$$
\begin{aligned}
& \left(\frac{3}{2}\right)^{n-2} \leq F_{n}<\left(\frac{5}{3}\right)^{n} \\
& 1,1,2,3,5,8,13, \ldots
\end{aligned}
$$

What is $\lim _{n \rightarrow \infty} \frac{F_{n+1}}{F_{n}}$?
Golden Ratio ≈ 1.61803

$$
\begin{aligned}
& a=\frac{1+\sqrt{5}}{2}, b=\frac{1-\sqrt{5}}{2}=-\frac{1}{a} \\
& F_{n}=\frac{a^{n}-b^{n}}{a-b} \\
& \frac{F_{n+1}}{F_{n}}=\frac{a^{n+1}-b^{n+1}}{a^{n}-b^{n}}
\end{aligned}
$$

-HW backlog

- expect a few graded HW emails
- First portfolio entry
- shave by Monday

Recall: Euclidean Algorithm for finding the greatest common divisor.

Ex: $(248,72)$

$$
\begin{array}{rlrl}
248 & =3.72+32 & 0 \leq r \leq 71 \\
72 & =2 \cdot(32+8 & 3.72=216 \\
32 & =4 \cdot 8+0 & 2.32=64
\end{array}
$$

By The 1.33: $(248,22)=(72,32)$

$$
\begin{aligned}
& =(32,8) \\
& =(8,0) \\
& =8
\end{aligned}
$$

Big Theorem for next time

Thm 1.38/1.39: Let a and b be integers. Then a and b are relatively prime $(c a, b)=1)$ if and only if there exist integers x and y with

$$
a x+b y=1
$$

2 things to prove
I'll prevent $1.38: \quad(a, b)=1 \Rightarrow$ the exit x and y this on Frilly with $a x+b y=1$

$$
\begin{aligned}
& \text { WW } \rightarrow 1.39: \begin{array}{l}
\text { the enosis } x \text { and } \\
\text { for Friday }
\end{array} \Rightarrow(a, b)=1 .
\end{aligned}
$$

Ex: Let $a=18, b=7$. Need to "solve"

$$
18 x+7 y=1
$$

$$
\begin{aligned}
& 18=2 \cdot 7+4 \rightarrow 4=18-2 \cdot 7 \\
& 7=1 \cdot(4) \rightarrow 3=7-1 \cdot 4 \\
& 4=1 \cdot(3)+1 \text { (1) } \rightarrow 1=4-1 \cdot 3 \\
& 3=3 \cdot 1+0 \\
& 1=4-1 \cdot 3 \\
& =4-(7-1 \cdot 4)=2 \cdot 4-7 \\
& =2(18-2 \cdot 7)-7 \\
& =2 \cdot 18-5 \cdot 7
\end{aligned}
$$

So

$$
1=18 x+7 y
$$

is solued by $x=2, y=-5$.

