equalizer
diagram by inspection. �

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

Figure 2. Free and non-free orientations While ON(v2) = 0
and ON(v5) ∼= N⊕N are free N-semimodules, ON(v9) is isomorphic
to the quotient of N[γ1, γ2, γ3, γ4] modulo the relation γ1+γ2 = γ3+
γ4 and hence is not a free N-semimodule. However, ON(v2) = Z,
OZ(v5) ∼= Z⊕ Z and OZ(v9) ∼= Z⊕ Z⊕ Z are all free Z-modules.
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Orientation sheaves on digraphs measure the degree to which a digraph bifur-
cates; in other words, orientation sheaves restrict to constant sheaves on directed
cycles and directed paths unbounded in the past and future.

Lemma 5.8. On each digraph, there exist an isomorphism

OS ∼= kS

if each vertex in the digraph has in-degree and out-degree both 1 or the semiring S
is a ring and each vertex in the digraph has total degree 2.

Proof. Consider the case that for each vertex v there exist unique e−(v) ∈ ∂−1
− (v)

and e+(v) ∈ ∂−1
+ (v). Then OS(v) = S[e−(v) + e+(v)] and OS(∂e 6X e) sends

e−(∂e) + e+(∂e) to e−(∂e) or e+(∂e) for ∂ = ∂−, ∂+ [Lemma 5.6].
In the case S is a ring and each vertex has total degree 2, OS is the orientation

sheaf over S on a 1-manifold [Proposition 5.4], which is orientable over S. �

v1

v2

v3

v4

v5

v6

v7

v8

Figure 3. Constant orientations Over the left digraph, ON =
kN. Over both digraphs, OZ = kZ. Over the right digraph,
ON(v6) = 0 and hence ON 6= kN.

An inclusion X ⊂ Y of digraphs induces stalkwise inclusions

(X ⊂ Y )∗VS → VS , (X ⊂ Y )∗ES → ES ,

which in turn together induce a stalkwise inclusion

(X ⊂ Y )∗OS → OS
of S-sheaves on Y .

Definition 5.9. An S-sheaf F is locally hard if for each pair v 6X e,

F(v 6X e)−1(0) = 0.

This note writes ShX;S = 〈ShX;S ,⊗S , kS〉 for the closed symmetric monoidal
category of cellular sheaves on a digraph X and natural transformations between
them, with tensor ⊗S inherited pointwise from MS .

6. (Co)homology

This section constructs H0, H0, H1 for sheaves of semimodules on digraphs. For
brevity, this note eschews a general construction of directed sheaf (co)homology
introduced in [7] and instead combinatorially constructs the theories for the special
case of interest.
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6.1. H0. Let H0(C;F) denote a choice of subobject

(9) H0(C;F) ⊂ lim
c∈C
F(c)

of the inverse limit limc∈C F(c), natural in subsets C ⊂ X and S-sheaves F on
X. The functor H0 is called the local sections functor in the case that (9) is an
equality.

Example 6.1. Equivalently H0(C;F) is given by an equalizer diagram

H0(C;F) // ∏
v∈C∩VX

F(v)
π− //
π+

//
∏
e∈C∩EX

F(e),

where (π−(φ))e = (φ∂−e)e and (π+(φ))e = (φ∂+e)e for each e ∈ EX , natural in
sheaves F of S-semimodules on digraphs X and subsets C ⊂ X, for H0 the local
sections functor.

Example 6.2. For each S-sheaf F on a digraph X and C ⊂ EX ,

H0(C;F) =
∏
e∈C
F(e)

since C is a disjoint union of singletons as a poset diagram.

Consider σ ∈ H0(X;F). The support of σ, written |σ|, is the subset

|σ| = {c ∈ X | σc 6= 0} ⊂ X.

Supports of global sections always form subgraphs because restriction maps preserve
additive identities. The restriction of σ to c ∈ X, written σc, is the image of σ
under the S-map H0({c} ⊂ X;F).

Lemma 6.3. Suppose S is a semiring. For S-sheaves F ,G on X as in

A //

��

F ⊗S G

⊕
i∈I F

with G locally hard, there exist dotted sheaf maps with the dotted vertical map an
injection such that for each C ⊂ X, H0(C; ε) is surjective.

Proof. Let G[ be the S-sheaf on X defined on c ∈ X by

G[(c) =
⊕
c∈C

S[UH0(C;G)],

where C ranges over subsets of X satisfying C = ∂−1
− (C)∪∂−1

+ (C) and UM denotes
the underlying set of an S-semimodule M , and whose restriction maps are inclu-
sions. Let ε : G[ → G be the sheaf map such that εc is the composite of the counit
S-map S[UH0(C;G)] → H0(C;G) of the adjunction S[−] ` U with H0(c ⊂ C;G),
for each c ∈ X. Then G[ is the coproduct of pushforwards of constant sheaves and
H0(C; ε) is surjective for each C ⊂ X by construction. �
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6.2. H0. Zeroth directed homology classifies stalks up to parallel transport.

Definition 6.4. Let H0(C;F) be defined by coequalizer diagram

H0(sdstarC ;F ⊗S ES)
∂− //

∂+

// H0(sdstarC ;F ⊗S VS) // H0(C;F),

natural in S-sheaves F over a digraph X and subsets C ⊂ EX .

Thus H0 dualizes the formulation of H0 in Example 6.1.

Example 6.5. For each S-sheaf F on a digraph X and C ⊂ EX ,

H0(C;F) =
∏
e∈C
F(e)

since C is a disjoint union of singletons as a poset diagram.

Example 6.6 (H0 as a colimit). For finite subposets C ⊂ X,

H0(C;F) = colim
c∈C

F(c).

Example 6.7. For a connected and finite digraph X,

H0(X; kS) ∼= S.

Inclusions A ⊂ B ⊂ X induce dotted vertical S-maps of the form

H0(starA;VS ⊗S F)
π− //
π+

//

��

H0(starA; ES ⊗S F) //

��

H0(A;F)

H0(A⊂B;F)

��
H0(starB ;VS ⊗S F)

π− //
π+

// H0(starB ; ES ⊗S F) // H0(B;F),

the left and middle vertical maps induced by projections onto F(a) for a ∈ A and
the 0-maps to F(b) for b ∈ B −A, and hence the right vertical map H0(A ⊂ B;F)
by naturality.

6.3. H1. First homology is Poincaré dual to cohomology.

Definition 6.8. Let H1((X,C);F) denote the S-semimodule

H1((X,C);F) = H0(X − starC ;OS ⊗S F)

natural in S-sheaves F over a digraph X and subsets C ⊂ EX , with H1(X;F)
short for H1((X,∅);F).

Proposition 6.9. For each S-sheaf over X,

H1(X;F) ∼= H0(X;F)

if each vertex has in-degree and out-degree both 1 or S is a ring and each vertex
has total degree 2.

Proof. Observe that

H1(X;F) = H0(X;OS ⊗S F) ∼= H0(X; kS ⊗S F) ∼= H0(X;F),

the first equality by definition, the middle isomorphism by Lemma 5.8, and the last
isomorphism by kS a unit for ⊗ in ShX;S . �
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Figure 4. Essential bifurcations Given the sup-semilattice Λ
having Hasse diagram illustrated on the left and digraph X given
on the right, the element in the N[Λ]-semimodule H1(X; kΛ) with
illustrated restrictions on the right is indecomposable and does
not lie in the N-semimodule H1(X; kN ⊗N kΛ), even though kΛ

∼=
kN ⊗N kΛ as N-sheaves.

Inclusions A ⊂ B ⊂ X induce S-maps

H1((X,A) ⊂ (X,B);F) : H1((X,A);F)
H0(X−B⊂X−A;OS⊗SF)−−−−−−−−−−−−−−−−−→ H1((X.B);F).

Proposition 6.10 (Universal Coefficients). There exists an S-map

H1((X,A);F)⊗S M ∼= H1((X,A);F ⊗S kM )

natural in S-sheaves F , A ⊂ X, and S-semimodules M and an isomorphism for
M flat, where F ⊗S kM is regarded as an S-semimodule.

Proof. There exists a natural cone from H0(X −A;OS ⊗S F)⊗S M to

∏
v∈VX−AOS(v)⊗S F(v)⊗S M

∂− //

∂+

//
∏
e∈EX−AOS(e)⊗S F(e)⊗S M,

inducing a natural map from H1((X,A);F)⊗SM to the equalizer H1(X;F⊗S kM )
of the rightmost parallel arrows, an isomorphism for M flat because tensoring by
flat semimodules preserves equalizer diagrams. �

Example 6.11 (Necessity of flatness). Observe that

H1(X; kN)⊗N Z = 0 � H1(X; kN ⊗N kZ) = H1(X; kZ).

for X a digraph with no directed loops but at least one undirected cycle. Hence
tensoring with Z, not flat as an N

Under either local algebraic or local geometric criteria, H1(X;F) coincides with
a non-Abelian generalization of homology [8] for higher categorical structures; an
equalizer condition generalizes the cycle condition and hence such homology semi-
modules naturally generalize flows. An S-sheaf F is flat if the stalks of F are flat
and additively invertible if the stalks of F are groups. A digraph is locally finite if
each vertex has finite in-degree and finite out-degree. A (possibly infinite) I-index
collection of S-maps ψi : Mi → N for i ∈ I induces an S-map∏

i∈I
Mi → N
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sending (mi)i∈I to the well-defined finite sum
∑
ψi(mi) 6=0 ψi(mi) as long as ψi(mi) 6=

0 for finitely many i ∈ I, for each I-indexed tuple (mi)i∈I in the domain. In this
sense the following theorem holds.

Theorem 6.12. For a locally finite digraph X, there exists an equalizer diagram

H1(X;F) // ∏
e∈EX

F(∂−e)×F(e) F(∂+e)
π− //
π+

//
∏
v∈VX

F(v),

with π−, π+ the maps induced by projections onto first and second factors, for an
S-sheaf F on X such that F is flat, S is a ring, or S is a semiring and each vertex
in X has in-degree 1 or out-degree 1.

Proof. The sheaf OS ⊗S F equalizes ∂− ⊗S F , ∂+ ⊗S F , edgewise by VS trivial on
edges and vertexwise by Lemma 5.7. Hence the equalizer of the top row in

H0(X; ES ⊗S F)
H0(X;∂−⊗SF) //

H0(X;∂+⊗SF)

//

α

��

H0(X;VS ⊗S F)

β

��∏
e∈EX

F(∂−e)×F(e) F(∂+e)
π− //
π+

//
∏
v∈VX

F(v),

is H1(X;F) by H0 continuous. It therefore suffices to construct S-maps α, β in-
ducing an isomorphism from the equalizer of the top diagram to the equalizer of
the bottom diagram.

Let φ denote an element in H0(X; ES ⊗S F), v denote a vertex in X, e denote
an edge in X, e−, e+ respectively denote ∂−e, ∂+e, and

α−e (φ) =
(
ES(e− 6X e)⊗S 1Fe−

)
(φe−) ∈ F(e−)

α+
e (φ) =

(
ES(e+ 6X e)⊗S 1Fe+

)
(φe+) ∈ F(e+).

Then αe(φ) = (α−e (φ), α+
e (φ)) ∈ F(e−)×F(e) F(e+) because

(α−e (φ))e =
(
1ES(e) ⊗S F(e− 6X e)

)
◦
(
ES(e− 6X e)⊗S 1Fe−

)
(φe−)

= (ES(e− 6X e)⊗S F(e− 6X e)) (φ)

= φe,

similarly (α+
e (φ))e = φe, and hence (α−e (φ))e = (α+

e (φ))e. Hence let

α : H0(X; ES ⊗S F)→
∏
e∈EX

F(∂−e)×F(e) F(∂+e)

be the S-map sending φ to
∑
e αe(φ) and let

β : H0(X;VS ⊗S F)→
∏
v∈VX

F(v)

be the isomorphism sending a global section to the product of its restrictions to
vertices.

The map α is injective because each φ is determined by restrictions of the form

φv ∈ S[∂−1
− (v) ∪ ∂−1

+ (v)]⊗S F(v) ∼=
⊕
e

F(v) ⊂
∏
e

F(v),
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where e denotes an element in ∂−1
− (v)∪∂−1

+ (v), each of which are in turn determined
by their decompositions into summands on the right, which in turn are projections
of α(φ)e onto their first and second factors for e ∈ ∂−1

− (v) and e ∈ ∂−1
+ (v).

Let β denote the natural isomorphism defined as the product of restriction maps
to stalks.

The maps α, β induce a map of equalizers by the following argument.
Consider φ. We first show that β(H0(X; ∂− ⊗S F)(φ)) = π−(α(φ)). It suffices

to consider the case φv = ev ⊗ λv for some choice of v ∈ VX , ev ∈ EX ∩ ES(v), and
λv ∈ F(v) - such φ generate H0(X; ES ⊗S F). Then

π−(α(φ)) =
∑
e

η−e (φ) =
∑
e

ES(e− 6X e)(ev)⊗ λv =
∑
v

ES(v 6X ev)(ev)⊗ λv

is λv if v = ∂−ev and 0 otherwise. And φ−H
0(X; ∂−⊗S F)(φ) is the global section

in H0(X;VS ⊗S F) restricting to (∂−)v(φv) ⊗S λv at v and 0 at all other stalks.
Hence β(φ−) is also λv if v = ∂−ev and 0 otherwise.

Similarly β(H0(X; ∂+ ⊗S F)(φ)) = π+(α(φ)) for each φ.
The map of equalizers induced by α, β is injective by α and surjective by the

following argument.
Let γ denote an element in the equalizer of the bottom row, γe denote is projec-

tion onto the e-indexed factor, π−, π+ denote projections of pullbacks of the form
F(e−)×F(e) F(e+) onto their first and second factors. For each γ, let

γ̂v =
∑
∂−e=v

e⊗ π−γe +
∑
∂+e=v

e⊗ π+γe, γ̂e = (γe)e.

Then γ̂ defines a preimage for γ under α. �

In other words, first directed sheaf homology H1(X;F) corresponds to a natural
homology theory on the cellular cosheaf on X defined by pulling back F along
closed cells.

Figure 5. Degree bounds on the vertices Consider the two
graphs above with directionality flowing from left to right and bot-
tom to top. The left side satisfies the degree bounds in the hypoth-
esis of the theorem, while the right side does not.

Corollary 6.13. Consider the case S a ring. Then the S-module

H1(X;F)

naturally is isomorphic to the first Borel-Moore homology of X with coefficients in
an S-sheaf F on X.
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Example 6.14. There exist a dotted S-map making

Hc
1(X; kM ) // S[EX ]⊗S M

π− //
π+

// S[VX ]⊗S M,

an equalizer diagram natural in flat S-semimodules M by Theorem 6.12. In the
case S a ring, Hc

1(X; kM ) = ker(π− − π+) and hence Hc
1(X; kM ) is the ordinary

simplicial homology of X with coefficients in the S-module M .

6.4. Exactness. Ordinary sheaf homology is exact. Directed homology comes
equipped with connecting homomorphisms from degree 1 to degree 0, although the
natural analogue of exactness in the semimodule-theoretic setting fails in general.

Definition 6.15. Let ∂−, ∂+ denote the S-maps

∂−, ∂+ : H1((X,C);F)→ H0(C,F)

sending a global section φ to the respective representatives of
∏
c∈C(φ∂−c)c and∏

c∈C(φ∂+c)c in H0(C;F), for each C ⊂ EX .

Proposition 6.16. For an S-sheaf F on X and C ⊂ EX ,

H1((X,C);F)
∂− //

∂+

// H0(C,F)
H0(C⊂X;F) // H0(X;F)

commutes.

Proof. The diagram

H0(X − C; ES ⊗S F)
∂− //

∂+

//

��

H0(X − C;VS ⊗S F)

��
H0(X; ES ⊗S F)

∂− //

∂+

// H0(X;VS ⊗S F),

where the vertical arrows are extensions by zero, commutes. There exists a natural
cone from H1((X,C);F) to the top pair of arrows. The coequalizer of the bottom
row is H0(X;F). �

Proposition 6.17. Let S be a ring. For an S-sheaf F on X and C ⊂ EX ,

∂+ − ∂− : H1((X,C);F)→ H0(C,F)

is the ordinary connecting homomorphism for Abelian sheaf homology.

Example 6.18 (Failure of exactness). The commutative diagram

H1((X,C);F)
∂− //

∂+

// H0(C,F)
H0(C⊂X;F) // H0(X;F)

is not a coequalizer diagram for X the digraph illustrated below and C = {v1, v3}.

v1 v2 v3
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7. A flow-cut duality

This section generalizes the theory of flows and cuts on digraphs in both an
algebraic and topological manner.

7.1. Constraints. Classical constraints on network dynamics often take the form
of edge weights on a graph. This note takes an M -weighted digraph (X;ω) to mean
a digraph X equipped with EX -indexed set {ωe}e∈EX

such that ωe ∈ M for each
edge e ∈ EX , for each set M .

Example 7.1 (Numerical). The ideal

ωe + Z+ = {ωe + 1, ωe + 2, . . .} = {x ∈ N | x > ωe}

in the semigroup N of natural numbers naturally describes all possible forbidden
quantities of cars on the road e of a network described by an N-weighted digraph
(X;ω).

Constraints of interest in logistics include multiple commodities on a supply
chain subject to bounds on the ratio of their quantities.

Example 7.2 (Multicommodities). The ideal

{v ∈ Rn | v · c 6 ωe} ⊂ R>0 ⊕ R>0

describes all possible forbidden ratios of two commodities in a supply chain de-
scribed by an R>0-weighted digraph (X;ω) and vector c ∈ Rn.

In each of the last three examples, local constraints implicitly define an spec(S)-
weighted digraph for suitable choices of S. Constraints of interest in information
processing [[6], Example 7.3], typically exhibit more interesting restriction maps
between the stalks than mere quotients.

Example 7.3 (Information Processing). Let Λ be the Boolean semiring

Λ = {>,⊥}, +Λ = ∨, ×Λ = ∧

Free Λ-semimodules encode the possible values of bit-strings and Λ-maps en-
code logical operations on bit-strings. Hence a stalkwise free Λ-sheaf on a digraph
encodes the local functionality of a microprocessor with logical processors at the
nodes and local channel bandwidths determined by the size of generating sets for
the edge stalks.

Thus S-sheaves on digraphs abstract a range of local constraints on global net-
work states.

7.2. Flows. Classical flows on a digraph straightforwardly generalize from the set-
ting of real numbers. Consider a partially ordered commutative monoid M . A
classical flow on a locally finite M -weighted digraph (X;ω) is a function

φ : EX →M

satisfying the following conservation law and capacity constraints:

[CONSERVATION] For v ∈ VX ,
∑
e∈∂−1

− (v) φ(e) =
∑
e∈∂−1

+ (v).

[CONSTRAINTS] For e ∈ EX , φ(e) 6M ωe.
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The e-value of a classical flow φ on (X;ω) is φ(e). Classical flows naturally
generalize to the sheaf-theoretic setting. Fix an S-sheaf F on a locally finite digraph
X. An F-valued flow is an element in the equalizer of the diagram

∏
e∈EX

F(∂−e)×F(e) F(∂+e)
π− //
π+

//
∏
v∈VX

F(v).

The sheaf itself generalizes the capacity constraint. The equalizer condition
generalizes the conservation law for classical flows.

Proposition 7.4. Fix a flat S-semimodule M . Then

H1(X;F)

is isomorphic as a partial N-semimodule to the set of flows on an M -weighted
digraph (X;ω), where F is the S-sheaf on X assigning [0, ωe] to each e ∈ EX , M
to each v ∈ VX , and injective partial inclusions to each relation v 6X e.

Proof. For each e ∈ EX ,

H0({e, ∂−e, ∂+e};F) = [0, ωe]

and for each relation v 6X e, the map H0({∂e} ⊂ {e, ∂−e, ∂+e};F) is just inclusion

[0, ωe] ↪→M

for ∂ = ∂−, ∂+. The claim then follows from Theorem ??. �

Example 7.5. For a circuit described as a digraph X equipped with an Λ2-sheaf F
as in Example 7.3, the elements in H1(X;F) describe the asynchronous executions
of the circuit.

The A-value of a local F-flow over B is the element in H0(X;F) represented by
(φa)a. This note mimics classical notation [− : −] for flow-values and cut-values
from the setting of edge weights to sheaves.

Definition 7.6. For each lattice-ordered S-sheaf F on X, let

[A : B]F

denote the supremum of all A-values of local F-flows over B on X.

Proposition 7.7 (Values). The dotted map making

H1 (B;F)

H1((B,∅)⊂(B,A);F)

��

// H0 (X;F)

H1 ((B,A);F)
∂−

// H0 (A;F) .

H0(A⊂B;F)

OO

commute sends a local F-valued flow over B to its A-value, for all A ⊂ B ⊂ X and
F a flat S-sheaf on X.



18 SANJEEVI KRISHNAN

7.3. Cuts. A (directed) e-cut C of X is a subset

C ⊂ VX ∪ EX

such that every (directed) loop φ in X traverses e traverses some vertex or cell in
C.

Proposition 7.8 (Cuts). Suppose S is ring-free. Fix e ∈ EX and C ⊂ X − e. In

H0(X;OS)
H0(C⊂X;OS) //

H0(e⊂X;OS)

��

H0(C;OS)

H0(X−C⊂X;kS)◦∂−
��

H0(e;OS)
∂−⊕H0(e⊂X;kS)◦∂−

// H0(X; kS),

the composite of the top horizontal with the right vertical arrow bounds the composite
of the left vertical with the bottom horizontal arrows from above. The diagram
commutes if and only if C is an e-cut.

Proof. Let φ denote an S-valued flow. Let φC,e denote the image of φ under

H1((X,∅)→ (X,C); kS) : H1(X; kS)→ H1((X,X − C); kS).

Let φ̄ denote the images of φ under the composite of the left vertical arrow and the
bottom horizontal arrow.

Suppose the diagram commutes. In the case φ̄ 6= 0, then φC 6= 0 by the diagram
commutative. In the case φ = 0, then φC,e = −∂−φe, hence φC,e 6= 0 by ∂−φe 6= 0,
hence φX−C 6= 0, and hence φC 6= 0. Hence for each φ there exists c ∈ C such that
φc 6= 0 in both cases. Thus C is an e-cut over S.

Now suppose C is an e-cut over S. Fix φ. It suffices to show that the images of
φ under both possible composites in the diagram coincide. It therefore suffices to
prove the stronger claim that φC factors into a sum φ′C +φ′′C with ∂−φ

′
C = ∂−e and

∂−φC,e = φ′′C by induction on the minimum length n of an undirected path from C
to e in the poset of all e-cuts ordered by inclusion.

In the base case n = 0, C = {e} and hence φC = φC + 0 and ∂−φe = ∂−φC and
∂−φC,e = ∂−0 by φC,e = 0.

Consider a positive integer k > 0, inductively assume the desired factorization
holds for the case n < k, and now suppose n = k. Consider an e-cut B such that
the cut-distance from e to B is n− 1 and there exist distinct b ∈ B and c ∈ C with
B − b = B ∩C = C − c. There exist φ′B , φ

′′
B such that φB = φ′B + φ′′B and φe = φ′B

and φB,e = φ′′B .
Consider the case ∂−c = b. Let φ′C be the image of φ′B under the natural map

H0(B) → H0(C). Let φ′′C be defined as
∑
c∈B∩C(φ′′B)c. Then ∂−φ

′
C = ∂−φ

′
B = e

and ∂−φ
′′
C = ∂−φC,e because φC,e consists of all S-valued flows from a cell in C to

another cell in C, which is contained in the set of all S-valued flows from a cell in
B to a cell in B.

The case ∂+c = b similarly follows.
Consider the case ∂−b = c. Let φ′C be the image of φ′B under the natural map

H0(B) → H0(C). Let φ′′C = φ′′B + γ, where γ denotes an S-valued flow from C to
itself not crossing B. Then φC = φ′C + φ′′C by flow conservation.

The case ∂+b = c similarly follows. �
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7.4. Sheaf-theoretic MFMC. A duality between the values of F-flows and the
F-values of cuts evokes and ultimately generalizes MFMC.

Theorem 7.9 (MFMC). Suppose S is ring-free. For each e ∈ EX ,

(10) [e : X]F ∼= inf C [C : C]F ,

where C ranges over all e-cuts of X, for each hard and flat S-sheaf F on X.

Proof. For brevity, let H0(−) and H•(−) denote the constructions

H0(−) = H0(−;OS ⊗S F), H•(−) = H•(−;F).

There exists a natural isomorphism H1(X, e) ∼= limC H1(X, e) ⊕ H1(X − e, C)
because limC H1(X−e, C) = 0 and inverse limits commute with coproducts. Hence
[e : X]F , the image of H1((X, e);F) under the composite H0(e ⊂ X;F) ◦ ∂−, is
the well-defined composite π of the natural map H1X → limC H

0C follows by
H0(X − C ⊂ X) ◦ ∂− for some choice of C by
(11)

H1(X)
H1(C⊂X) //

H1((X,∅)⊂(X,e))×H1((X,∅)→(X,C))

��

limC H
0(C)

H0(X−C⊂X)◦∂−
��

limC H1(X, e)⊕H1(X − e, C)
H0(X−e⊂X)◦∂−

// H0(X)

commutative [Proposition 7.8]. The top horizontal map is an isomorphism and
hence surjective.

It suffices to show that the vertical map is surjective. For brevity, let C,D denote
e-cuts and (φC)D denote the image of φC under the lower adjoint of the restriction
map H0D → H0C, for each φC ∈ H0C. Let

η :
∏
C

H0C →
∏
C

H0C

be defined by the rule η(φ)D = infC⊂VX
(φD)C∧φD for and η(φ)D = infC⊂EX

(φD)C∧
φD. Then η is a monotone and decreasing map of complete lattices and hence ad-
mits a maximum fixed point φ∗ which lies in limC H

0C. Moreover, infC [φC ] =
infC [(ηφ)C ] for each φ. Hence infC [φ∗C ] = [e : X]F . �

Example 7.10 (Necessity of locally hardness).

A special case of the theorem is a decomposition of the feasible flow-values as an
intersection of all possible local flow-values over cut-sets.

Corollary 7.11. There exists an isomorphism

(12) [e : X]specF ∼=
⋂
C

[C : C]specF ,

where C ranges over all e-cuts of X, for each hard but flat S-sheaf and e ∈ EX .

Corollary 7.12. For an M -weighted digraph (X;ω) with edge e0,

supφφ(e0) = inf C
∑
e∈C

ωe,

where φ denotes an M -valued flow φ on (X;ω) and C denotes an e0-cut.
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