-iPad notes now available on HW page

- Office hours survey - respond today if you want input
- Next presentations - respond ASAP
- Exam 2 graded - 20 point curve

Thu 2.1: Mckenzie's proof can le understood as a strong induction:

Assume every k with $1<k<n$ has a prime divis or.

Case 1: n is prime
Case 2: n is composite $\Rightarrow n=x y$,
wee $1<x, y<n$
By inductive hyp., some $p \mid x \Rightarrow$ pin.

The 2.3: $n>1$ is prime if and only if every prime $p \leq \sqrt{n}$ does not dixie n.
n is prime \Rightarrow every prime $p \leq \sqrt{n}$ doesnt drive n
every prime $p \& \sqrt{n}$ doesn't dude $n \Rightarrow n$ prime

Equindeatly,
n NOT prime \Longrightarrow some prime $p \leq \sqrt{n}$ does divide n

Ex: 101 is pine $\sqrt{101} \approx \sqrt{100}=10$
Check $2,3,5,7$ don't dude 101
$47 \quad \sqrt{47}<\sqrt{49}=7$
2ł47, $3 \nmid 47,5 \nmid 47 \Rightarrow 47$ is prime.

Next HW: 2.7-2.9

Fundamental Theorem of Arithmetic:
Every natural number $n>1$ can be written uniquely as a product of primes. ta up to reordering

Ex:

$$
\begin{aligned}
72 & =12 \cdot 6 \\
& =(4 \cdot 3)(2 \cdot 3) \\
& =(2 \cdot 2 \cdot 3)(2 \cdot 3)=2^{3} \cdot 3^{2}
\end{aligned}
$$

Existence (2.7) - use 2.1 and strung induction

Uniqueness (2.9) - Let

$$
\begin{aligned}
& \left\{p_{1}, \ldots, p_{m}\right\} \\
& \left\{q_{1}, \ldots, q_{s}\right\}
\end{aligned}
$$

be sets of primes with $\left(\begin{array}{l}p_{i} \neq p_{j} \\ q_{i} \neq q_{j}\end{array}\right.$ if ifj$)$
If no repents

$$
\begin{aligned}
n & =p_{1}^{r_{1}} \cdots p_{m}^{r_{m}} \\
& =q_{1}^{t_{1}} \cdots q_{s}^{t_{s}}
\end{aligned}
$$

then these are actually the same factorization

$$
\begin{aligned}
& \text { - } m=s \\
& \text { - }\left\{p_{1}, \ldots, p_{m}\right\}=\left\{q_{1}, \ldots, q_{s}\right\} \\
& \text { - if } p_{i}=q_{j} \text {, then } r_{i}=t_{j}
\end{aligned}
$$

Ex:

$$
\begin{aligned}
72 & =2^{3} \cdot 3^{2} & p_{1}=2, p_{2}=3 \\
& =3^{2} \cdot 2^{3} & q_{1}=3, q_{2}=2
\end{aligned}
$$

Iden: Lemman 2.8 + induction

No dass Friday

