To prove If P, then Q

- Direct proof: Assume P, and work to prose Q.
- Proof by contmpositicie: Prove If NOT Q, then NOT P.

is equizleat to
If $\frac{n \text { is odd }}{\text { NoT } Q}$, then $\frac{n^{2} \text { is odd }}{\text { NoT } P}$.
- Proof by contradiction: Assume P is true and Q is false. Use these to derive a contradiction, ie. a statement that can't be tine. Thenfor P implies Q.

In Macy's proof o if $\frac{r \text { is the smallest element }}{P}$ of the set S, then $\frac{0 \leq r \leq n-1}{Q}$.

Suppose $r \geqslant n$.... there is anclerent of S which is smaller then r. Contudiction.

Well-Ordaing is the reason that induction works:
Them: A statement $P(k)$ is the for all natural numbers k.
(1) Prose the base case: $P(1)$
(2) Prove the induct step: If $P(k)$ is true, the $P(k+1)$ is tres.

Claim: If you do (1) and (2), than $P(k)$ is the for all nature numbers.

Proof: Suppose not. Let

$$
S=\{k \mid P(k) \text { is false }\} .
$$

If this set is not empty, then Well-ardaning implies it has a smallest element. Call it l.
Then $\ell \neq 1$. (1)
So $l-1$ is a natural number which is smaller them l, so $l-1$ is not in S.
Thus, $P(l-1)$ is true. So $P(l)$ is the. (2)

Contradiction.
So S is empty.

- All HW from last mel returned later today.
- Exam 1 - Wednesday, 11-11:50 AM
- Exam available on Comus at II AM
- ~ 40 min exam
- submit to Canvas, like a HW assignment or my email
- Covers divisibility. congruence and n (no division alg.)
and basic proofmiting - logic
- I will be in our usual class Zoom unity to answer questions. You dort reed to join except to ask questions.

$$
\begin{aligned}
& m=25, \quad n=7 \rightarrow q=3, r=4 \\
& 25=7 \cdot \underbrace{3}_{2}+\underbrace{4}_{r} \\
& 0 \leq r \leq 6
\end{aligned}
$$

Idem: q is the largest \# so that $\begin{aligned} \text { In } & n q \leq m \\ \text { but } & n(q+1)>m\end{aligned}$

Well-Ordaing: If S is non-empty set of nat. \#s, then it has a smallest element. positive integers

$$
\begin{aligned}
& \begin{array}{l}
n q \leq m \\
n(q+1)>m
\end{array} \quad \longleftrightarrow \quad 0 \leqslant m-n q \\
& S=\left\{m-n \cdot k \left\lvert\, \begin{array}{l}
\text { clare } k \text { is an integer } \\
\text { and } m-n \cdot k \geqslant 0
\end{array}\right.\right\}
\end{aligned}
$$

EX: $m=25, n=7$

$$
\begin{equation*}
\{25-n \cdot 7\}=\{\ldots, 32,25,18,11, \tag{4}
\end{equation*}
$$

First: S not empty $(m$ is in S)
Second: Well-adaing \rightarrow it has a smallest et. Call it r.

Now, prove $m-n \cdot q=r$

$$
\text { - } 0 \leq r \leq n-1 \text { (use } r \text { is smallest) }
$$

Another approach:

$$
S=\{\text { nat. numbers } k \mid n k \geq m-n\}
$$

Ex: $n=7, m=25$

$$
\begin{aligned}
S & =\{k \mid 7 \cdot k>18\} \\
& =\{3,4,5, \ldots\}
\end{aligned}
$$

Well-ordring s has a smallest eft. call it q

