
Proof by strong induction

Here is the theorem we proved in class using strong induction.

Theorem A. Let n be a natural number. Then n has a binary representation: we can write

n = 2m1 + 2m2 + · · ·+ 2ms ,

where the exponents m1, . . . ,ms are distinct non-negative integers (no repeats).

Proof. The proof is by strong induction on n.

Base case: For the base case, let n = 1. The binary representation of 1 is

1 = 20.

Notice that there are no repeated exponents (because there is only a single power of 2 here). Thus, the
theorem holds for n = 1.

Induction step: Now, let n be any natural number. We assume, for our strong inductive hypothesis,
that the theorem is true for every natural number k such that 1 ≤ k ≤ n. That is, we assume that all
of the numbers 1, 2, 3, . . . , n have a binary representation.

We now wish to show that n + 1 will have a binary representation. Let a ≥ 0 be the largest integer
such that

n + 1 ≥ 2a.

(We can find a by using the well-ordering axiom.)

If, in fact, we have an equality
n + 1 = 2a,

then we are done, because we have represented n+1 as a single power of 2 (and so there are no repeated
exponents).

Otherwise, the inequality is strict:
n + 1 > 2a.

In this case, let k = (n+ 1)− 2a. Then 1 ≤ k ≤ n, and so we can apply our strong inductive hypothesis
to the number k. That is, we know that k has a binary representation

k = 2m1 + 2m2 + · · ·+ 2ms ,

where there are no repeated exponents.



Thus,
n + 1 = 2a + k = 2a + 2m1 + 2m2 + · · ·+ 2ms . (?)

We claim that this is a binary representation of n + 1. It remains to show that there are no repeated
exponents.

By assumption, there are no repeats among the mi. Thus, we must show that a 6= mi for any i. For the
sake of contradiction, assume that a is equal to one of the mi. Relabeling if necessary, we can assume
a = m1. Then

n + 1 = 2a + 2a + 2m2 + · · ·+ 2ms

= 2 · 2a + 2m2 + · · ·+ 2ms

= 2a+1 + 2m2 + · · ·+ 2ms

But if this is true, then
n + 1− 2a+1 = 2m2 + · · ·+ 2ms ≥ 0

implying that
n + 1 ≥ 2a+1.

But this contradicts the fact that a is the largest integer such that n + 1 ≥ 2a. We conclude that a is
not equal to any of the mi, and so the expression (?) is a binary representation of n + 1. That is, the
theorem holds for n + 1.

By strong induction, the theorem is proved for every natural number.

How did strong induction work in this proof?

In a traditional proof by induction, we show that if the theorem is true for n, then it is true for n + 1.
That is, each “domino” knocks over the next one.

In the proof above, we proved the theorem for n+ 1 by showing it was true for some smaller number
k, but k was not necessarily equal to n. In our “domino” analogy, each “domino” gets knocked over by
a previous “domino,” but it is not exactly clear which one.

For example, if n + 1 = 53, then in our proof we would take 2a = 25 = 32, so that k = 53 − 32 = 21.
Then

53 = 25 + 21

and we inductively use the binary representation of 21 (which is 21 = 24 + 22 + 20) to get a binary
representation of 53. So the 53rd “domino” is knocked over by the 21st “domino.”
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Another example of strong induction

Recall that the Fibonacci numbers Fn are defined by F1 = F2 = 1 and

Fn = Fn−1 + Fn−2

for n ≥ 3.

Theorem B. For every natural number n,

Fn ≥
(

3

2

)n−2

,

where Fn is the nth Fibonacci number.

Proof. We proceed by strong induction on n.

Base cases: We will prove two base cases. When n = 1, we have

F1 = 1 >
2

3
=

(
3

2

)1−2

.

When n = 2, we have

F2 = 1 =

(
3

2

)0

=

(
3

2

)2−2

.

Thus, we see that the theorem holds in these first two cases.

Inductive step: Let n ≥ 2. We assume, for our strong inductive hypothesis, that Fk ≥
(
3
2

)k−2
is true

for every natural number k such that 2 ≤ k ≤ n.

Now, applying the inductive hypothesis to k = n and k = n− 1, we obtain

Fn+1 = Fn + Fn−1 ≥
(

3

2

)n−2

+

(
3

2

)(n−1)−2

=

(
3

2

)n−3(
3

2
+ 1

)
=

(
3

2

)n−3(
5

2

)
.

Since 5
2

= 10
4
> 9

4
=

(
3
2

)2
, we conclude that

Fn+1 ≥
(

3

2

)n−3(
5

2

)
>

(
3

2

)n−3(
3

2

)2

=

(
3

2

)(n+1)−2

.

By strong induction, the theorem is proved for every natural number n ≥ 2.
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How did strong induction work in this proof?

In some sense, the proof of Theorem B feels more like a traditional induction proof than the proof of
Theorem A did. The key difference, however, is in the induction step: we showed that the theorem is
true for n + 1 by using the assumption that it is true for both n and n − 1. That is, we showed that
any given “domino” is knocked over by two previous “dominoes” working together.

Because this is the nature of our inductive step—using the two previous cases to prove the next—we
needed to also begin our proof with two base cases. Because the Fibonacci recurrence Fn = Fn−1+Fn−2

only begins at n = 3, our inductive step does not apply when n = 1 or n = 2. So we need to prove the
theorem directly for these first cases (which is fortunately easy, since F1 = F2 = 1).

Once we’ve proved our two base cases, the inductive step takes over: The theorem is true for n = 4
because it is true for n = 3 and n = 2. It is true for n = 5 because it is true for n = 4 and n = 3. And
so on.

General comments

The aim of this document is to illustrate that strong induction proofs come in two “flavors.”

Strong induction argument type #1: In the inductive step, we assume the theorem is true for all
k such that 1 ≤ k ≤ n. In proving the theorem for n+ 1, we’ll reach back and use one of these previous
cases. Which particular previous case we’ll need will depend on the theorem we are trying to prove.

Strong induction argument type #2: In the inductive step, we assume the theorem is true for all
k such that 1 ≤ k ≤ n. In proving the theorem for n + 1, we’ll reach back and use multiple previous
cases. Often, these will be the cases immediately preceding n + 1. For instance, to prove the theorem
for n+ 1, we may need to use the assumption that the theorem is true for n and n− 1 and n− 2. How
far back we need to go will depend on the theorem we are trying to prove. Because of this, we will need
to begin our proof with multiple base cases.

Notice that the proof of Theorem A used an argument of type #1 and the proof of Theorem B used an
argument of type #2.
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