Office Hours
MW 3-4 pm
Thur $\quad 1-2 \mathrm{pm}$
As always, I'm available by appointment.

Lemma 2.8: Let p, q_{1}, \ldots, q_{n} be primes.
If $p \mid q_{1} \cdots q_{n}$, then $p=q_{\text {i }}$ for some i.

Non-Ex: $p=4, q_{1}=6, q_{2}=9, q_{3}=10$

$$
\begin{array}{ll}
4 \mid(6.9 \cdot 10) & 540=4.135 \\
\text { but } 4 \neq 6,9 \text {, or } 10
\end{array}
$$

Proof: By induction on n.
Base case: $n=1$. Then $p \mid q_{1}$, so $p k=q_{1}$ for some integer k. Since q_{0} is prime, its only factorization is

$$
q_{1}=1 \cdot q_{1}
$$

Since p is prime, $p \neq 1$, so

$$
P=q, \quad \text { (and } k=1) .
$$

Inductive step: Assume that if p divides a product of n primes. then p is equal to one of those primes.

Now Suppose

$$
p \mid q_{1} \cdots q_{n} \cdot q_{n+1}
$$

Case 1: $p=q_{1}$, then were dore.
Case 2: $p \neq q_{1}$ then $\left(p, q_{1}\right)=1$.

By Tho 1.41, $p \mid q_{1} \cdot\left(q_{2} \cdots q_{n+1}\right)$, so $p \frac{q_{2} \cdots q_{n+1}}{n \text { primes }}$.
By the inductive hypothesis, $p=q_{i}$ for one of the $:$ in $2 \leqslant i \leqslant n+1$.

Thu 2.9 (FTA, uniguness part)
Let n be a natural number,

$$
n=p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{m}^{r_{m}}=q_{1}^{t_{1}} q_{2}^{t_{2}} \cdots q_{s}^{t_{s}}
$$

- $\left\{q_{1}, ., 9,\right\}$ also a set of distant pries.

Then $m=s,\left\{p_{1}, \ldots, p_{m}\right\}=\left\{q_{1}, \ldots, q=\right\}$, and if $p_{i}=q_{j}$ then $r_{i}=t_{j}$.

Proof: Strong induction on n.
Base case: $n=1$, nothing to do
Inductive step: Assure every natural number k satisfying $1 \leq k \leq n$ has a unique prove factorization.

Weill prove $n+1$ has a unique prove factorization.
By theorem 2.1, the exists a prime p such that $p \mid(n+1) . \Rightarrow n+1=p \cdot k$

If

$$
n+1=p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{m}^{r_{m}}=q_{1}^{t_{1}} q_{2}^{t_{2}} \cdots q_{s}^{t_{s}}
$$

By Lemma 2.8, p dives the product of $p i s$, so $p=p_{i}$ for sone i. Similarly, $p=q_{j}$ for Some j.

$$
\begin{aligned}
\Longrightarrow n+1 & =p \cdot k \\
\Rightarrow k & =p_{1}^{r_{1}} \cdots p_{i}^{r_{i}-1} \cdots p_{m}^{r_{m}} \\
& =q_{1}^{t_{1}} \cdots q_{j}^{t_{j}-1} \cdots q_{s}^{t_{s}}
\end{aligned}
$$

By the inductive hypothesis, these are the sure prime factorization of k

$$
\begin{aligned}
\Rightarrow & m=s \\
& \left\{p_{1}, \ldots, p_{m}\right\}=\left\{q_{1}, \ldots, q_{5}\right\}
\end{aligned}
$$

and the exponents agree.

