1 Write each of the following permutations as a product of disjoint cycles in S_6 .

- (a) (12)(23)(34)(45)(56)
- (b) $(3\,4\,5)^{-1}$
- (c) (345)(2564)(354)
- (d) (23)(56)((1653)(24))(23)(56)

- **2** Recall that a **transposition** is a 2-cycle in S_n .
 - (a) Let $\sigma = (a_1, a_2, a_3, \dots, a_k)$ be a *k*-cycle. Prove that σ can be written as a product of transpositions. [HINT: Look at problem 1(a).]
 - (b) Prove that any transposition (*i*, *j*) can be written as a product of some of the transpositions

 $(1 2), (2 3), (3 4), \dots, (n - 1, n).$

(c) Use parts (a) and (b) to conclude that the transpositions

 $(12), (23), (34), \ldots, (n-1, n)$

generate S_n .