The 1.38: If $(a, b)=1$, then thee exist integers $x$ and $y$ such that

$$
a x+b y=1
$$

Thu 1.40: There exist integer $x$ and $y$ such that

$$
a x+b y=(a, b)
$$

An equation of the form

$$
a x+b y=c
$$

where $a, b, c$ are integers is called a linear
$\frac{\text { Diophantine equation }}{\downarrow}$
integer coefficients

+ want integer solutions

Ex: $\quad(36,22)=2=(22,36)$
$\Rightarrow$ there exist inters $x$ and $y$ such that

$$
\begin{gathered}
36 x+22 y=2 \\
x=-3, y=5
\end{gathered}
$$

$$
2=8-6
$$

Questions:

- $a x+b y=c$ has $a$ solution if $c=(a, b)$. Does it have more than ore solution?
- What if $c \neq(a, b)$ ? Can $a x+b y=c$ still have solutions?

$$
\begin{aligned}
& 36=1 \cdot 22+14 \rightarrow 14=36-22 \\
& 22=1 \cdot 14+8 \rightarrow 8=22-14 \\
& 14=1.8+6 \rightarrow 6=14-8 \\
& 8=1.6+2 \rightarrow 2=8-1.6 \\
& 6=3 \cdot 2+0 \\
& =8-(14-8)=2 \cdot 8-14 \\
& =2(22-14)-14=2.22-3.14 \\
& =2.22-3(36-22) \\
& =522-3 \cdot 36 \\
& 110-108=2
\end{aligned}
$$

Ex: $\quad 36 x+22 y=3$ has no solutions $36 x+22 y=4$ does have solutions)

$$
\begin{aligned}
& (36 \cdot(-3)+22 \cdot(5)=2) \times 2 \\
& 36 \cdot(-6)+22(10)=4
\end{aligned}
$$

Thus $1.41-1.43$ are "applications" of The 1.38.
Thu 1.42: Let $a, b$, and $n$ be integers. If $a \mid n$ and $b / n$, $\frac{\text { and }(a, b)}{\uparrow}=1$, then $a b \mid n$. this is important!

Proof: By Thu 1.38 , since $(a, b)=1$, the exist integers $x$ and $y$ such that

$$
\begin{equation*}
a x+b y=1 \tag{A}
\end{equation*}
$$

Since $a \mid n$, we have $n=a \cdot k$ for some $k \mathbb{Z}$.
Similarly, $b / n$, so $n=b \cdot l$ for some $l \in \mathbb{Z}$.

Multiply both sides of (*) by $n$ :

$$
\begin{aligned}
& (a x+b y) n=n \\
& a \times n+b y n=n \\
& a x(b l)+b y(a k)=n \\
& a b(x l+y k)=n .
\end{aligned}
$$

So (ab)|n.

The 1.43: Let $a, b$, and a be integers.
If $(a, n)=1$ and $(b, n)=1$, then $(a b, n)=1$.

Proof: By Thu 1.38, there exist integers $x, y$ with

$$
a x+n y=1 \rightarrow a x=1-n y
$$

and integers $z$ and $w$ with

$$
b z+n w=1 . \quad \rightarrow \quad b z=1-n w
$$

So

$$
\begin{aligned}
(a x) \cdot(b z) & =(1-n y)(1-n w) \\
(a b)(x z) & =1-n y-n w+n^{2} y w \\
& =1-n(y+w-n y w) .
\end{aligned}
$$

Rearrange:

$$
a b \frac{(x z)}{\epsilon \mathbb{Z}}+\frac{n(y+w-n y w)}{\epsilon \mathbb{Z}}=1
$$

By Thm 1.39, $\quad(a b, n)=1$.

Thm 1.381.39:

$$
\stackrel{1.38}{\Rightarrow}
$$

$(a, b)=1 \Longleftrightarrow$ the exist $x, y \in \mathbb{Z}$ with

$$
\leftarrow_{1.39} \quad a x+b y=1
$$

