Ex: $\quad a=4, \quad b=3$

$$
\operatorname{lid}_{=1}^{\operatorname{gcd}(4,3)} \cdot \underbrace{\operatorname{Icm}(4,3)}_{=12}=4 \cdot 3=12
$$

Ex: $a=4, b=6$

$$
\begin{aligned}
& \underbrace{\operatorname{gcd}(4,6)}_{=2} \cdot \underbrace{\operatorname{lcm}(4, b)}_{=12}=4 \cdot 6=24 \\
& \operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)=a b \rightarrow \operatorname{Icm}(a, b)=\frac{a b}{\operatorname{gcd}(a, b)} \\
& \operatorname{gcd}(a, b)=\frac{a b}{\operatorname{lcm}(a, b)}
\end{aligned}
$$

- All HW through last week returned by tomorrow.
- Feedback on portfolio revisions by tomorrow.
- Usual office hour today at 3 pm .

Exam 2 -Wednesday

- Exam amilable on Canvas as a pdf at 11 AM - Upload solutions as pdf by 12 pm
- Max in Zoom classroom to answer questions
- 5 problems
- Some computation/ examples
- proofs
L at least one by induction
\rightarrow at least one from the HW Lat least one that's new
- Content:
- Division Algorithm

Given $n, m \in \mathbb{Z}$, there exist \quad unique $r, r \in \mathbb{Z}$ with

$$
\begin{aligned}
m & =q n+r \longleftrightarrow \frac{m}{n}=q+\frac{r}{n} \\
\text { and } \quad 0 & \leq r \leq n-1
\end{aligned}
$$

- CDs
- Euclidean Algorithm

Repented division algorithm.

$$
\begin{aligned}
& a=q^{(b)}+\bigoplus \\
& b=q_{2} r_{1}+r_{2}
\end{aligned}
$$

Last nonzero remainder is $\operatorname{gcd}(a, b)$.

- Induction
- Linear Diophantine Equations

Executive summary of LDEs

$$
a x+b y=c \quad a, b, c \in \mathbb{Z}
$$

- This has a solution (integers x, y) if and only if (a, b) divides c. Thu 1.48
- If there are solutions, we can find one by - guessing + checking
- reverse engineer the Euclidean alg.

$$
\begin{aligned}
& a=q(b)+r_{1} \\
& b=q_{2} r_{1}+r_{2} \\
& r_{1}=q_{3} r_{2}+r_{3} \quad \text { 广 solve for in } \\
& \vdots \\
& r_{L-1}=q_{k+1} r_{k}+(a, b) \rightarrow(a, b)=r_{k-1}=q_{k+1} r_{h}
\end{aligned}
$$

- Once you have one solution, call it x_{0}, y_{0}, All other solutions are

$$
x=x_{0}+k \cdot \frac{b}{(a, b)}
$$

$$
y=y_{0}-k \cdot \frac{a}{(a, b)}
$$

where $k \in \mathbb{Z}$. Thu 1.53 .

Ex: $\quad 12 x+33 y=15$
Tho 1.40: We has solutions $\Leftrightarrow(12,33)$ divides 15 .
Enclidem Alg: $33=2 \cdot(12)+(9)$

$$
\begin{aligned}
& 12=19+(3) \rightarrow(12,33)=3 \\
& 9=3.3
\end{aligned}
$$

Since 3115 , there will be solutions.
To find ore solution: Reverse the Enclidan Alg:

$$
\begin{aligned}
& 33=2 \cdot 12+9 \rightarrow 9=33-2 \cdot 12 \\
& 12=1 \cdot 9+3 \rightarrow 3=12-9
\end{aligned}
$$

So

$$
\begin{aligned}
3 & =12-9 \\
& =12-(33-2.12)=12-33+2.12 \\
& =3.12-33
\end{aligned}
$$

$$
\begin{aligned}
& 5 \cdot(3(3)+33(-1))=(3) \cdot 5 \\
& 12(15)+33(-5)=15 \\
& 180-165
\end{aligned}
$$

Find All solutions:

$$
12 x+33 y=15
$$

One sol. is $x_{0}=15, y_{0}=-5$.
Other solutions:

$$
\begin{aligned}
x & =15+k \cdot \frac{33}{(12,33)}, & y & =-5-k \cdot \frac{12}{(12,33)} \\
& =15+k \cdot 11 & & =-5-k \cdot 4
\end{aligned}
$$

wee k is any integer

x	y
-18	7
-7	3
4	-1
15	-5
26	-9
37	-13
48	-17

$$
\begin{gathered}
\vdots \\
k=-3 \\
k=-2 \\
k=-1 \\
h=0 \\
h=1 \\
k=2
\end{gathered}
$$

