Pascal's Triangle
(\%)

$$
\binom{n}{k}+\binom{n}{k-1}=\binom{n+1}{k}
$$

(1) (1)
(2) (1) (2) $\left.\begin{array}{l}2 \\ 2 \\ 0\end{array}\right)$
$\binom{3}{0}\binom{3}{1} \quad\binom{3}{2} \quad\binom{3}{3}$
$\binom{4}{0}\binom{4}{1}\binom{4}{2} \quad\binom{4}{3} \quad\binom{4}{4}$

$$
\begin{gathered}
1^{1}{ }^{1}{ }^{1}{ }^{3}{ }^{3} 3^{1} 1 \\
14^{4}{ }^{4} 1 \\
(x+y)^{4}=x^{4}+4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+y^{4}
\end{gathered}
$$

Proof by Picture
I.1) $1+2+3+\cdots+n=\frac{n(n+1)}{2}$


$$
2(1+2+3+\cdots+n)=n(n+1)
$$

I.4) $1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$
similar proof in 3D
I.3) $1+3+5+\cdots+(2 n-1)=n^{2}$


Strong Induction

- Base Case (s)
- Induction step: Instead of assuming $P(n)$ to prov $P(n+1)$, assume $\frac{P(1), P(2), \ldots, P(n)}{\text { Indactu hypothesis }}$ to prove $P(n+1)$
Logically, this is just as good as ordinary induction
Them: Every natural number a has a binary representation, ie.

$$
n=2^{m_{1}}+2^{m_{2}}+\cdots+2^{m_{s}}
$$

where $m_{1}, m_{2}, \ldots, m_{5}$ are all distinct (no repents)
Ex:

$$
\begin{aligned}
& 20=2^{4}+2^{2} \\
& 35=2^{5}+2^{1}+2^{0}
\end{aligned}
$$

Proof: By strong induction on $n$.
Base case: $n=1$. Then $1=2^{\circ}$

Inductive step: Let $n$ be a natural number, and assume the theorem is the for all numbers $1,2,3, \ldots, n$. That is, if $1 \leq k \leq n$, then $k$ has a binary rep.

Want to prove: $n+1$ has a binary rep.
Let $a$ be the largest integer such that

$$
2^{a} \leq n+1
$$

- If $2^{a}=n+1$, then vive done.
- Otherwise $1 \leq n+1-2^{a}=k \leq n$

So, by the ind. hyp.,

$$
n+1-2^{a}=2^{m_{1}}+2^{m_{2}}+\cdots+2^{m_{s}}
$$

woe the exponents are distinct

$$
\Rightarrow n+1=2^{a}+{\frac{2^{m_{1}}+2^{m_{2}}+\cdots+2^{m_{s}}}{\text { is } 2^{a} \text { in here? }} \text {. }}_{\text {and }}
$$

If it is,

$$
n+1=2^{a}+2^{a}+(
$$

$$
\begin{aligned}
& =2 \cdot 2^{a}+\cdots \\
& =2^{a+1}+\cdots \\
n+1-2^{a+1} & =\cdots \cdots 0 \\
n+1 & \geq 2^{a+1}
\end{aligned}
$$

which contradicts how we chase $a$.

So there are no repented exponents.

