Last time:

Introduction to proofs

Definitions

In order to precisely state and prove theorems, we first must agree on clear **definitions** of the mathematical objects and concepts involved.

Here are two definitions of the concept of evenness:

Definition 1: An integer *n* is **even** if it is in the set $\{..., -6, -4, -2, 0, 2, 4, 6, ...\}$.

Definition 2: An integer n is **even** if there is another integer k such that n = 2k.

Which of these definitions do you prefer? Why?

Definition 2 might be rephrased as: "a number is even if it is divisible by 2." Let's make this more precise.

Definition 3: Let *n* and *d* be two integers. We say that *d* **divides** *n*, or equivalently that *n* **is divisible by** *d* if there is another integer *k* such that n = dk. In this case, we write $d \mid n$.

Mathematicians often use examples to illustrate a definition.

Example 1: The number 3 divides 12 because $12 = 3 \cdot 4$. This also shows that $4 \mid 12$. We can see that $2 \mid 12$ and $6 \mid 12$ from the expression $12 = 2 \cdot 6$. Finally, $1 \mid 12$ and $12 \mid 12$ because $12 = 1 \cdot 12$.

We can therefore conclude that

1, 2, 3, 4, 6, 12

is a complete list of positive integers which divide 12.

Example 2: If n is any integer, then $1 \mid n$ and $n \mid n$. (Why?)

Definition 4: Let p > 1 be an integer. We say that p is **prime** if 1 and p are the only positive integers which divide p.