1.28 says we have an algorithm to replace any number modulo n with a number between 0 and $n-1$: Use the division alg. to divide a by n. Then a is cong. to its remainder.

Ex: $237 \equiv \frac{6}{?}(\bmod 7)$

$$
\begin{array}{rlrl}
& 237 & =q \cdot 7+r & 0
\end{array} \quad \begin{aligned}
7 \cdot 30 & \leq 210 \\
7.31 & =217 \\
7.32 & =224 \\
7.33 & =231
\end{aligned}
$$

Ex: By The 1.18: $237^{2}=56,169$

$$
\begin{aligned}
56,169 & \equiv 6^{2} \quad(\bmod 7) \\
& \equiv 36 \quad(\bmod 7) \quad 36=5.7+1 \\
& \equiv 1 \quad(\bmod 7)
\end{aligned}
$$

Def: If a and b are integers

- a common divisor of a and b is an integer d such that $d \mid a$ and $d \mid b$.
- He greatest common divisor of a and b (if a and b are not both 0) is the largest number which is a common divisor of a and b.

Notation: $\operatorname{gcd}(a, b)$ or just (a, b).
1.31: $(36,22)$

$$
36=1.36
$$

$$
=2 \cdot 18
$$

$$
=3.12
$$

$$
=4 \cdot 9
$$

$$
=6 \cdot 6
$$

$$
\begin{aligned}
22 & =1.22 \\
& =2.11
\end{aligned}
$$

$$
\text { Next btW: } 1.31-1.35
$$

New Presentation sign-up

