Ex: $\quad y^{5} \equiv y^{2}(\bmod 7)$

$$
\rightarrow 4^{2} \cdot 4^{3} \equiv 4^{2}(\bmod 7)
$$

$$
\begin{aligned}
y^{2} & \equiv 16(\bmod 7) \\
& \equiv 2(\bmod 7) \\
y^{5} & \equiv 4^{2} \cdot 4^{2} \cdot 4(\bmod 7) \\
& \equiv 2 \cdot 2 \cdot 4(\bmod 7) \\
& \equiv 2(\bmod 7)
\end{aligned}
$$

$\underset{1.45}{\Rightarrow}$ cancel common fetor of y^{2} form both sides

$$
\rightarrow 4^{3} \equiv 1(\bmod 7)
$$

Non-Ex: $\quad 4^{5} \equiv 4^{3}(\bmod 6)$

$$
\frac{\text { Check }}{4^{3} \equiv 64(\bmod 6)}
$$

$$
\equiv 4(\bmod 6)
$$

$$
\begin{aligned}
y^{3} \cdot 4^{2} & \equiv y^{3}(\bmod 6) \\
\Rightarrow y^{2} & \equiv 1(\bmod 6) \\
\text { FALSE } & 4^{2} \equiv 16(\bmod 6) \\
& \equiv 4(\bmod 6)
\end{aligned}
$$

$$
4^{5} \equiv 4^{3} \cdot 4^{2}(\bmod 6)
$$

$$
\equiv 4 \cdot 4^{2}(\bmod 6)
$$

$$
\equiv 4 \quad(\bmod 6)
$$

What went mong: $(4,6)=2 \neq 1$ so 1.45 doesn't work. Actually, $4^{i} \equiv 4(\bmod 6)$ for all $i>0$.

Corollay of Thm $4.6=$ Thm 4.36
If p is prive and $\quad 1 \leq a<p$.

$$
a \text { is in CCRS, } a \neq 0
$$

then there: a unizue b in CCRS such that

$$
a b \equiv 1(\bmod p) .
$$

The number b is the "moltiplicatie inaese of a nodulo a."

Proof: $(a, p)=1$, so by 4.6

$$
a^{k} \equiv 1 \quad(\bmod p)
$$

for sore $k \geqslant 1$. Then $b \equiv a^{k-1}(\bmod p)$.

Ex: $y^{3} \equiv 1(\bmod 7)$

$$
\begin{aligned}
& \Rightarrow 4 \cdot 4^{2} \equiv 1(\bmod 7) \\
& \Rightarrow 4 \cdot 2 \equiv 1(\bmod 7)
\end{aligned}
$$

"The multipliatie ineme of 4 modul. 7 is 2 ."
"Dividing" by 4, mod 7, is the sane as ult by 2.

Ex: Solve $4 x \equiv 3(\bmod 7)$.
Approach \#1: use 3.24
Approach \#2: Malt both sides by $2=$ inane of 4 , mod 7 .

$$
\begin{aligned}
\Rightarrow \quad 2_{x} & \equiv 2.3(\bmod 7) \\
x & \equiv 6 \quad(\bmod 7)
\end{aligned}
$$

Next HW: 4.8-4.11
By Than 4.6, if $(a, n)=1$, then

$$
a^{k} \equiv 1(\bmod n)
$$

for sone $k \geqslant 1$.
The smartest such k is called the order of a $\operatorname{modulo}^{n}$, denoted $\operatorname{ord}_{n}(a)$

$$
E_{x}: \operatorname{ord}_{2}(4)=3
$$

Next neck: Well see that if p is prime and $(a, p)=1$, then
$\operatorname{ord}_{p}(a)$ divides $p-1$.

