Page 19
Them: Let a and b be integers. Then a and b are relatively prime (ie., $(a, b)=1$) if and only if there exist integers x and y such that

$$
a x+b y=1
$$

Proof: (\Leftarrow) Thu 1.39, proved by Will.
(\Rightarrow) The 1.38 .
Well first assume that $a, b \geqslant 0$.
The proof is by strong induction.
Base cases:

- $a=6=0$: This is not allowed, because $(0,0)$ is undefined.
- $a=1, b=0: \quad 1 x+0 y=1$ is solved by $x=1$ $y=$ anything
- $a=0, b=1$: similar.
- $a=1, b=1: 1 x+1 y=1$ is solved by $x=1, y=0$

Inductive step: Let $n \geq 1$ be a natural number.
Assume the theorem holds for every pair of integers a, b with $(a, b)=1$ and $0 \leq a, b \leq n$.

Now, suppose a and b satisfy $(a, b)=1$ and that

$$
0 \leq a, b \leq n+1
$$

Goal: Find integers x and y satisfying $a x+b y=1$.

- If both $a \leq n$ and $b \leq n$, then we can apply the inductive hypothesis to find x and y.
- If $b=0$, then $(a, b)=(a, 0)=a \Rightarrow a=1$

$$
1^{\prime \prime}
$$

and we already did this case.

- If $a=0$, then similarly $b=1$ and re already did this.
- $a=n+1$ and $b=n+1$, then $(a, b)=(n+1, n+1)=n+1 \neq 1$,
so the hypothesis is not satisfied. x

So, without loss of generality, we can assume

$$
a=n+1
$$

and

$$
1 \leq b \leq n .
$$

Now, man the dinsion algorithm:

$$
a=n+1=q \cdot b+r, \quad 0 \leq r \leq b-1<n
$$

By Thu 1.33, $(a, b)=(b, r)$

Since $(b, r)=1$ and $0 \leq b, r \leq n$, by the inductive hypothesis, we can find integers z,w such that

$$
\begin{aligned}
& \qquad b z+r w=1 \\
& a=q b+r \rightarrow r=a-q b
\end{aligned}
$$

Now,

$$
\begin{aligned}
& b z+r w=1 \\
& b z+(a-q b) w=1
\end{aligned}
$$

$$
a w+(z-q w) b=1
$$

So $x=\omega$ and $y=z-q w$ solves

$$
a x+b y=1
$$

This completes the inductive step.
So the theorem is the if $a, b \geqslant 0$. What if one or both is negative?

Solve $|a| x+|b| y=1$ instead + use this to find a solution to $a x+b y=1$.

Ex: (last tine) $18 x+7 y=1$ is solved by $x=2, y=-5$.

$$
\begin{aligned}
& -18 x+7 y=1 \text { is solved by } x=-2, y=-5 \\
& -18 x-7 y=1 \\
& x=-2, \quad y=5
\end{aligned}
$$

etc.

