Our proofs can, and should, use previous results.

Ex: Thu 1.18: a, b, n, k integers, $n>0, k>0$.
If $a \equiv b(\bmod n)$, flan $a^{k} \equiv b^{k}(\bmod n)$

$$
\begin{aligned}
10 \equiv 1 \quad(\bmod 3) \quad \xrightarrow{T_{1.1}} \\
(10-1=9=3.3)
\end{aligned} \quad 10^{k} \equiv 1^{k}(\bmod 3) .
$$

$$
\text { Ex: } \begin{aligned}
2,704 & \equiv 2+7+0+4(\bmod 3) \\
& \equiv 13(\bmod 3) \\
& \equiv 1(\bmod 3)
\end{aligned}
$$

$\Rightarrow 2704$ is not dinsible by 3 .
1.24: Come up with other similar divisibility criteria.
1.22/1.23:. If n divisible by 3 , flem the sum of its digits is divisible by 3

- If the sum of n's digits is divisible s by 3 , then n is divislle by 3

Condensed version:
Than: A natural number in base 10 is drasible by 3 if and only if the sum of its digits is dir. by 3 .

42 things to prove

Axioms
Axiom 1: There exists a set of integers

$$
\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

with opantions addition (+) and multiplication (.) sutrofying

- the sum (or product) of two integers is another integer.
- Commontantiny:

$$
\begin{aligned}
a+b & =b+a \\
a b & =b a
\end{aligned}
$$

- Associatrity: $(a+b)+c=a+(b+c)$

$$
(a b) c=a(b c)
$$

-Distribute Property: $a(b+c)=a b+a c$

- Identity elements: $a+0=a$

$$
a \cdot 1=a
$$

- Negatives: For each integer a, there is an integer $-a$ such that

$$
a+(-a)=0
$$

Axiom 2 (Well-ordering of the natural numbers)
The natural numbers are

$$
\mathbb{N}=\{1,2,3, \ldots\}
$$

If S is any non-empty subset of N, then S hus a smallest element.

Thu: Every natural number is interesting.
Proof: If not, then the are sore uninteresting numbers. Let S be the set of all uninterestiting numbers.
Let n be the smallest uninteresting number. Then n is interesting, because it's the smallest uninteresting number, which is a contradiction.

