Then 1.38: If
$$(a,b)=1$$
, then there exist integers x and y
such that
 $ax+by=1$
Then 1.40: The exist integers x and y such that
 $ax+by = (a,b)$
An equation of the form
 $ax + by = c$
where a,b,c are integers is called a linear
Diophemetike equation
 x', y'
integer coefficients
+ unit integer solutions
 $Ex: (36, 22) = 2 = (22, 36)$
 \Rightarrow there exist integers x and y such that
 $3bx + 22y = 2$
 $x = -3, y = 5$

$$36 = 1 \cdot 22 + 14 - 14 = 36 - 22$$

$$22 = 1 \cdot 14 + 8 - 8 = 22 - 14$$

$$14 = 1 \cdot 8 + 6 - 6 = 14 - 8$$

$$8 = 1 \cdot 6 + 2 - 2 = 8 - 1 \cdot 6$$

$$6 = 3 \cdot 2 + 0$$

$$2 = 8 - 6$$

$$= 8 - (14 - 8) = 2 \cdot 8 - 14$$

$$= 2(22 - 14) - 14 = 2 \cdot 22 - 3 \cdot 14$$

$$= 2 \cdot 22 - 3(32 - 22)$$

Questions:	
• $ax + by = c$ has	a solution if $C=(a,b)$.
Does it have more	thus one solution?
• What if $C \neq (a,b)$?	Can ax+by=c still
have solutions?	

Ex:
$$36x + 22y = 3$$
 has no solutions
 $36x + 22y = 4$ does have solution(s)
 $(36 \cdot (-3) + 22 \cdot (5) = 2) \times 2$
 $36 \cdot (-6) + 22(10) = 4$
Thus $1.41 - 1.43$ are "applications" of Thum 1.38.
Thus $1.41 - 1.43$ are "applications" of Thum 1.38.
Thus $1.41 - 1.43$ are "applications" of Thum 1.38.
Thus 1.42 : Left a,b, and n be integers. If
aln and bln, and $(a,b)=1$, then $ab \mid n$.
This is important!
Proof: By Thum 1.38, since $(a,b)=1$, then $ab \mid n$.
They are and y such that
 $ax + by = 1$. (*)
Since aln, we have $n = a \cdot k$ for some $k \in \mathbb{R}$.

Similarly, bln, so n=b.l for some lEZ.

Multiply both sides of (A) by n:

$$(ax + by) n = n$$

$$axn + byn = n$$

$$ax(bl) + by(all) = n$$

$$ab(xl + yll) = n$$
So (ab) | n.

Then 1.43: Let a,b, and a be integers.

If (a, n) = 1 and (b, n) = 1, then (ab, n) = 1.

Proof: By Then 1.38, there exist integers x,y with

$$ax + ny = 1 \implies ax = 1 - ny$$
and integers z and w with

 $bz + nw = 1$. $\Rightarrow bz = 1 - nw$

¢

So
$$(ax) \cdot (bz) = (1 - ny)(1 - nw)$$

 $(ab)(xz) = 1 - ny - nw + n^{2}yw$
 $= 1 - n(y + w - nyw).$

Reavrange:		
ab(x z) +	n (y+w-nyw) EZ	=

By Thm 1.39, (ab, n) = 1.

The 1.38/1.39: (a,b) = 1 (=>) there exorist $x, y \in \mathbb{Z}$ with $a \times by = 1$ 1.39