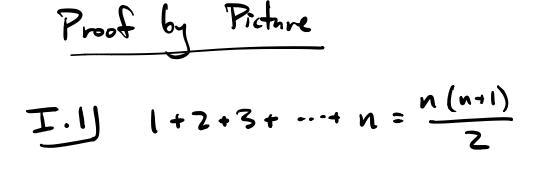
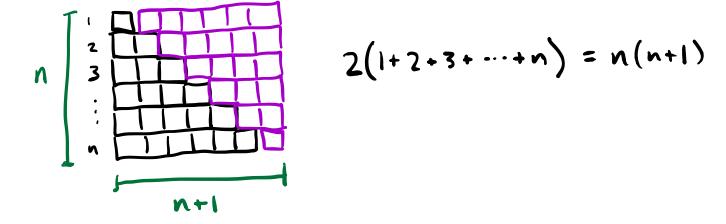
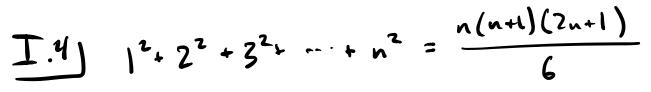
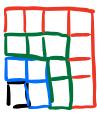
$$\frac{Pascal's Triangle}{\binom{0}{0}} \binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k} \binom{1}{0} \binom{1}{\binom{1}{0}} \binom{1}{\binom{1}{2}} \binom{2}{\binom{2}{2}} \binom{2}{\binom{2}{2}} \binom{2}{\binom{3}{0}} \binom{3}{\binom{1}{1}} \binom{3}{\binom{2}{2}} \binom{3}{\binom{3}{2}} \binom{3}{\binom{3}{2}} \binom{4}{\binom{3}{2}} \binom{4}{\binom{1}{2}} \binom{4}{\binom{3}{2}} \binom{4}{\binom{3}{3}} \binom{4}{\binom{1}{3}} \binom{4}{\binom{1}{3}}$$







$$\underline{I.3}$$
 |+ 3+ 5+ -..+ (2n -1) = n²



Strong Induction
Base Case(s)
Tudaction step: Instead of assuming P(n) to prove P(n+1),
assume P(1), P(2), ..., P(n) to prove P(n+1)
Inductive hypothesis
Logian 11, this is just as goul as ordinary induction
Them: Every notional number a has a binary
representation; i.e.

$$n = 2^{m_1} + 2^{m_2} + \dots + 2^{m_5}$$

where m_{1,m_2,\dots,m_5} are all definit (no repeats)
Ex: $20 = 2^{4} + 2^{2}$
 $35 = 2^{5} + 2^{1} + 2^{6}$
Proof: By strong induction on n.
Base case: $n = 1$. Then $1 = 2^{6}$

Tuductive Step: Let n be a notional number,
and assume the theorem is the for all
numbers 1, 2, 3, ..., n. That is, if Ithen
then h has a binary rep.
What to prove: n+1 has a binary rep.
Let a be the largest integer such that
$$2^{n} \in n+1$$

• If $2^{n} = n+1$, then wire done.
• Otherwire $1 \leq n+1 - 2^{n} = k \leq n$
So, by the ind. hyp.,
 $n+1 - 2^{n} = 2^{m} + 2^{m} + \dots + 2^{m}s$
where the exponents are distinct
 \Rightarrow $n+1 = 2^{n} + 2^{n} + \dots + 2^{m}s$
If it is,
 $n+1 = 2^{n} + 2^{n} + (\dots - \dots - 1)$

