Thus: Let a and b be integers. Then a and b are relatively prime (i.e., (a,b)=1) if and only if there exist integers x and y such that ax+by=1.

Proof: (
$$\Leftarrow$$
) The 1.31, proved by Will.
(\Rightarrow) Them 1.38.
We'll first assume that $a, b \ge 0$.
The proof is by strong induction.
Base cases:
• $a=b=0$: This is not allowed, because (0,0)
is undefined.
• $a=1, b=0$: $1 \times + 0 = 1$ is solved by $x=1$
 $y=anything$
• $a=0, b=1$: similar.
• $a=1, b=1$: $1 \times + 1 y = 1$ is solved by $x=1, y=0$

So, without loss of generality, we can assume

$$a = n+1$$

and
 $1 \le b \le n$.
Now, run the division algorithm:
 $a = n+1 = q \cdot b + r$, $0 \le r \le b-1 \le n$
By Thum 1.33, $(a,b) = (b,r)$
 $1''$
Since $(b,r) = 1$ and $0 \le b, r \le n$, by the
inductive hypothesis, we can bind integens $=, w$
Such that
 $b_2 + rw = 1$
 $a = qb + r \rightarrow r = a - qb$

Now,

$$bz + rw = |$$

$$bz + (a - gb)w = |$$

$$aw + (z-gw)b = 1$$

Ex: (last time)
$$18x + 7y = 1$$
 is solved by $x=2, y=-5$.
-18x +7y = 1 is solved by $x=-2, y=-5$
-18x -7y = 1 ... $x=-2, y=5$
etc.