Proof by induction

Proof by Induction: To prove a statement $P(n)$ is true for all natural numbers n, we can do the following:
i. Base case: Prove it is true when $n=1$.
ii. Inductive step: Prove that if $k \in \mathbb{N}$ and $P(k)$ is true, then $P(k+1)$ is also true. The assumption that $P(k)$ is true is called the inductive hypothesis.

Generally, the interesting part of an inductive proof is the inductive step. However, the base case cannot be omitted - it is the first domino, and we must knock it over to start everything in motion!

Prove the following theorems using mathematical induction:

Theorem I.1. Let n be a natural number. Then

$$
1+2+3+\cdots+n=\frac{n(n+1)}{2}
$$

Theorem I.2. For every natural number n,

$$
1+2+2^{2}+\cdots+2^{n}=2^{n+1}-1
$$

Theorem I.3. For every natural number n,

$$
1+3+5+\cdots+(2 n-1)=n^{2}
$$

Theorem I.4. For every natural number n,

$$
1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Theorem I.5. For every natural number n,

$$
1^{3}+2^{3}+3^{3}+\cdots+n^{3}=(1+2+\cdots+n)^{2}=\frac{n^{2}(n+1)^{2}}{4}
$$

Theorem I.6. For every natural number $n>3,2^{n}<n$!.
Theorem I.7. For every natural number n,

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{n(n+1)}=\frac{n}{n+1} .
$$

Theorem I. 8 (Geometric series). Let $r \neq 1$ be a real number. For every natural number n,

$$
1+r+r^{2}+\cdots+r^{n-1}=\frac{r^{n}-1}{r-1}
$$

Theorem I. 9 (Binomial theorem). For any non-negative integer n,

$$
(x+y)^{n}=\sum_{k=0}^{n} \frac{n!}{k!(n-k)!} x^{n-k} y^{k} .
$$

Here, x and y are indeterminates - you may think of them as arbitrary real numbers, or simply as variables. You may find it useful to use the notation $\binom{n}{k}=\frac{n!}{k!(n-k)!}$.

Definition. The Fibonacci numbers are a sequence of integers, denoted F_{n}. The first two Fibonacci numbers are

$$
F_{1}=1 \quad \text { and } \quad F_{2}=1
$$

For $n \geq 3$, the number F_{n} is defined by the recurrence relation

$$
F_{n}=F_{n-1}+F_{n-2}
$$

Exercise I.10. List the first 10 Fibonacci numbers.
Theorem I.11. For every natural number n, $F_{1}+F_{3}+F_{5}+\cdots+F_{2 n-1}=F_{2 n}$.
Theorem I.12. For every natural number $n, F_{1}^{2}+F_{2}^{2}+\cdots+F_{n}^{2}=F_{n} F_{n+1}$.

Proof by Strong Induction: To prove a statement $P(n)$ is true for all natural numbers n, we can do the following:
i. Base case(s): Prove it is true when $n=1$. Depending on the nature of the proof, you may also need to prove the next few cases $(n=2,3 \ldots)$.
ii. Inductive step: Prove that if $k \in \mathbb{N}$ and $P(1), P(2), \ldots, P(k)$ are all true, then $P(k+1)$ is also true.

Prove the following theorems using strong induction:
Theorem I.13. Let $a=\frac{1+\sqrt{5}}{2}$ and $b=\frac{1-\sqrt{5}}{2}$. For every natural number $n, F_{n}=\frac{a^{n}-b^{n}}{a-b}$.
Theorem I.14. For every natural number $n, F_{n}<(5 / 3)^{n}$.
Theorem I.15. Every natural number greater than 7 can be written as a sum of 3's and 5's where the coefficients of 3 and 5 are nonnegative.

Theorem I.16. Every natural number n can be written as $n=2^{k} l$ where k is a non-negative integer and l is an odd integer.

