Office Hours MW 3-4 pm Thur 1-2 pm As always, I'm available by appointment.

Lemma 7.8: Let P,
$$q_1, \dots, q_n$$
 be primes.
If $p \mid q_1 \dots q_n$, then $p = q_i$ for some i.
Non-Ex: $p = 4$, $q_1 = 6$, $q_2 = 9$, $q_3 = 10$

$$4 | (6.9.10) 540 = 4.135 \\ 6n+ 4 \neq 6,9, or 10$$

Proof: By induction on n.
Base case: n=1. Then
$$p|q_1$$
, so $pk = q_1$
for some integer k. Since q_1 is
prime, its only functionization is
 $q_1 = 1 \cdot q_1$.
Since p is prime, $p \neq 1$, so
 $p = q_1$ (and $k = 1$).

By Them 1.41,
$$p \mid q_1 \cdot (q_2 \cdots q_{n+1})$$
,
so $p \mid q_2 \cdots q_{n+1}$.
n primes
By the inductive hypothesis, $p = q_i$ for one
of the *i* in $2 \leq i \leq n+1$.

The 2.9 (FTA, uniqueness part)
Let n be a northern number,
$$n=p_1^{r_1}p_2^{r_2}\cdots p_m^{r_m}=q_1^{t_1}q_2^{t_2}\cdots q_s^{t_s}$$

where
$$\xi_{p_1, \dots, p_m}$$
 are a set of distinct
primes $P: \neq p_j$ if $i \neq j$
 ξ_{q_1, \dots, q_s} also a set of distinct primes.

Then m = s, $\{p_{1}, ..., p_{m}\} = \{q_{1}, ..., q_{s}\}, and$ if $p_{i} = q_{j}$ then $r_{i} = t_{j}$.

Proof: Strong induction on n.
Base case: n=1, nothing to do
Inductive step: Assume every natural number k
sufficiency of the sum of a unique price
fracturization.
We'll prove not has a unique price dictorization.
By theorem 2.1, there exists a prime p such
that pl (n+1). => not = p h
If
$$n+1 = p_1 p_2 \cdots p_m^{n} = q_1^{t_1} q_2^{t_2} \cdots q_n^{t_n}$$

By Lemma 2.8, p divides the product of piss,
so $p = p_1$ for some i. Similarly, $p = q_2$ for
some j.
 $\Rightarrow n+1 = p \cdot k$
 $\Rightarrow k = p_1^{t_1} \cdots p_n^{t_{n-1}} \cdots p_n^{t_n}$
 $= q_1^{t_1} \cdots q_2^{t_2} \cdots q_n^{t_n}$