$$
\begin{aligned}
& a c \equiv b c(\bmod n) \\
\rightarrow & n \mid(a c-b c) \\
\rightarrow & n \mid(a-b) c \\
\rightarrow & (a-b) c=n k \quad n k=c \cdot \\
\rightarrow & c \mid(n k)
\end{aligned}
$$

$\rightarrow c \mid k^{7}$ and $\quad x \mid n \quad n=c \cdot l$

$$
(n, c)=c
$$

Ex: $c=4, n=3, k=8$
The 1.41:

$$
4 \mid(3.8) \rightarrow 418
$$

If $a \mid(b c)$
and $(a, b)=1$
then a lc.
Non-Ex: $c=4, n=6, k=10$ $(c, n)=2$
$41(6.10)$ but $4 \not f 6$ and $4 \nmid 10$

$$
c(a-b)=n \cdot k \rightarrow c \mid k \quad \text { by } 1.41
$$

$$
\begin{aligned}
d(a-b)=n(l \cdot l) & \rightarrow(a-b)=n \cdot l \\
& \rightarrow n \mid(a-b) \\
& \rightarrow a \equiv b(\bmod n)
\end{aligned}
$$

Question 1.20: When does
$a c \equiv b c(\bmod n) \quad \operatorname{impl} y \quad a \equiv b(\bmod n)$?
Answer 1.45: when $(c, n)=1$.

Ex: $c=4, n=3$

$$
\begin{aligned}
2 \cdot 4 & \equiv 5 \cdot 4 \\
8 & (\bmod 3) \Rightarrow 20 \\
& (\bmod 3)
\end{aligned}
$$

Non-Ex: $c=4, n=6$

$$
\begin{aligned}
3 \cdot 4 & \equiv 12 \cdot 4(\bmod 6) \Rightarrow 3 \neq 12(\bmod 6) \\
12 & \equiv 48(\bmod 6) 2
\end{aligned}
$$

$$
a x_{1}+b y_{1}=c
$$

Want: $d=\operatorname{gcd}(a, b)$ divides c
Know: - d la and dib

- d is the largest common dior

$$
\left.\begin{array}{rl}
d \mid a \rightarrow a=k \cdot d \\
d \mid b \rightarrow b=l \cdot d
\end{array}\right] \rightarrow a x_{1}+b y_{1}=c
$$

What do we know about linear Diophantiveq's? Let a, b be integers, not both 0 .
1.3811.39: $\quad a x+b y=1$ has a solution (xandy)
if and only if $(a, b)=1$
1.48: $a x+b y=c$ has a solution (x and y)
if and only if c is a multiple of (a, b)

One question remaining:
How many solutions of

$$
a x+b y=c
$$

one there?

- Zero if (a, b) doesn't dinge c.
- At least one if (a, b) divides c. can we be move precise?
Yes - there are infinitely many!
Exam 2 next Wed.
- Division alg.
- GODs
- Euclidean alg.
- Induction
- Linear Diophantine Equations

$$
a x+b y=c \quad(a, b)=1, \quad a, b, c>0
$$

Will we always have positive solutions $x, y \geq 0$?
No

$$
\begin{array}{ll}
3 x+5 y=c & (3,5)=1 \\
3(1)+5(0)=3 & \text { Positive } \\
3(0)+5(1)=5 & \text { Solution if } \\
3(1)+5(1)=8 & c=3,5 \text { or } \geqslant 8
\end{array}
$$

Fix c also: $a x+b y=c$ where
$-(a, b)$ divides c

$$
\cdot a, b, c \geqslant 0
$$

\Rightarrow Finitely many solutions (possibly 0) were both $x, y \geqslant 0$

$$
31 \cdot x+21 \cdot y=1770
$$

Thu $1.48 \Rightarrow$ the are solutions
Thu $1.51 \Rightarrow$ the ne are infinitely many sols But only a few with $x, y \geqslant 0$.

