Last time:
(3) What are your goals for MA 261? -presentation + public speaking shills

- use LaTex
- flexibility in problem solving
- problem solving skills
- learn sone interesting math
- clarify past uncentranty about concepts
(4) What do you expect from me?
- Help navigating proofs
- open channel of communization
- Consistency

Intro. Name, favorite TV show/movie
(5) What is the value of making misstates in the learning process?

- Learn mat not to do
- Freedom to learn
- Productive failure / Puductive struggle
(6) How do ce create an environment in which risk-taking is encouraged and making mistakes is okay?
- Connect with ore another
- Don't punish mistakes

Introduction to proofs

Definitions

In order to precisely state and prove theorems, we first must agree on clear definitions of the mathematical objects and concepts involved.

Here are two definitions of the concept of evenness:
Definition 1: An integer n is even if it is in the set $\{\ldots,-6,-4,-2,0,2,4,6, \ldots\}$.
Definition 2: An integer n is even if there is another integer k such that $n=2 k$.
Which of these definitions do you prefer? Why?

$$
\begin{aligned}
& \text { Def } 2 \text { - more precise, gives a recipe } \\
& \text { Def } 1 \text { - more concrete, gives examples }
\end{aligned}
$$

Definition 2 might be rephrased as: "a number is even if it is divisible by 2." Let's make this more precise.

Definition 3: Let n and d be two integers. We say that divides n, or equivalently that n is divisible by d if there is another integer k such that $n=d k$. In this case, we write $d \mid n$.

Mathematicians often use examples to illustrate a definition.
Example 1: The number 3 divides 12 because $12=3 \cdot 4$. This also shows that $4 \mid 12$. We can see that $2 \mid 12$ and $6 \mid 12$ from the expression $12=2 \cdot 6$. Finally, $1 \mid 12$ and $12 \mid 12$ because $12=1 \cdot 12$.

We can therefore conclude that

$$
1,2,3,4,6,12
$$

is a complete list of positive integers which divide 12 .
Example 2: If n is any integer, then $1 \mid n$ and $n \mid n$. (Why?)

$$
n=1 \cdot n
$$

Definition 4: Let $p>1$ be an integer. We say that p is prime if 1 and p are the only positive integers which divide p.

