$$E_{Y}$$
: $a = 4$, $b = 3$
 $g(d(4,3), \cdot lcm(4,3)) = 4\cdot3 = 12$
 $= 1$ $= 12$

$$E_{X}: a = 4, b = 6$$

$$gcd(4, 6) \cdot lcm(4, 6) = 4 \cdot 6 = 24$$

$$= 2 = 12$$

$$gcd(a,b) \cdot lcm(a,b) = ab \rightarrow lcm(a,b) = \frac{ab}{gcd(a,b)}$$

 $gcd(a,b) = \frac{ab}{lcm(a,b)}$

All Hur through last neek returned by tomorrow.
Feedbach on portfulio revisions by tomorrow.
Usual office hour today at 3 pm.
Exam 2 - Wednesday
Exam available on Canvas as a pdf at 11 AM
Upload solutions as pdf by 12 pm

$$y = y_0 - k \cdot \frac{a}{(a,b)}$$

where kEZ. Then 1.53.

Ex:
$$12x + 33y = 15$$

Then 1.40: We have solutions $(12, 33)$ divides 15.
Enclident Alg: $33 = 2 \cdot 12 + 9$

Enclider Arig.
$$55 = 2.10 + 3 \rightarrow (12, 33) = 3$$

 $9 = 3.3$

Since 3/15, there will be solutions.

 $33 = 2 \cdot 12 + 9 \rightarrow 9 = 33 - 2 \cdot 12$ $12 = 1 \cdot 9 + 3 \rightarrow 3 = 12 - 9$

5.

$$3 = 12 - 9$$

= 12 - (33 - 2.12) = 12 - 33 + 2.12
= 3.12 - 33

 $5 \cdot (12(3) + 33(-1)) = (3) \cdot 5$

12(15) + 33(-5) = 15180 - 165

Find All solutions: 12 x + 33 y = 15 One sol. is x,=15, y=-5. Other solutions: $y = -5 - k \cdot \frac{12}{(12,33)}$ $X = 15 + k \cdot \frac{33}{(12,33)}$ $= -5 - k \cdot 4$ $= 15 + k \cdot 11$ where he is any integer

×	4	((
-18	7	k = -3
-7	3	4 = -2
ч	-1	h==1
15	- 5	L = 0
26	-9	h=1
37	-13	k =2
48	-17	